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Abstract. The purpose of the article is to explain a new method to establish the existence

of an exceptional collection of length three for a fake projective plane M with non-trivial

automorphism group, related to a conjecture of Galkin-Katzarkov-Mellit-Shinder in 2015.

Our method shows that 30 fake projective planes support such a sequence, most of which

are new. In particular, this provides many new H-phantom categories.
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1. Introduction

1.1 A fake projective plane is a smooth compact complex surface M with the same Betti

numbers as P 2
C, but M � P 2

C. This is a notion introduced by Mumford who also constructed

the first example. All fake projective planes have recently been classified into 28 classes by
1
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the work of Prasad-Yeung in [18], where 60 examples were constructed including a pair of

examples for each class. Cartwright-Steger [4] confirmed a conjecture of [18] and proved

that there were precisely 100 fake projective planes from those 28 classes, see also [19]. It

is known that a fake projective plane is a smooth complex two ball quotient, and has the

smallest Euler number among smooth surfaces of general type.

Most of the fake projective planes have the property that the canonical line bundle KM can

be written as KM = 3L, where L is a generator of the Néron-Severi group, see Lemma 1 for

the complete list. One motivation of the present article comes from a question of Dolgachev

and Prasad, who asked whether H0(M, 2L) contains enough sections for geometric purposes,

such as an embedding of M .

The other motivation comes from the recent research activities surrounding the search of

exceptional collections and (quasi)-phantoms from the point of view of derived category, such

as [1, 2, 6, 9] and [10]. As for fake projective planes, this is related to whether H0(M, 2L) is

non-trivial, which has been questioned and worked out in some examples in [8].

1.2 Denote by Db(M) the bounded derived category of coherent sheaves on M . A sequence

of objects E1, E2, ..., Er of Db(M) is called an exceptional collection if Hom(Ej, Ei[k]) is non-

zero for j ≥ i and k ∈ Z only when i = j and k = 0, in which case it is one dimensional. In

[8] (or see [7]), the authors consider the problem of the existence of a special type exceptional

collection on an n-dimensional fake projective space.

Conjecture 1. Assume that M is an n-dimensional fake projective space with the canonical

class divisible by n+ 1. Then for some choice of a line bundle L such that KM = (n+ 1)L,

the sequence

OM ,−L, . . . ,−nL

is an exceptional collection on M .

In the cases of fake projective planes (n = 2), it is easy to see that a necessary and sufficient

condition for the above conjecture is to show that H0(M, 2L) = 0. This is proved in [8] if

Aut(M) has order 21. This is also proved for 2-adically uniformised fake projective planes

in [6]. The main result in this note aims to provide more examples to Conjecture 1.

Main Theorem. For M a fake projective plane as listed in Table 1, there is an Aut(X)-

invariant line bundle L with KM = 3L and the sequence OM ,−L,−2L forms an exceptional

collection of Db(M).

There are 33 different pairs of fake projective planes with a non-trivial automorphism group.

The above Table 1 covers 15 pairs, while the other 18 pairs not covered by the Main Theorem

are listed in Table 3 of Section 9, where we discuss the difficulty in our approach. As

mentioned earlier, the results for the first three rows have been obtained earlier in [8] by a
2



Table 1. FPP with EC

class M Aut(M) H1(M,Z) H H1(M/H,Z)

(a = 7, p = 2, ∅) (a = 7, p = 2, ∅, D327) C7 : C3 C4
2 C7 C2

(a = 7, p = 2, {7}) (a = 7, p = 2, {7}, D327) C7 : C3 C3
2 C7 0

(C20, {v2}, ∅) (C20, {v2}, ∅, D327) C7 : C3 C6
2 C7 0

(C2, p = 2, ∅) (C2, p = 2, ∅, d3D3) C3 × C3 C2 × C7 Aut(M) C2

(C2, p = 2, {3}) (C2, p = 2, {3}, d3D3) C3 × C3 C7 Aut(M) 0

(C18, p = 3, ∅) (C18, p = 3, ∅, d3D3) C3 × C3 C2
2 × C13 Aut(M) 0

(a = 15, p = 2, {3, 5}) (a = 15, p = 2, {3, 5}, D3) C3 C3 × C7 Aut(M) C3

(a = 15, p = 2, {3, 5}, 33) C3 C2
2 × C3 Aut(M) C3

(a = 15, p = 2, {3, 5}, (D3)3) C3 C3 Aut(M) C3

(a = 15, p = 2, {3}) (a = 15, p = 2, {3}, D3) C3 C2 × C3 × C7 Aut(M) C2 × C3

(a = 15, p = 2, {3}, 33) C3 C3
2 × C3 Aut(M) C2 × C3

(a = 15, p = 2, {3}, (D3)3) C3 C2 × C3 Aut(M) C2 × C3

(C2, p = 2, ∅) (C2, p = 2, ∅, D3X3) C3 C2 × C7 × C9 Aut(M) C2 × C3

(C2, p = 2, ∅, (dD)3X3) C3 C2 × C9 Aut(M) C2 × C3

(C2, p = 2, ∅, (d2D)3X3) C3 C2 × C9 Aut(M) C2 × C3

different method. The Main Theorem is a combination of Theorem 1 and Theorem 2 to be

explained in the next section.

A consequence of Conjecture 1 is the existence of an H-phantom: A non-zero admissible

subcategory A of the derived category Db(M) is an H-phantom if the Hochschild homology

HH•(A) = 0. From [8, Corollary 1.2] via takingA to be the orthogonal complement inDb(M)

of the exceptional sequence in the Main Theorem, we obtain 30 non-equivalent H-phantoms,

cf. [3].

Corollary 1. Any fake projective plane from the list of the Main Theorem admits an H-

phantom in the derived categories Db(M).

Remark 1. For M any fake projective plane as in the Main Theorem, take G = C3, C7,

or C3 : C7 to be a subgroup in Aut(M) and let Z be the minimal resolution of M/G. By

the same argument for proving [8, Proposition 1.4, 1.6], we also know that both DbG(M) and

Db(Z) admit H-phantom subcategories. See [8] for details.

1.3 To prove Conjecture 1, the Riemann-Roch formula is not sufficient without an appro-

priate vanishing theorem, so the conjecture turns out to be rather subtle.

Our approach is geometric and different from [8] and [6]. We choose L to be an Aut(M)-

invariant cubic root of KM . The problem is reduced to a study of the geometry of invariant

sections of H0(M, 2L) if it exists. The proof relies on the classification of invariant curve and

the group action on the fixed points on them. Our method depends mostly on the numerical
3



property, and hence we propose the following slightly more general problem, which seems to

be more accessible and still serves the purpose of searching for exceptional objects.

Conjecture 2. Assume that M is an n-dimensional fake projective space with the canonical

class numerically divisible by n + 1. Then for some choice of a line bundle L such that

KM = (n + 1)L and a suitable choices of line bundles Ei’s with Ei ≡ −iL, 1 ≤ i ≤ n, the

sequence

OM , E1, E2, . . . , En

is an exceptional collection of M .

When n = 2 and Aut(M) is large, namely, with order greater than 3, by our method we can

derive a contradiction to h0(M, 2L) 6= 0. This holds in general and we find many exceptional

collections. This implies immediately the following slightly stronger result (in the flavor of

Conjecture 2). This follows from the proof of Theorem 3 and 4, and is explained in the end

of Section 4.

Theorem 1. Let M be one of the fake projective plane in the list of the Main Theorem

with Aut(M) = C7 : C3 or C3 × C3. Suppose that H = C7 when Aut(M) = C7 : C3 and

H = Aut(M) otherwise. If E1 and E2 are two H-invariant torsion line bundles on M and

Li = L + Ei, i = 1, 2, then the sequence OM ,−L1,−2L2 forms an exceptional collection of

Db(M).

When Aut(M) = C3, we were not able to show directly that h0(M, 2L) = 0. Instead, for

the purpose of constructing exceptional objects, we assume that there are many invariant

curves in the numerical class of 2L and derive a contradiction. This requires a study of

the existence of two and three different invariant curves in the numerical class 2L and

their possible intersection configurations. A careful analysis shows that there cannot be too

many of them and leads to the required vanishing. In particular, we can prove the stronger

Conjecture 1 when M possesses enough Aut(M)-invariant 3-torsions, cf. Corollary 2 and 3.

Theorem 2. Let M be a fake projective plane with automorphism group Aut(M) = C3. If

either

(1) H1(M/Aut(M),Z) = C3, or

(2) H1(M/Aut(M),Z) = C2 × C3 and M is not in the class C18,

then for some Aut(M)-invariant line bundle L with KM = 3L, the sequence OM ,−L,−2L

forms an exceptional collection of Db(M).

At this point, our argument is not sufficient to solve Conjecture 2 for all fake projective planes

with non-trivial automorphisms. For fake projective planes with non-trivial automorphism

groups not covered in our theorems, there are two classes:
4



(a) M is in class C18, but KM 6= 3L for any line bundle L. It is known that KM ≡ 3H for

some invariant line bundle H and M possesses many invariant 3-torsions.

(b) M is not in class C18, and KM = 3L for a unique invariant line bundle L. Here M

possesses many nontrivial invariant Aut(M)-torsions, but none of them has order 3.

For class C18, we are able to prove the following, cf. Section 8.

Proposition 1. For a fake projective plane M in the class C18 with Aut(M) = C3, there

is an invariant line bundle L such that KM = 3L + ω for an invariant 3-torsion ω and

h0(M, 2L) = 0.

In particular, if furthermore h0(M, 2L + ω) = h0(M, 2L + 2ω) = 0, then the sequence

OM ,−L,−2L forms an exceptional collection by Lemma 29. However, we are not able to

show the existence of an exceptional collection as in Conjecture 2 when either h0(M, 2L+ω) 6=
0 or h0(M, 2L + 2ω) 6= 0. For fake projective planes in (b), the difficulties encountered in

our approach are explained in Section 9.

After the completion of the first draft of the paper, the results in Theorem 3 and 4 of this

paper (see Section 4 and 5) were presented at the 4th South Kyushu Workshop on Algebra,

Complex Ball Quotients and Related Topics, July 22-25, 2014, Kumamoto, Japan. The

second author thanks Fumiharu Kato for his kind invitation. During the conference, J.

Keum mentioned that he had obtained similar results to Theorem 3 and 4 as well, cf. [13].

Organization. This paper is organized as the following. In Section 2, we study invariant line

bundles on fake projective planes and the existence of invariant cubic root of the canonical

class. In Section 3, we prove the existence of invariant curves with fixed points. In Section 4

and 5, we prove Theorem 3. In Section 6, refining the study in Section 4 and 5, we provide

a list of possible configurations of two invariant curves in the numerical class 2L. In Section

7, we show Conjecture 1 holds when Aut(M) = C3 and H1(M/Aut(M),Z) = C3. In Section

8, we study fake projective planes with Aut(M) = C3 and H1(M/C3,Z) = C2 × C3, and

prove the remaining part of the Main Theorem. In the last Section 9, we would explain the

difficulties in applying our method to prove Conjecture 2 for the remaining fake projective

planes with non-trivial automorphisms.

Notation. We work over C. Throughout this paper, we denote by Cm the cyclic group of

order m and by C7 : C3 the unique (up to isomorphism) nonabelian finite group of order 21,

C7 : C3 = 〈x, y|x3 = y3 = 1, xyx−1 = y2〉.

The Picard group of a projective manifold M is denoted by Pic(M), where we have ∼
the linear equivalence and ≡ the numerical equivalence. The Neron-Severi group of M is

NS(M) := Pic(X)/ ≡ and NS(M)Q := NS(M)⊗ZQ. We use additive notion for line bundles:

nL := L⊗n, and do not distinguish a line bundle L with its associated Cartier divisor or
5



c1(L). For two Cartier divisors L1, L2, we denote by L1 > L2 if L1−L2 is an effective divisor.

Also, we say L1 is an n-th root of L2 if L1 = nL2 in Pic(X), and is a numerical n-the root

of L2 if L1 ≡ nL2 in NS(X).

For a reduced proper curve C, we denote by ν : Cν → C the normalization map. The sheaf

δ := ν∗OCν/OC is zero dimensional and supported on Sing(C). For the arithmetic genus

pa(C) := h1(C,OC), we have pa(C) = g(Cν) + h0(δ) − s + 1, where s is the number of

irreducible component of Cν and g(Cν) is the geometric genus.

2. Line bundles on fake projective planes

In this section, we study invariant line bundles on a fake projective plane and when does its

canonical class admit an invariant cubic root. Recall that from [18] a fake projective plane

is a ball quotient M = B2
C/Π for some lattice Π ⊆ PU(2, 1), where Π is constructed as a

subgroup of a maximal arithmetic lattice Γ ⊂ PU(2, 1) and Aut(M) = Γ/Π. We refer the

reader to [18, 4] for details on the notations. The lattices Γ and Π are classified in [18, 4]

We remark that the Picard group Pic(M) = NS(M) = H2(M,Z) due to the cohomological

properties given in the definition of a fake projective plane. We will use the fact throughout

the following argument.

2.1 Let M be a fake projective plane. First of all, we list all fake projective planes where

KM has a cubic root as a line bundle.

Lemma 1. Among the 100 fake projective planes, 92 of which satisfy the property that

KM = 3L, where L is a line bundle generating NS(M)Q.

Proof. From the argument of [18, §10.2], it is known that KM = 3L if and only if Γ can be

lifted to become a lattice in SU(2, 1), and KM = 3L if H2(X,Z) has no 3-torsion. The latter

fact is an immediate consequence of the Universal Coefficient Theorem, see 2.3 below or [7,

Lemma 3.4]. In [18, §10.2], it also proves that Γ can be lifted to SU(2, 1) if the number field

involved is not one of the types C2 or C18. There are 12 candidates for Π lying in C2 or C18.

Out of these 12 examples, 3 of them do not have 3-torsion elements in H2(M,Z) and hence

the corresponding Π can be lifted to SU(2, 1). Finally, it is listed in the file registerofgps.txt

of the weblink of [4], that the lattices can be lifted to SU(2, 1) except for four cases in C18,

corresponding to (C18, p = 3, {2}, D3), (C18, p = 3, {2}, (dD)3), (C18, p = 3, {2}, (d2D)3) and

(C18, p = 3, {2I}) in the notation of the file, see also Table 2 in [20, 21]. Since there are two

non-biholomorphic conjugate complex structures on such surfaces, it leads to the result that

92 of the fake projective planes can be regarded as quotient of B2
C by a lattice in SU(2, 1). �

6
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2.2 Recall that for a fake projective plane M , the universal covering M̃ of M is biholomorphic

to B2
C. Assume that B2

C is defined by a Hermitian form F of signature (2, 1). Let SU(2, 1)

be the set of matrix elements in GL(3,C) preserving the Hermitian form F . Denote by KM̃

the pull-back of the canonical line bundle on M with respect to the universal covering map.

Then KM̃ is a SU(2, 1)-equivariant holomorphic line bundle, and KM̃ = 3L1 in terms of a

SU(2, 1)-equivariant holomorphic line bundle L1 on M̃ , cf. [14].

Lemma 2. Let M be a fake projective plane with Aut(M) 6= {1}.

(a) Suppose that M does not belong to the classes C2 and C18. Then L1 descends as a

holomorphic line bundle to M . Moreover, L1 is invariant under Aut(M).

(b) Suppose M belongs to the class of C2 or C18 and is not one of the four cases of C18 for

which Π cannot be lifted to SU(2, 1). Then there is a subgroup H < Aut(M) of order 3

for which L1 is invariant under H.

Proof. We begin with the proof of (a). It is already proved in [18] that Π can be lifted to

SU(2, 1), see Lemma 1 in [4]. From the set of generators of Γ̄ listed by [4], Cartwright and

Steger actually show that Γ̄ can be lifted to SU(2, 1) as well. From Lemma 1, we already

know that L descend as a holomorphic line bundle to M/Γ̄. Let H be a subgroup of the

automorphism group of M , then M/H is a finite-sheeted covering of M/Γ̄ from construction.

Hence L1 descends as a holomorphic line bundle from M̃ to M/H as well, by pulling back

from M̃/Γ̄.

Consider now Π belongs to the classes of C2 or C18 as in part (b). From the file regis-

terofgps.txt in the weblink of [4], we know that apart from the four cases of Π in the table

of Main Theorem, there is always a subgroup H of the automorphism group of M acting on

M such that the lattice associated to M/H can be lifted to SU(2, 1). Hence from the same

argument as above, L1 descends to a holomorphic line bundle to M/H. This implies that

L1 on M is invariant under H. �

In conclusion, for a fake projective plane M with a non-trivial automorphism, if M is not in

class C18, then KM = 3L for an Aut(M)-invariant line bundle L. Note that when Aut(M) =

C3 × C3, one can only find a cubic root L of KX invariant under some H = C3 < Aut(M)

from Lemma 2. We will prove in Theorem 4 that L is indeed Aut(M)-invariant. If M is

of classes C18, then Aut(M) contains a subgroup H = C3 from Table 1 and 3. By lifting

a numerical cubic root of the canonical class of M/H, there still exists an H-invariant line

bundle L such that KM ≡ 3L. There are two cases:

(1) (C18, p = 3, ∅, d3, D3): Aut(M) = C3 × C3 and KM = 3L for an Aut(M)-invariant line

bundle by Lemma 1, 2, and proof of Theorem 4.
7
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(2) (C18, p = 3, {2}, D3), (C18, p = 3, {2}, (dD)3), and (C18, p = 3, {2}, (d2D)3): There is a

unique C3 factor in H1(M,Z), so KM indeed has three distinct numerical cubic roots, cf.

Lemma 4. But KM 6= 3L for any line bundle L, cf. Lemma 1.

We clearly have the following statement.

Lemma 3. Suppose that L is an H-invariant line bundle for some H < Aut(M). Then the

space of sections H0(M,kL), if non-zero, is an H-module.

2.3 We consider torsion line bundles on M . The aim is to characterize when the canonical

class KM of a fake projective plane M with Aut(M) = C3 has three distinct Aut(M)-

invariant cubic roots. This is crucial for our proof of the Main Theorem to be discussed from

Section 6 to Section 9. The key observation is that for such a surface M , there is a unique

C3 in its homology group H1(M,Z).

Lemma 4. Let M be a fake projective plane admitting a nontrivial finite group H = C3 <

Aut(M). If H1(M,Z) has exactly one copy of C3 subgroup, then Pic(M) contains a subgroup

C3 consisting of H-invariant torsions. In particular, if KM = 3L for some L ∈ Pic(M), then

KM has three distinct cubic roots L,L′, L′′, which are H-invariant if so is L.

Proof. First we explain on a fake projective plane M , how torsion elements in H1(M,Z)

corresponds to torsion elements in Pic(M).

For a normal projective surface S, any holomorphic line bundle represents an element in

NS(S) = i∗H
2(S,Z) ∩ H1,1(S), where i : Z → C is the inclusion map. In the case that S is

singular, we identify H1,1(S) with the corresponding part in H1,1(S̃) which is not contracted

by µ, where µ : S̃ → S is the minimal resolution. Let us consider the torsion part of H2(S,Z).

From the Universal Coefficient Theorem, we have the exact sequence

0→ Ext1
Z(H1(S,Z),Z)→ H2(S,Z)→ HomZ(H2(S,Z),Z)→ 0.

Since HomZ(H2(S,Z),Z)) is torsion free, for the sake of computation of torsion part of

i∗H
2(S,Z)∩H1,1(M), it suffices for us to investigate Ext1

Z(H1(S,Z),Z). On the other hand, for

any abelian group A, we know that Ext1
Z(Z/mZ, A) ∼= A/mA. Hence p-torsions of H2(S,Z)

corresponds to p-torsions of H1(S,Z).

The same argument applies to a fake projective plane M . For fake projective planes, all

the torsion groups of H1(M,Z) are explicitly listed in the weblink associated to [4]. The

identification from the weblink together with the fact that Pic(M) ∼= H2(M,Z) conclude the

proof of the first part.

We remark that for a fake projective plane M , the covering map π : M → S := M/H is a

Galois cover with isolated fixed points, cf. [12]. For a general smooth surface M equipped
8



with a finite automorphism group H with isolated fixed points, there is a surjective group

homomorphism

π∗ : Pic(M/H)→ Pic(M)H = {H− invariant line bundles}.

If we assume that p is relative prime to the order ofH, an order p real 1-cycle on S corresponds

to an order p real 1-cycles on M which is invariant under H. In such case, the pull-back of

a non-trivial p-torsion line bundle from S would still be non-trivial on M .

Now let 〈τ〉 = {0, τ, 2τ} ∼= C3 < Pic(M) be the subgroup of 3-torsions corresponding to the

unique C3 < H1(M,Z). Here we use the additive notation on 〈τ〉. If g is a generator of

H = C3 < Aut(M), then from our hypothesis g · τ ∈ 〈τ〉. If g · τ 6= τ , it has to be 2τ or 0.

But 0 is invariant under Aut(M) and hence g · τ = 2τ . As such g · (2τ) = τ , and this implies

that g2 · τ = g · (2τ) = τ . But then g3 · τ = 2τ 6= τ , a contradiction. In particular, {0, τ, 2τ}
is a set of H-invariant torsion line bundles. If KM = 3L, then L′ := L+ τ and L′′ := L+ 2τ

are two other cubic roots of KM . The rest is clear. �

3. Existence of invariant curves with fixed points

In this section, L is always a line bundle of M such that NS(M)Q = 〈L〉 . Note that L2 = 1 by

Poincaré duality. We also assume that the automorphism group Aut(M) of M is non-trivial.

3.1 We start with a simple statement, which has also been observed in [8]. We include the

proof for the convenience of the reader.

Lemma 5. For a fake projective plane M , h0(M, 2L) 6 2.

Proof. Consider the homomorphism

α : H0(M, 2L)× H0(M, 2L)→ H0(M, 4L),

given by α(x, y) = x× y. This induces an injection

P(H0(M, 2L))× P(H0(M, 2L))
β→ P(H0(M, 4L)).

By [14, Lemma 15.6.2], it follows that h0(M, 4L) > 2h0(M, 2L)− 1. Since KM ≡ 3L by the

choice of L, h0(M, 4L) = 3 by the Riemann-Roch formula and Kodaira vanishing theorem,

and the lemma is proved. �

For the induced action on H0(M, 2L) when L is invariant as in Lemma 3, the following key

lemma proves the existence of an invariant curve equipped with a non-trivial group action

when h0(M, 2L) 6= 0. This is the cornerstone of our approach in this paper.
9



Lemma 6. Let M be a fake projective plane with KM ≡ 3L, where L is invariant under a

non-trivial cyclic subgroup H < Aut(M). If h0(M, 2L) 6= 0, then there exists an H-invariant

curve Σ ∼ 2L on which H acts non-trivially. Moreover, if Σ is not irreducible and reduced,

then one of the following holds:

(a) Σ = Σ1 + Σ2, where Σi ≡ L is irreducible and reduced for i = 1, 2. In particular, Σ1 and

Σ2 only intersect transversally at a smooth point.

(b) Σ = 2C, where C ≡ L is irreducible and reduced.

Proof. By Lemma 5, h0(M, 2L) = 1 or 2. If h0(M, 2L) = 1, then there exists a unique effec-

tive divisor Σ ∼ 2L. Since h∗L = L, we conclude that h∗Σ = Σ. Assume now h0(M, 2L) = 2

so that there is an induced action of H on P(H0(M, 2L)) ∼= P 1
C. But the action of H on |2L|

is linear and diagonalizable. Hence the existence of an invariant curve follows.

We claim that H cannot act trivially on Σ. Assume on the contrary that it acts trivially on

Σ. It follows that Σ is fixed pointwise by H. Since H is finite and Σ is complex dimension

1, we observe that Σ must be totally geodesic. To see this, consider a real geodesic curve

c(t), |t| < ε on M with initial point p ∈ Σ and initial tangent τp = c′(0) ∈ TpΣ. As both

p and c′(0) are fixed by H, the whole geodesic curve c(t), |t| < ε is fixed by H since the

differential equation governing c(t) is a second order ordinary equation and is determined

by the initial conditions specified above. It follows that c(t) actually lies on Σ. Since this is

true for all points p ∈ Σ and τp ∈ TpΣ, we conclude that Σ is totally geodesic. On the other

hand, from the result of [18], we know that the lattice Π associated to M is arithmetic of

second type. It follows that there is no totally geodesic curve on M , cf. [20, Lemma 8]. The

claim is proved.

Suppose that Σ is not integral and write Σ =
∑

imiΣi, where Σi’s are irreducible and

reduced. Since Σi ≡ niL for some ni ∈ Z>0 by NS(M)Q = 〈L〉 and Σ ≡ 2L, we get∑
imini = 2. Hence either Σ = Σ1 + Σ2 with Σi ≡ L, or Σ = 2C with C ≡ L. Moreover,

if Σ = Σ1 + Σ2, then Σ1 · Σ2 = 1 and they can only intersect transversally at one smooth

point. �

3.2 Now we apply holomorphic Lefschetz fixed point theorem to analyse the geometry of

an H-invariant curve Σ provided in Lemma 6. The main result is Proposition 2, where we

prove the existence of a fixed point. We will use the following lemma, cf. [17].

Lemma 7. Let C be a compact Riemann surface. Let 1 6= g ∈ Aut(C) be an element of prime

order l acting non-trivially on C with n fixed points. Then for ∆ = g(C)− dimCH1(OC)inv,

we have

n = 2− 2g(C) +
2l

l − 1
∆,

where H1(OC)inv is the eigenspace of eigenvalue 1.
10



Proof. We consider the holomorphic Lefschetz fixed point theorem,∑
g·p=p

1

det(1− Jp(gk))
= tr((gk)∗|H0(C,OC))− tr((gk)∗|H1(C,OC)),(1)

where Jp(gk) is the holomorphic Jacobian with respect to the action of gk at a fixed point

p. We sum up k = 1, . . . , l − 1 of the above formula.

Since H0(C,OC) ∼= C, tr((gk)∗|H0(C,OC)) = 1 for all k. For the complex 〈g〉-module V =

H1(C,OC), since an eigenspace is one-dimensional, by considering the invariant and non-

invariant part we deduce that

l−1∑
k=1

tr((gk)∗|H1(C,OC)) = (l − 1)(g(C)−∆)−∆ = (l − 1)g(C)− l∆.

Hence the sum of the right hand sides of equation (1) for k = 1, . . . , l − 1 equals to l − 1 +

l∆− (l − 1)g(C).

For the left hand side of equation (1), since C is one-dimensional, Jp(gk) = ρk, where ρ is

an l-th root of unit. Hence each fixed point p contributes

l−1∑
k=1

1

1− ρk
=

1

2
(l − 1),

which then sums up to n
2
(l − 1). The equality in the lemma now follows easily.

Here is an alternate argument, thanks to the suggestion of a referee. Denote the quotient

map by πg : C → B. Then from Serre duality H1(C,OC) = H0(C,KC)∨, we get

g(B) = h0(B,KB) = h1(B,OB) = dimCH1(OC)inv = g(C)−∆.

Now from the Riemann-Hurwitz formula, we get

2g(C)− 2 = l · (2g(B)− 2) + deg(Rπg) = l · (2(g(C)−∆)− 2) + n · (l − 1),

where Rπg is the ramification divisor. The lemma now follows. �

We recall the following lemma, which is well-known to the experts.

Lemma 8. For C an irreducible and reduced curve on a fake projective plane M , C is smooth

of genus 3 if C ≡ L. If C ≡ 2L, then g(Cν) ≥ 4 and h0(δ) ≤ 2.

Proof. We first remark that for C ⊆ M , g(Cν) ≥ 2 as M is hyperbolic. The Ahlfors-

Schwarz Lemma applied to the map induced by the normalization ν : Cν → M cf. [5])

for the manifolds equipped with Poincaré metrics implies that the Kähler forms satisfy

ν∗ωM ≤ ωCν , with equality if and only if it is a holomorphic isometry leading to totally

geodesic C. Since there is no totally geodesic curve on a fake projective plane as mentioned
11



in the proof of Lemma 6, the inequality is strict. Hence for C ≡ kL with k ≥ 1, integrating

over Cν , we get

2k =
2

3
(KM · C) < deg(KCν ) = 2g(Cν)− 2 = k(k + 3)− 2h0(δ),

where we used the fact that the Ricci curvature is 3
2

of the holomorphic sectional curvature

for the Poincaré metric on M and the adjunction pa(C) = 1
2
C · (KM +C). Here in terms of

the complex geodesic coordinates at the origin with ∂
∂z1

aligned with the tangential direction

of C, the Ricci curvature involved is Ric11̄ = R11̄11̄ + R11̄22̄ and the holomorphic sectional

curvature is R11̄11̄, which equals 2R11̄22̄ for the Poincaré metric on B2
C, with the curvature

tensor given by Rijkl = 3 ∂4

∂zi∂zj∂zk∂zl
log(1 − |z1|2 − |z2|2), cf. [16]. Hence k = 1 implies that

h0(δ) = 0 and C is smooth with g(C) = 3. The second statement is proved similarly. �

Proposition 2. Let M be a fake projective plane with KM ≡ 3L. Suppose that L is H-

invariant for a non-trivial cyclic subgroup H < Aut(M) and h0(M, 2L) 6= 0. Then there is

an H-invariant curve Σ ∼ 2L with an H-fixed point. Moreover, one of the following holds:

(a) Σ integral with pa(Σ) = 6, g(Σν) ≥ 4, and h0(δ) ≤ 2;

(b) Σ = 2C and C is smooth of genus 3;

(c) Σ = Σ1 + Σ2, where Σi’s are smooth of genus 3 and intersect transversally at a unique

point.

Proof. The existence of an H-invariant curve Σ ∼ 2L is from Lemma 6. Note that from

[18], H can only be C3 or C7. To show the existence of an H-fixed point, we consider three

cases: Σ = Σ1 + Σ2, Σ = 2C, or Σ is irreducible and reduced as listed in Lemma 6.

If Σ = Σ1 + Σ2, then Σ1 ∩ Σ2 = {p} is a point. As any element of H carries an irreducible

component of Σ to another irreducible component and |H| is odd, Σi’s are H-invariant and

p is an H-fixed point.

If Σ = 2C, then C ≡ L and is smooth of genus 3 by Lemma 8. If H acts without fixed points

on C, then the quotient C/H is a compact Riemann surface of Euler-Poincaré number

χtop(C/H) = 2− 2g(C/|H|) =
−4

|H|
.

This is impossible for |H| = 3 or 7.

Suppose now that Σ is irreducible and reduced. As proved in Lemma 8, pa(Σ) = 6, g(Σν) ≥ 4

and h0(δ) ≤ 2. If h0(δ) 6= 0, then 0 6= |Sing(Σ)| ≤ 2. Since the group action carries a singular

point to a singular point and |H| ≥ 3 is odd, all the singular points are H-invariant. Suppose

now h0(δ) = 0 and hence Σ is smooth. If H acts without fixed points on Σ, then Σ/H is a

compact Riemann surface of Euler-Poincaré number

χtop(Σ/H) = 2− 2g(Σ/H) =
−10

|H|
.

12



This is impossible for |H| = 3 or 7. �

4. The case of Aut(M) = C7 : C3

In this section we prove the Main Theorem for a fake projective plane M with Aut(M) =

C7 : C3, which gives an alternate approach to such cases dealt with in [8].

Lemma 9. Let M be a fake projective with KM = 3L. The sequence OM ,−L,−2L forms

an exceptional collection if and only if h0(M, 2L) = 0.

Proof. This follows directly from the definition of an exceptional collection and the Serre

duality, cf. [8, Lemma 4.2] or Lemma 29. �

Theorem 3. Let M be a fake projective plane with Aut(M) = C7 : C3. There is a line bundle

L such that KM = 3L so that the sequence OM ,−L,−2L forms an exceptional collection.

Proof. Let L be any Aut(M)-invariant cubic root of KM as given in Lemma 2. By Lemma

9, we may assume that H0(M, 2L) 6= {0}.

Consider H = C7 < Aut(X), the unique 7-Sylow subgroup. There is an H-invariant section

Σ ∈ H0(M, 2L) by Lemma 6 and an H-fixed point by Proposition 2. Moreover, Σ is either

irreducible and reduced, or Σ = 2C, or Σ = Σ1 + Σ2 is reducible.

For the induced action of H on Σν , observe that Fix(Σ) = Fix(M) ∩ Σ. In particular,

|Fix(Σ)| ≤ 3 by [12]. We denote x = dimCH1(OΣν )
inv the dimension of H-invariant subspace

and n = |Fix(Σν)| the number of H-fixed points on Σν .

Case 1: Σ is irreducible and reduced. Here pa(Σ) = 6 and h0(δ) ≤ 2 by Lemma 8.

Assume first that Σ = Σν , then g(Σ) = 6 and n ≤ 3. For l = 7, Lemma 7 implies that

3n+7x = 12, where (n, x) = (4, 0) is the only nonnegative integer solution. This contradicts

to the inequality n ≤ 3.

Assume now that Σ 6= Σν . Applying Lemma 7 to the lifted action of H on Σν with l =

|H| = 7, we get 3n+ 7x+ h0(δ) = 12, where h0(δ) = 1 or 2.

If h0(δ) = 1, then 3n+ 7x = 11 and there is no nonnegative integer solution.

If h0(δ) = 2, then 3n + 7x = 10 and (n, x) = (1, 1). From the holomorphic Lefschetz fixed

point theorem, we have
1

1− η
+ ξ1 + ξ2 + ξ3 = 0,

where η, ξj ∈ (Z/7Z)×. It can be checked directly from Matlab that there is no solution to

the above equation.
13



Case 2: Σ = Σ1 ∪ Σ2 is nodal at p with two smooth irreducible components of genus 3.

As observed in Lemma 6, H acts on each Σi. Denote ni the number of H-fixed points on

Σi. For l = 7 in Lemma 7, we get 3ni + 7xi = 9 and (ni, xi) = (3, 0) is the only solution in

nonnegative integers. But then apart from the the fixed point p, there are two more fixed

points on each Σi. This is a contradiction as 5 = |Fix(Σ)| > 3.

Case 3: Σ = 2C with C a smooth curve of genus 3.

Since l = 7, 3n + 7x = 9 by Lemma 7. It is only possible that (n, x) = (3, 0) and there are

three smooth fixed points on C. From the holomorphic Lefschetz fixed point theorem, we

have
1

1− η1

+
1

1− η2

+
1

1− η3

+ ξ1 + ξ2 + ξ3 = 1,

where ηi, ξj ∈ (Z/7Z)×. It can be checked directly from Matlab that there is no solution to

the above equation. �

Theorem 3 is a testing case of our geometric approach. However, the proof gets more

complicated when the structure of H gets simpler as we will see in later sections.

5. The case of Aut(M) = C3 × C3

In this section, we prove the second part of the Main Theorem. From now on we assume M

is a fake projective plane with Aut(M) = C3×C3. We refer the readers to the list in Section

1.

We have shown in Lemma 1 and Lemma 2 that there is an ample line bundle L with KM = 3L

and L is H-invariant for some H = C3 < Aut(M). Hence H0(M, 2L) is an Aut(M)-module

and we aim to show that h0(M, 2L) = 0 as in Section 4.

The key point now is to refine our understanding of the singularities of an integral invariant

curve C ≡ 2L whenever it exists. Compare to Section 4, the difficulty arises since the

isotropic group of an invariant curve is now a smaller group C3. Recall that from the result

of [4] or [12], a fixed point o ∈M of H = C3 < Aut(M) is of type 1
3
(1, 2).

Lemma 10. Let (C, o = (0, 0)) ⊆ C2 be an analytic germ of a singular reduced plane curve

and X1, . . . , Xr be the irreducible branches of C at o ∈ C. Then

h0(δ) =
∑
i

h0(δi) +
∑
i<j

(Xi.Xj).

In particular, h0(δ) ≥ r(r − 1)/2.

Furthermore, suppose that H = C3 acts on C2 with weight 1
3
(1, 2) and (C, o) is H-invariant.

If the induced action on (C, o) is nontrivial and h0(δ) ≤ 2, then either
14



(a) h0(δ) = 1 and o ∈ C is a node, or

(b) h0(δ) = 2 and o ∈ C is a tacnode.

In particular, in both cases r = 2 and o ∈ C lifts to two H-fixed points on Cν.

Proof. First part is given in Hironaka [11]. For the second part, we first observe that

h0(δ) ≤ 2 implies that r ≤ 2.

Suppose that r = 1. We consider the sequence

0→ OC,o ∼=
C[[x, y]]

(f(x, y))

φ−→ C[[t]]→ δ → 0,

where f(x, y) is the defining equation of C, φ(x) = u(t) =
∑

m≥0 umt
m, and φ(y) = v(t) =∑

n≥0 vnt
n. Here we choose (x, y) to beH-invariant coordinate with ω·x = ωx and ω·y = ω2y,

where ω = exp(2πi/3). Up to an analytic change of coordinates we can assume that ω·t = ωαt

for α ∈ {1, 2}. Since φ is an H-invariant C-algebra homomorphism, we have{
ωu(t) = φ(ωx) = φ(ω · x) = ω · u(t) =

∑
m≥0 umω

αmtm

ω2v(t) = φ(ω2y) = φ(ω · y) = ω · v(t) =
∑

n≥0 vnω
αntn

.

Hence for any nonzero um and vn, we have

αm ≡ 1, αn ≡ 2 mod 3.

Assume that α = 1 and write

(u(t), v(t)) =

(
t(
∑
m≥0

amt
3m), t2(

∑
n≥0

bnt
3n)

)
.

Here a0 = 0 or otherwise C is smooth. Furthermore, if b0 6= 0, then v(t) = t2 · unit. Hence

the k-algebra OC,o is of the form k[[t2 · unit, t4+3l · unit]] for some l ≥ 0. But then δ contains

at least t, t3, t5, which contradicts to h0(δ) ≤ 2. If b0 = 0, then the same computation leads

to h0(δ) > 2, which is a contradiction. The case α = 2 is similar. Hence we must have r > 1.

Suppose now that r = 2 so that h0(δ) = h0(δ1)+h0(δ2)+X1 ·X2 ≥ X1 ·X2 ≥ 1. If h0(δ) = 1,

then both Xi’s are smooth and intersect transversally. This is the nodal case (a). Assume

that h0(δ) = 2. If h0(δ1) = h0(δ2) = 0 and X1 ·X2 = 2, then X1 = {x = 0} after a change of

coordinates and X2
∼= {x− y2 = 0}. We get C ∼= {x(x− y2) = 0}, which is case (b). On the

other hand, if h0(δ1) + h0(δ2) = 1 and assume that X1 is smooth, then X1 ·X2 ≥ 2 as X2 is

singular. This is impossible. �

We now refine Lemma 2 in the case when an invariant curve C is irreducible and reduced.

Lemma 11. Let M be a fake projective plane with KM ≡ 3L where L is H-invariant for

some H = C3 < Aut(M). Let C ≡ kL be an integral H-invariant curve with k = 1 or 2.
15



Denote by n the number of H-fixed points on Cν and x = dimCH1(Cν ,O)inv. There is a

finite list of C according to the triple (n, h0(δ), x):

(N) (n, h0(δ), x) = (2, 0, 1): C ≡ L is smooth with two smooth fixed points;

(I1) (n, h0(δ), x) = (2, 0, 2): C ≡ 2L is smooth of g(C) = 6 with two smooth fixed points;

(I2) (n, h0(δ), x) = (4, 1, 1): C ≡ 2L has one fixed node, which is the unique singularity

of C, and two smooth fixed points;

(I3) (n, h0(δ), x) = (3, 2, 1): C ≡ 2L has one fixed tacnode and one smooth fixed point.

Proof. From Lemma 7 and 8, we have either

(1) C ≡ L: h0(δ) = 0, g(C) = 3, and n+ 3x = 5, or

(2) C ≡ 2L: h0(δ) ≤ 2, g(Cν) ≥ 4, and n+ h0(δ) + 3x = 8.

Here n ≥ 1 by Proposition 2. Observe that from the proof of Proposition 2, all the

singularities of C are H-fixed points. Note that the set of fixed points of C satisfies

|Fix(C)| = |Fix(M) ∩ C| ≤ |Fix(M)| = 3 by the work of [12].

In case (1), since C = Cν ⊆ M and n = |Fix(C)| ≤ 3, there is only one solution (n, x) =

(2, 1).1 This is the case (N).

In case (2), we have the following possible solutions:

δ equation (n, x)

h0(δ) = 0 n+ 3x = 8 (8, 0), (5, 1), (2, 2)

h0(δ) = 1 n+ 3x = 7 (7, 0), (4, 1), (1, 2)

h0(δ) = 2 n+ 3x = 6 (6, 0), (3, 1)

If h0(δ) = 0, then C = Cν and n = |Fix(C)| ≤ 3. Hence (n, x) = (2, 2) and this is case (I1).

By Lemma 10, h0(δ) = 1 occurs only when the unique singular point is a node, which then

lifts to two H-fixed points on Cv. Hence n ≥ 2 and (4, 1) is the only solution as there are at

most two more smooth fixed points by |Fix(C)| ≤ 3. This gives case (I2).

If now h0(δ) = 2, then |Sing(C)| = 1 or 2. If there are two singular points, then by Lemma

10 these are two H-fixed nodes. These two nodes lift to four H-fixed points on Cν and n ≥ 4.

Hence (n, x) = (6, 0) is the only solution. But then there must be two more smooth H-fixed

points on C and this contradicts to |Fix(C)| ≤ 3.

1Note that there is no contradiction to holomorphic Lefschetz fixed point theorem as

1

1− ω
+

1

1− ω2
+ ω + ω2 = 0,

where ω = exp( 2πi
3 ).
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If there is only one singular point, then by Lemma 10 it again lifts to two H-fixed points on

Cν and n ≥ 2. If (n, x) = (6, 0), then there must be four more smooth H-fixed points on C,

which contradicts to |Fix(C)| ≤ 3. Hence (n, x) = (3, 1) and this is case (I3).2 �

We make the following simple observation.

Lemma 12. There is no non-trivial faithful action of C3 × C3 fixing a point on any fake

projective plane.

Proof. From the work of [18] and [4], the automorphism group of M = B2
C/Π is given by

the quotient group H = Γ̄/Π. In the cases that H contains C3 × C3, actually H = C3 × C3.

It is shown case by case in the files of the weblink associated to [4] that the singularities of

H consists of 12 points on M , each being a fixed point of one of the four C3 subgroups of

C3 × C3. In particular, there is no point on M fixed by all elements of H.

Alternatively, we observed that the finite group does not contain any subgroup acting as

complex reflections on a fake projective plane M : a fixed curve of a complex reflection is

totally geodesic, which does not exist on a fake projective plane, cf. Lemma 6. The action is

an SL(2,C) action since it preserves the Kähler-Einstein volume form. We may then resort

to the classification of actions of finite subgroup of SL(2,C) on C2 as given in [15, Corollary

4-6-16] to conclude the proof. �

Theorem 4. Let M be a fake projective plane with Aut(M) = C3 × C3. There is an

Aut(M)-invariant line bundle L such that KM = 3L, and the sequence OM ,−L,−2L forms

an exceptional collection.

Proof. From the classification of fake projective plane, a fake projective plane M with

Aut(M) = C3×C3 are all listed in the table of the Main Theorem and satisfies Lemma 2 (2).

Hence, there is anH-invariant line bundle L such thatKM = 3L for someH = C3 < Aut(M).

We prove that this L is indeed Aut(M)-invariant: For g ∈ Aut(M), since KM = 3L and

3(g · L) = g · (3L) = g ·KM = KM = 3L,

we see that g · L − L is a 3-torson line bundle. But from the proof of Lemma 4, a torsion

line bundles of M corresponds to a torsion elements in H1(M,Z), which as we can find in

the table of the Main Theorem that its order can never be 3. Hence L is Aut(M)-invariant.

Suppose that H0(M, 2L) 6= 0 and let Σ be an Aut(M)-invariant section. Note that Aut(M)

has four C3 subgroups, denoted by G1, . . . , G4. From the proof of Lemma 12 (or cf. [12]),

there are twelve points Pi, i = 1, . . . , 12, of M and each point is fixed by some Gi. The

2Note that the holomorphic Lefschetz fixed point theorem has a solution,

1

1− ω
+

1

1− ω
+

1

1− ω
+ ω + ω2 + ω2 = 0.
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stabilizer of each Pi is Gj for some j. Hence on the quotient surface Y := M/Aut(M), there

are four points of type 1
3
(1, 2).

Let G1 be the first C3 factor and G2 be the second C3 factor.

Consider G1-action on Σ. From Proposition 2 and Lemma 11, there are three possibilities:

(1) Σ is integral and the number of smooth fixed points is at most two.

(2) Σ = 2C and C is smooth of genus 3 with two smooth G1-fixed points.

(3) Σ is reduced with two smooth components Σ1 and Σ2 of genus 3. Moreover, G1 acts

on each component Σi with two smooth fixed points.

Since Σ is Aut(M)-invariant, the curve Σ in (1), C in (2), and Σi in (3) are all invariant

under G2. Moreover, G2-action permutes G1-fixed points by Lemma 12. Since each curve

Σ, C, or Σi has at least 1 smooth G1-fixed point P , there are at least three G1-fixed points

as the G2-orbit of P on them. This is a contradiction to the above list of possible Σ. �

Theorem 1 is the combination of Theorem 3 and Theorem 4.

Proof. (of Theorem 1) For OM ,−L1,−2L2 in Theorem 1 to form an exceptional collection,

we need to show that

hi(M,L1) = hi(M, 2L2) = hi(M, 2L2 − L1) = 0, i = 0, 1, 2.

We consider vanishing of hi(M,L1) first. Note that h2(M,L1) = h0(M,KM − L1). Since

both L1 and KM − L1 are invariant under Aut(M), h0(M, 2L1) = 0 = h0(M,KM − L1)

by the same proof as in Theorem 3 and 4. It follows that h0(M,L1) = 0 and then by the

Riemann-Roch formula h1(M,L1) = 0. The other vanishing are proved similarly. �

6. Invariant curves on M when Aut(M) = C3

Throughout this section, we assume that M is a fake projective plane with Aut(M) = C3

unless otherwise stated.

6.1 Let M be a fake projective plane with KM ≡ 3L and Aut(M) = C3, where L is invariant

under Aut(M). Suppose that H0(M, 2L) 6= 0 and Σ ∼ 2L is an Aut(M)-invariant curve

from Lemma 6. Let (n, h0(δ), x) be the triple associated to Σred as in Lemma 11. According

to Proposition 2 and Lemma 11, there is a finite list of possible Σ according to the triple

(n, h0(δ), x):

(N) (n, h0(δ), x) = (2, 0, 1): Σ = 2C, where C ≡ L is smooth and has two smooth fixed

points;
18



Figure 1. INVARIANT CURVES

(I1) (n, h0(δ), x) = (2, 0, 2): Σ is a smooth curve of g(C) = 6 and has two smooth fixed

points;

(I2) (n, h0(δ), x) = (4, 1, 1): Σ has one fixed node as the unique singularity and two

smooth fixed points;

(I3) (n, h0(δ), x) = (3, 2, 1): Σ has one fixed tacnode as the unique singularity and one

smooth fixed point.

(X) (n, h0(δ), x) = (4, 1, 2): Σ = Σ1 + Σ2 has one fixed node {p} = Σ1 ∩Σ2 as the unique

singularity and one smooth fixed point along each Σi. Both Σi’s are Aut(M)-invariant

smooth curves of g(Σi) = 3 with xi := h1(Σi,OΣi)
inv = 1.

Only the case (X) needs to be explained: If Σ = Σ1 + Σ2, then Σi’s are smooth of genus

3 by Lemma 8 and invariant under C3. Apply Lemma 7, we see there are two fixed points

on each Σi and hence the description.3 We will show in Lemma 16 that case (X) does not

happen and hence the picture of all invariant curves is as in Figure 1.

6.2 We will study Aut(M)-invariant curves by investigating their geometry on Y := M/Aut(M)

and its minimal resolution. Again as in Section 4 and 5, we want to show the absence of

these invariant curves. The following structure theorem on Y is crucial.

Theorem 5 ([4, 12]). Suppose that a fake projective plane M has Aut(M) = C3. Then the

surface Y = M/Aut(M) has 3 singularities of type 1
3
(1, 2).

The quotient surface Y = M/Aut(M) is a Q-homology projective plane and say Sing(Y) =

{a, b, c}. By abuse of notation, we also denote {a, b, c} ⊆ M the Aut(M)-fixed points

corresponding to Sing(Y ). Let µ : Z → Y be the minimal resolution. Then Z is a minimal

surface of general type with pg(Z) = q(Z) = 0 and K2
Z = 3. Let C ≡ kL be an Aut(M)-

invariant curve. We study the quotient curves CY = C/C3 on Y and its proper transform

CZ := µ−1
∗ (CY ) on the minimal resolution Zof Y . Note that

g(Cν
Z) = H0(Cν , ωCν )

inv = x.

Lemma 13. The Picard number of Z is ρ(Z) = 7.

3Each Σi has xi = 1 and hence E := Σi/C3 ⊆ M/C3 is an elliptic curve. If E ↪→ M/C3 lifts to E → M ,

then this contradicts the hyperbolicity of M . However, as M/C3 is singular, the lifting does not always exist.
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Table 2. Invariant curves on Z

(N) (I1) (I2) (I3) (X)

CZ · EZ = −E2
Z

4
3

4
3

10
3

10
3

10
3

C2
Z = k2

3
− CZ · EZ -1 0 -2 -2 -2

pa(CZ) 1 2 1 1 1

KZ .CZ 1 2 2 2 2

g(Cν
Z) = x 1 2 1 1 2

Proof. Noether equality implies that χtop(Z) = 9. By Hodge decomposition and pg(Z) = 0,

we have h1,1(Z) = b2(Z) = 7. Since pg(Z) = q(Z) = 0, by exponential sequence ρ(Z) =

h1,1(Z) = 7. �

Lemma 14. Over each singular point ? ∈ Sing(Y ), µ−1(?) = E?1 ∪ E?2 is a simple normal

crossing divisor with E2
?1 = E2

?2 = −2 and E?1 ·E?2 = 1. Write µ∗CY = CZ +EZ, where EZ
is µ-exceptional. Locally at ? ∈ Sing(Y ), we have

(EZ , E
2
Z) =


(E?1 + E?2,−2) if ? ∈ CY is nodal,

(2
3
E?1 + 1

3
E?2,−2

3
) if ? ∈ CY is smooth and CZ ∩ E?1 6= ∅,

(4
3
E?1 + 2

3
E?2,−8

3
) if ? ∈ CY is a tacnode and CZ ∩ E?1 6= ∅.

Proof. A 1
3
(1, 2)-point is an A2 rational double point and can be described as the point

{O = (0, 0, 0) ∈ S := (XY − Z3 = 0) ⊆ C3 via

C2 � C3/C3

∼=−→ S, (x, y) 7→ (X, Y, Z) = (x3, y3, xy).

Moreover, the proper transform S̃ of S in BlOC3 is the minimal resolution of O ∈ S. The

exceptional divisor of µ : S̃ → S in C3 × P 2
C with [u : v : w] the homogeneous coordinate

is given by P 1
C ∪ P 1

C
∼= (uv = 0) ⊆ {O} × P 2

C ⊆ BlOC3. The rest is easy and left to the

reader. �

As KZ = µ∗KY , K2
Z = 3, and C2

Y = k2

3
, we get

pa(CZ) = 1 +
1

2
(KY .CY + C2

Y − CZ .EZ) = 1 +
k(k + 3)

6
− 1

2
CZ · EZ .

We can now list the relevant intersection numbers on Z, see Table 2. Here for CZ we take

C = Σred in the case (N) and C = Σ for all the other cases.

We first show that the case (X) does not happen after the following observation.

Lemma 15. Let M be a fake projective plane with Aut(M) = C3. Then 12τ = 0 for any

Aut(M)-invariant torsion line bundle τ .
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Proof. This follows from the proof of Lemma 4 that Aut(M)-invariant line bundles always

descend to M/Aut(M). From the list of H1(M/Aut(M),Z) in the file registerofgps.txt from

the weblink of [4], we see that 12τ = 0, cf. Table 1 and 3. �

Remark 2. For any fake projective plane with Aut(M) = C3 in Table 1, 6τ = 0 for any

Aut(M)-invariant torsion line bundle τ . However, we still use Lemma 15 for the discussion

on invariant curves: the following Lemma 16 illustrates that our approach potentially can

work for any fake projective plane with non-trivial automorphisms. Hence in Section 6 to 8,

all the statement are given in its most general form intensionally for future reference.

Lemma 16. Let M be a fake projective plane with Aut(M) = C3 and L is an Aut(M)-

invariant numerical cubic root of KM , i.e., KM ≡ 3L. Then an invariant curve Σ ∼ 2L of

type (X) does not exist.

proof: Let Σ = Σ1 + Σ2 ∼ 2L. Consider the image curves ΣY
i := π(Σi) on Y = M/Aut(M),

where π : M → Y is the quotient map, and their proper transforms ΣZ
i := µ−1(ΣY

i ), i = 1, 2,

on the minimal resolution Z. Assume that {a, b} ⊆ Σ1 and {a, c} ⊂ Σ2, where we have

identified Fix(M) = Sing(Y). By Lemma 14, we may assume that{
µ∗ΣY

1 = ΣZ
1 + 2

3
Ea1 + 1

3
Ea2 + 2

3
Eb1 + 1

3
Eb2

µ∗ΣY
2 = ΣZ

2 + 1
3
Ea1 + 2

3
Ea2 + 2

3
Ec1 + 1

3
Ec2

.

Since 12τ = 0 by Lemma 15 and Σi’s are Aut(M)-invariant, associated to the three linearly

independent4 divisors 12 · (2Σ1) ∼ 12 · (2Σ2) ∼ 12 · (Σ1 + Σ2) in |24L|, we find the following

three linearly independent elements in |24µ∗LY − 8(Ea1 + Ea2)|:
S := 24ΣZ

1 + 8Ea1 + 16Eb1 + 8Eb2 ,

T := 24ΣZ
2 + 8Ea2 + 16Ec1 + 8Ec2 , and

U := 12(ΣZ
1 + ΣZ

2 ) + 4Ea1 + 4Ea2 + 8Eb1 + 4Eb2 + 8Ec1 + 4Ec2 .

In particular, the subsystem Λ := 〈S, T, U〉 has a unique base point at z := Ea1 ∩ Ea2 (of

length S · T = 64). Let µ′ : Z ′ → Z be the blow up at z ∈ Z with the unique exceptional

divisor E. Then Λ′ = 〈S ′, T ′, U ′〉 ⊆ |µ′∗(24µ∗LY − 8(Ea1 + Ea2))− 8E| with
S ′ := 24ΣZ′

1 + 8Ea1 + 16Eb1 + 8Eb2 ,

T ′ := 24ΣZ′
2 + 8Ea2 + 16Ec1 + 8Ec2 , and

U ′ := 12(ΣZ′
1 + ΣZ′

2 ) + 4Ea1 + 4Ea2 + 8Eb1 + 4Eb2 + 8Ec1 + 4Ec2 ,

is base point free. Here we abuse the notion by denoting E?i again its proper transform

on Z ′. There is a morphism ϕ := ϕΛ : Z ′ → P(Λ) ∼= P 2
C, where (S ′)2 = 0 implies that

dim(ϕ(Z)) = 1. As the image is dominated by E ∼= P 1
C, the Stein factorization of ϕ induces

a morphism ϕ′ : Z → P 1
C with connected fibers. Since S ′ and T ′ are connected, they are

4This can be checked easily by considering the vanishing order along Σ1 and Σ2.
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two special fibers of ϕ′. This clearly is impossible since U ′ shares some common components

with S ′ and T ′. �

We remark that to rule out pairs of invariant curves, the construction of a free pencil as in

the proof of Lemma 16 will appear several times in different occasions.

6.3 We are not able to directly show that H0(M, 2L) = 0 as required in Lemma 9 by ruling

out all types of invariant curves from the list in 6.1 as done in Theorem 3 and 4. Instead,

we investigate how different Aut(M)-invariant curves intersect if there are many numerical

cubic roots of KM with non-vanishing cohomology. Suppose that a line bundle L′ � L is

another Aut(M)-invariant generator of NS(M)Q. We assume that both H0(M, 2L) 6= 0 and

H0(M, 2L′) 6= 0. Let Σ ∼ 2L and Σ′ ∼ 2L′ be two Aut(M)-invariant curves from Lemma

6. The following proposition shows that the intersection behavior of Σ and Σ′ is rather

restricted.

Proposition 3. In the setting above, the two curves Σ and Σ′ can only intersect along

Aut(M)-fixed points of M .

Proof. We will prove that the set of divisors {ΣZ ,Σ
′
Z , Ea1, Ea2, Eb1, Eb2, Ec1, Ec2} is linearly

independent in N1(Z) if Σ and Σ′ intersect at a non-Aut(M)-fixed point. This will contradict

Lemma 13. Clearly, it is enough to show that the 8 by 8 intersection matrix I of this set of

eight curves has non-zero determinant.

Apriori there are 16 possible types of (Σ,Σ′) from the list of (N), (I1), (I2), and (I3).

Each pair we have to consider possible intersection figuration to get Σ · Σ′ = 4. Recall that

{a, b, c} ⊆M is the set of Aut(M)-fixed points corresponding to Sing(Y ).

Suppose now Σ and Σ′ intersect at a point o′ /∈ {a, b, c}. Hence they intersect along the

C3-orbit C3 · o′. But then Σ and Σ′ must intersect transversally at o′ by

4 = Σ · Σ′ ≥ 3multo′(Σ ∩ Σ′).

In particular, Σ and Σ′ intersect transversally at one another Aut(M)-fixed point of M , say

at a. Note that this does not happen if one of Σ and Σ′ is of type (N): otherwise

Σ · Σ′ ≥ 2Σred · Σ′red ≥ 2 · 3.

Also, none of Σ and Σ′ is of type (I2), otherwise they must intersect along at least two

Aut(M)-fixed points.

Hence up to reordering, the intersection matrix I can only be one of the following possibilities,

where we have used Lemma 14 and Table 2. Note that by assumption, ΣZ · Σ′Z = 3.
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Case 1: (Σ,Σ′) is of type (I1, I1). Say {a, b} ⊆ Σ and {a, c} ⊆ Σ′ with ΣZ intersecting Ea1

and Eb1 while Σ′Z intersecting Ea2 and Ec1:

I =



0 3 1 0 1 0 0 0

3 0 0 1 0 0 1 0

1 0 −2 1 0 0 0 0

0 1 1 −2 0 0 0 0

1 0 0 0 −2 1 0 0

0 0 0 0 1 −2 0 0

0 1 0 0 0 0 −2 1

0 0 0 0 0 0 1 −2


and det(I) = −252.

Case 2: (Σ,Σ′) is of type (I1, I3). Say {a, b} ⊆ Σ and {a, c} ⊆ Σ′. Suppose that ΣZ

intersects Ea1 and Eb1 and Σ′Z intersects Ea2 and Ec1:

I =



0 3 1 0 1 0 0 0

3 −2 0 1 0 0 2 0

1 0 −2 1 0 0 0 0

0 1 1 −2 0 0 0 0

1 0 0 0 −2 1 0 0

0 0 0 0 1 −2 0 0

0 2 0 0 0 0 −2 1

0 0 0 0 0 0 1 −2


and det(I) = −252.

Case 3: (Σ,Σ′) is of type (I3, I3). Say {a, b} ⊆ Σ and {a, c} ⊆ Σ′. Suppose that ΣZ

intersects Ea1 and Eb1 and Σ′Z intersects Ea2 and Ec1:

I =



−2 3 1 0 2 0 0 0

3 −2 0 1 0 0 2 0

1 0 −2 1 0 0 0 0

0 1 1 −2 0 0 0 0

2 0 0 0 −2 1 0 0

0 0 0 0 1 −2 0 0

0 2 0 0 0 0 −2 1

0 0 0 0 0 0 1 −2


and det(I) = −252.

Since all the determinants are non-zero, this proves the result as discussed before. �

6.4 In this subsection, we provide the complete list of all possible configurations of two

invariant curves Σ 6= Σ′ in the numerical class 2L. We first classify the local intersection

configurations.

Lemma 17. Suppose that there are two Aut(M)-invariant curves Σ and Σ′ of numerical

type 2L intersecting at a fixed point a ∈ M . Then Σ and Σ′ share no common component.

Moreover, up to relabelling, local analytically around the point a it is in one of the following

configurations:
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Figure 2. LOCAL INTERSECTIONS

(1) If both Σred and Σ′red are uni-branched, then Σred ∪ Σ′red is in one of the following

forms:

Notation local equation multa(Σred ∩ Σ′red)

(tr) xy = 0 1

(tan− sm) x(x− y2) = 0 2

(tan− tan) (x− y2)(x+ y2) = 0 4

(2) If Σred is uni-branched but Σ′ = Σ′red is two-branched at a, then Σred ∪ Σ′red is in one

of the following forms:

Notation local equation multa(Σred ∩ Σ′red)

(tr − tac) y · x(x− y2) = 0 2

(tan− node) (x− y2) · xy = 0 3

(tan− tac) x · (x2 − y4) = 0 4

Proof. We follow the computation in Lemma 10. Note that Σ · Σ′ = (2L)2 = 4 and the

intersection multiplicity satisfies multp(Σ ∩ Σ′) ≤ 4, ∀ p ∈ Σ ∩ Σ′, unless they share a

common component.

Suppose now Σ and Σ′ share a common branch near a. Then as Σ and Σ′ are algebraic curves,

they share an irreducible component. But then Σ or Σ′ has to be reducible as Σ 6= Σ′. Hence

Σ or Σ′ has to be of type (X), which violates Lemma 16. Hereafter we assume that Σ and

Σ′ share no common branch near a.

First observe that locally at a ∈ M , one of Σred and Σ′red must be uni-branched: Suppose

that both of them are two-branched. In particular, Σ and Σ′ are reduced from Lemma 2.

Assume that Σ = (xy = 0) in an analytic neighborhood of a of weight (x, y) = (1, 2). If Σ′

is also nodal at a, then from Lemma 10 a branch of Σ′ is of the form (x± εy2 + h.o.t = 0) or

(y ± εx2 + h.o.t = 0), where ε ∈ {0, 1}. If Σ′ = (xy = 0), then Σ = Σ′ local analytically and

Σ = Σ′ on M (for being algebraic curves with non-isolated intersection). If Σ′ 6= (xy = 0),

then the intersection multiplicity multa(Σ ∩ Σ′) > 4, which is absurd. Suppose now that

Σ = (x(x − y2) = 0) is a tacnode at a. By the same consideration as above, either we get

Σ′ = Σ or multa(Σ ∩ Σ′) > 4, which is again impossible.

We now classify possible local intersection configuration in two cases.

Case 1: Both Σred and Σ′red are uni-branched at a.
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Since Σred 6= Σ′red near a , by Lemma 10 it is easy to see that Σred ∪ Σ′red local analytically

is in one of the following form :

(1) ((xy = 0) with multa(Σred ∩ Σ′red) = 1;

(2) (x(x− y2) = 0) with multa(Σred ∩ Σ′red) = 2;

(3) ((x− y2)(x+ y2) = 0) with multa(Σred ∩ Σ′red) = 4.

The first case is when Σred and Σ′red intersect transversally a, while the last two cases are

when Σred and Σ′red intersection tangentially at a.

Case 2: Σ is uni-branched at a but Σ′ = Σ′red is two-branched at a.

From the list in 6.1, Σ′ = Σ′red if it is two-branched at a fixed point. There are two cases.

Subcase 2.1: a ∈ Σ′ is a node.

Since there are only two eigen-directions at a fixed point a ∈ M , Σ must intersect Σ′

tangentially at a. Say locally Σ′ = (xy = 0) with weight of (x, y) being (1, 2). From

multa(Σ∩Σ′) ≤ 4, Σred can only be (x− y2 + h.o.t. = 0) or (y−x2 + h.o.t. = 0). Hence near

a we have Σred ∪ Σ′ ∼= (xy(x− y2) = 0) with multa(Σred ∩ Σ′) = 3. But then Σ = Σred.

Subcase 2.2.a: a ∈ Σ′ is a tacnode and Σ intersects Σ′ transversally at a.

We may assume that Σ′ locally near a has the equation x(x−y2) = 0. Since the intersection

is transversal, we have Σred ∪ Σ′ ∼= (yx(x− y2) = 0) and multa(Σred ∩ Σ′) = 2. Note that it

is possible Σ to be of type (N) in this case.

Subcase 2.2.b: a ∈ Σ′ is a tacnode and Σ intersects Σ′ tangentially at a.

Assume that Σ′ locally near a has the equation x(x − y2) = 0. Since Σ and Σ′ share

no common component, local equation of Σred near a is of the form x ± εy2 + h.o.t. with

ε ∈ {0, 1}. In particular, multa(Σ ∩ Σ′) ≥ 4, and equality holds only if locally we have

Σred ∪ Σ′ ∼= (x(x2 − y4) = 0). �

Now we classify possible intersection configurations of two different invariant curves. In

the following, the intersection configurations refer to the terminology given in Lemma 17.

An expression such as 3(tan − node) + 1(tr) reflects that the intersection multiplicity of

the two curves is 4 with 3 contributed by an intersection configuration tan − node and 1

contributed by an intersection configuration tr given by the reduced parts of the curves at

the corresponding intersection points.

Lemma 18. Given two distinct Aut(M)-invariant curves Σ and Σ′ in the numerical class

2L. Then |Σ ∩ Σ′| ≤ 2 and they share no common component. Up to relabelling, the type of

(Σ,Σ′) is in one of the following pairs:
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(1a) (I1, I2) with intersection configuration 3(tan− node) + 1(tr);

(1b-1) (N, I3) with intersection configuration 2 · 2(tr − tac);

(1b-2) (I3, I3) with intersection configuration 2(tr − tac) + 2(tr − tac);

(1b-3) (I1, I3), (I2, I3) with intersection configuration 2(tr − tac) + 2(tan− sm);

(1c) (I1, I3), (I3, I3) with intersection configuration 4(tan− tac);

(2a) (I1, I1), (I1, I3), (I3, I3) with intersection configuration 4(tan− tan);

(2b) (I1, I1), (I1, I2) of intersection type 2(tan− sm) + 2(tan− sm);

(3a) (N,N) with intersection configuration 4 · 1(tr);

(3b) (N, I1), (N, I2) with intersection configuration 2 · (1(tr) + 1(tr));

(3c) (N, I1), (N, I3) with intersection configuration 2 · 2(tan− sm).

Proof. By Proposition 3, Σ and Σ′ only intersect along Aut(M)-fixed points. By Lemma

17, Σ and Σ′ share no common component. If Σ∩Σ′ = {a, b, c}, then both Σ and Σ′ possess

nodes. It is clear in this case Σ · Σ′ > 4 from Lemma 17, which is absurd.

Hereafter we assume that Σ and Σ′ share no common component and a ∈ Σ∩Σ′. By Lemma

17, we study their intersection configuration by considering the following two cases (possibly

after relabelling):

(1) Σ′ = Σ′red is two-branched at a.

(2) Σred and Σ′red are uni-branched (and hence smooth) at all intersection points.

For simplicity, denote by mp = multp(Σ ∩ Σ′) for p = a, b, or c.

Case (1a): a ∈ Σ′ is a node.

From the list of invariant curves, Σ′ is of type (I2). By Lemma 17, Σ intersects tangentially

at a ∈ Σ′ with ma = 3 and hence cannot be of type (N). Moreover, Σ and Σ′ can only

intersect transversally at another fixed point, say b ∈ Fix(M). In particular, Σ has two

smooth fixed points and is one of (I1) or (I2). The last case is impossible since then these

two curves intersect at all three fixed points and Σ · Σ′ > 4.

Case (1b): a ∈ Σ′ is a tacnode.

Hence Σ′ is of type (I3) and ma = 2 or 4 by Lemma 17.

Suppose that ma = 2. Note that a ∈ Σred is smooth. If Σ is of type (N), then Σ and Σ′

intersect transversally at the unique intersection point a. This is type (N, I3) in (1b-1). We

may assume now Σ is reduced. Since Σ′ has only one more smooth fixed point b, we must

have mb = 2. If b ∈ Σ is a tacnode, then they intersect transversally at b and we have type

(I3, I3) as (1b-2). If b ∈ Σ is smooth, then they intersect tangentially at b and Σ has at least

two smooth fixed points. Hence (Σ,Σ′) can be of type (I1, I3) or (I2, I3) as in (1b-3).
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If ma = 4, then a ∈ Σ = Σred is smooth and is the unique intersection point. Hence Σ can

only be of type (I1) or (I3). This is case (1c).

We assume now that Σ and Σ′ share no common components, reduced, and are uni-branched

(and hence smooth) at all fixed points. In particular, none of them is of type (N) and the

local configuration is as in Lemma 17 (1).

Case (2a): multp(Σ ∩ Σ′) = 4 for some p ∈ Σ ∩ Σ′.

Since Σ · Σ′ = 4, we may assume that a ∈ Σ ∩ Σ′ is the unique intersection point. As each

invariant curve has at least one fixed point, Σ and Σ′ both must have exactly two fixed

points. Since none of them are of type (N), the only possible types of (Σ,Σ′) are (I1, I1),

(I1, I3), and (I3, I3).

Case (2b): multp(Σ ∩ Σ′) = 2 at two fixed points p ∈ {a, b}.

Clearly, Σ∩Σ′ = {a, b}. As none of two curves are of type (N), Σ and Σ′ are smooth along

a, b and intersect tangentially at both a and b. In particular, none of them is of type (I3).

Since they cannot simultaneously have three fixed points, the remaining possible types are

(I1, I1) and (I1, I2).

Case (2c): multa(Σ ∩ Σ′) = 2 at exactly one fixed point.

Then Σ and Σ′ must intersect transversally at the other two fixed points. In particular, both

of them have three fixed points and can only be of type (I2). This violates the assumption

that both of them must be smooth at all fixed points.

Case (2d): multp(Σ ∩ Σ′) = 1 for all p ∈ Σ ∩ Σ′.

Since each invariant curve can have at most two smooth fixed points, it is impossible in this

case to have Σ · Σ′ = 4.

For the remaining cases, we assume that one of them is of type (N).

Case (3a): Both Σ = 2C and Σ′ = 2C ′ are of type (N).

Since C · C ′ = 1
4
Σ · Σ′ = 1, C and C ′ intersect transversally at a fixed point.

Case (3b): Σ = 2C and multp(C ∩ Σ′) = 1 for all p ∈ C ∩ Σ′.

Then Σ′ must have two smooth fixed points and this can happen if it is of type (I1) or (I2).

Case (3c): Σ = 2C and multa(C ∩ Σ′) = 2 at a fixed point a.

Then Σ∩Σ′ = {a}. By Lemma 17, C and Σ′ intersect tangentially at a smooth point a ∈ Σ′

or C and Σ′ intersect transversally at a tacnode a ∈ Σ′. If we are in the former case, then
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Σ′ cannot have three fixed points and hence is of type (I1) or (I3). In the latter case, we can

only have type (N, I3), which duplicates with case (1b-1). �

6.5 By applying a similar argument for proving Proposition 3 and Lemma 16, we are able

to rule out some cases in Lemma 18.

Lemma 19. The case (2a) (of two curves intersecting at exactly one point of multiplicity

four) in Lemma 18 does not occur.

Proof: We follow the same proof of Lemma 16 by showing that the intersection matrix I

of the eight curves {ΣZ ,Σ
′
Z , Ea1, Ea2, Eb1, Eb2, Ec1, Ec2} is non-degenerate. It follows that

ρ(Z) ≥ 8, which violates Lemma 13.

In (2a), we have (I1, I1), (I1, I3) or (I3, I3), and say with ma = 4. From the local description

in Lemma 14 and Lemma 17, it is easy to see that ΣZ · Σ′Z = 0. We assume on Z that

ΣZ intersects Ea1 and Ec1, while Σ′Z intersects Ea1 and Eb1. From Table 2, the intersection

matrices respectively are

I(I1, I1) =



0 0 1 0 0 0 1 0

0 0 1 0 1 0 0 0

1 1 −2 1 0 0 0 0

0 0 1 −2 0 0 0 0

0 1 0 0 −2 1 0 0

0 0 0 0 1 −2 0 0

1 0 0 0 0 0 −2 1

0 0 0 0 0 0 1 −2


with det(I) = 36;

I(I1, I3) =



0 0 1 0 0 0 1 0

0 −2 1 0 2 0 0 0

1 1 −2 1 0 0 0 0

0 0 1 −2 0 0 0 0

0 2 0 0 −2 1 0 0

0 0 0 0 1 −2 0 0

1 0 0 0 0 0 −2 1

0 0 0 0 0 0 1 −2


with det(I) = 36;
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I(I3, I3) =



−2 0 1 0 0 0 2 0

0 −2 1 0 2 0 0 0

1 1 −2 1 0 0 0 0

0 0 1 −2 0 0 0 0

0 2 0 0 −2 1 0 0

0 0 0 0 1 −2 0 0

2 0 0 0 0 0 −2 1

0 0 0 0 0 0 1 −2


with det(I) = 36.

Since the determinants are all non-zero, all the cases are impossible. �

Lemma 20. The case (2b) (of two smooth curves intersecting tangentially at two smooth

points) in Lemma 18 does not occur.

Proof. Say (Σ,Σ′) is of type (I1, I1) (resp. (I1, I2)) of (2b) with Σ ∩ Σ′ = {a, b}. As-

sume that ΣZ intersects Ea1 and Eb1. By Lemma 15, we can consider the subsystem

Λ := 〈S := 12ΣZ , T := 12Σ′Z〉 ⊆ |24µ∗LY − 8Ea1 − 4Ea2 − 8Eb1 − 4Eb2| (resp. S := 12ΣZ ,

T = 12(Σ′Z + Ec1 + Ec2)) with S · T = 0. It defines a morphism ϕ : Z → P 1
C so that S and

T are two special fibers. Since S ·Ea1 = 12, ϕ|Ea1 is a degree 12 ramified cover over P 1
C with

ramification index5 11 along S∩Ea1 and T ∩Ea1. The connected curve Ea2 is disjoint from S

and T and hence sits in the (scheme theoretic) fiber F := ϕ∗(ϕ(Ea2)) of ϕ : Z → P 1
C. Since

Ea2 · Ea1 = 1 and F · Ea1 = 12, either there are more than one components of F passing

through Q := Ea2 ∩ Ea1 or 12Ea1 ≤ F . In either cases, the ramification index of ϕ|Ea1 at Q

is at least 1. The contribution of the ramification indices at S ∩Ea1, T ∩Ea1 and Q violates

Riemann-Hurwitz formula: deg(Rϕ|Ea1 ) = 12(2)− 2 = 22. �

Lemma 21. The case (3a) (of two double curves intersecting at exactly one point of multi-

plicity four) in Lemma 18 does not occur.

Proof. Say Σ = 2C1 ∼ 2L and Σ′ = 2C2 ∼ 2L′. Then Ci’s are Aut(M)-invariant and

by Lemma 15 we can consider the subsystem Λ := 〈24C1, 24C2, 12(C1 + C2)〉 ⊆ |24L|. The

same argument as in the proof of Lemma 16 then leads to a contradiction. �

6.6 At this point, we are not able to rule out all possible pairs of invariant curves in Lemma

18. On the other hand, when H1(M/Aut(M),Z) contains a non-trivial 3-torsion element,

there are three cubic roots of KM . Hence we are lead to study triples of three invariant

curves. The hypothesis in Lemma 9 is fulfilled once we rule out all possible triples raised in

this way. In the end of this section, we prove the nonexistence of some type of triples under

the condition Aut(M) = C3. For other possibilities, we need more assumptions, cf. Section

7.

5For a map z 7→ zr, the ramification index is r − 1.
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Suppose that there are three distinct Aut(M)-invariant cubic root L,L′, L′′ of KM and let

Σ ∼ 2L,Σ′ ∼ 2L′,Σ′′ ∼ 2L′′ be three distinct Aut(M)-invariant curves.

Lemma 22. The case (1b-2) in Lemma 18 does not occur in a triple (Σ,Σ′,Σ′′).

Proof. Say (Σ,Σ′) is of type (I3, I3) of (1b-2) with Σ ∩ Σ′ = {a, b} such that b ∈ Σ and

a ∈ Σ′ are tacnodes. Assume that ΣZ intersects Ea1 and Eb1. By Lemma 15, we find the

subsystem

Λ := 〈S := 12(ΣZ + Eb1), T := 12(Σ′Z + Ea2)〉
⊆ |24µ∗LY − 8Ea1 − 4Ea2 − 4Eb1 − 8Eb2|

with S ·T = 0. By the same argument as in the end of the proof of Lemma 20, this defines a

morphism ϕ : Z → P 1
C such that ϕ|Ea1 is a degree 12 ramified cover over P 1

C with ramification

index 11 along S ∩ Ea1 and T ∩ Ea1.

Now consider the types of (Σ,Σ′′) in Lemma 18:

(1b-2) (I3, I3): Then a ∈ Σ′′ is a tacnode, but there is no such local intersection for a ∈
Σ′ ∩ Σ′′ from Lemma 17.

(1c) (I3, I1): The curve Σ′′ has a unique smooth branch tangential to the tacnode b ∈ Σ

and Σ ∩Σ′′ = {a, c}. But then Σ′ ∩Σ′′ = {b} and they intersect transversally, which

violates Σ′ · Σ′′ = 4.

(1c) (I3, I3): The local picture at b ∈ Σ ∩ Σ′ ∩ Σ′′ is the same as in the case of (I3, I1) in

(1c). Hence the same argument as above leads to a contradiction.

The only possibility left is when Σ′′ is of type (N) so that Σ′′ intersects Σ transversally at

b and tangentially to Σ′ at b, or Σ′′ intersects Σ tangentially at a and transversally to Σ′

at a. Assume that we are in the latter case and Σ′′Z = 2C ′′Z . Then the connected curve C ′′Z
is disjoint from S and T and hence sits in the (scheme theoretic) fiber F := ϕ∗(ϕ(C ′′Z)) of

ϕ : Z → P1. Since C ′′Z ·Ea1 = 1 and F ·Ea1 = 12, either there are more than one components

of F passing through Q := C ′′Z ∩ Ea1 or 12C ′′Z ≤ F . In either cases, the ramification index

of ϕ|Ea1 at Q is at least 1. The same argument as in Lemma 20 leads to a contradiction to

Riemann-Hurwitz formula. The other case is treated similarly. �

Lemma 23. The case (1b-3) in Lemma 18 does not occur in a triple (Σ,Σ′,Σ′′).

Proof. Say (Σ,Σ′) is of type (I1, I3) of (1b-3) with Σ ∩ Σ′ = {a, b} such that b ∈ Σ′ is

a tacnode. Assume that ΣZ intersects Ea1 and Eb1. By Lemma 15, we find the divisors

S := 12ΣZ , T := 12(Σ′Z +Eb2) ∈ |24µ∗LY − 8Ea1 − 4Ea2 − 8Eb1 − 4Eb2| with S · T = 0. The

pencil Λ := 〈S, T 〉 defines a morphism ϕ : Z → P 1
C such that ϕ|Ea1 is a degree 12 ramified

cover over P 1
C with ramification index 11 along S∩Ea1 and T ∩Ea1. The connected curve Ea2

is disjoint from S and T and hence sits in the (scheme theoretic) fiber F := ϕ∗(ϕ(Ea2)) of

ϕ : Z → P 1
C. Since Ea2 ·Ea1 = 1 and F ·Ea1 = 12, either there are more than one components
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of F passing through Q := Ea2 ∩ Ea1 or 12Ea2 ≤ F . In either cases, the ramification index

of ϕ|Ea1 at Q is at least 1. Again this violates Riemann-Hurwitz formula as explained in the

proof of Lemma 20.

Suppose now (Σ,Σ′) is of type (I2, I3) of (1b-3) with Σ ∩ Σ′ = {a, b} such that b ∈ Σ′ is

the tacnode and c ∈ Σ is the node. Assume that ΣZ intersects Ea1 and Eb1. By Lemma

15, we find the divisors S := 12(ΣZ + Ec1 + Ec2), T := 12(Σ′Z + Eb2) ∈ |24µ∗LY − 8Ea1 −
4Ea2 − 8Eb1 − 4Eb2| with S · T = 0. Similarly the pencil Λ := 〈S, T 〉 defines a morphism

ϕ : Z → P 1
C such that ϕ|Ea1 is a degree 12 ramified cover over P 1

C with ramification index 11

along S ∩ Ea1 and T ∩ Ea1. Consider the connected curve Ea2 and the (scheme theoretic)

fiber F := ϕ∗(ϕ(Ea2)) of ϕ : Z → P 1
C. The same argument as in the proof of Lemma 20

leads to a contradiction to Riemann-Hurwitz formula. �

7. The case of Aut(M) = C3 and H1(M/C3,Z) = C3

To illustrate how Section 6 helps us to prove the Main Theorem, we focus on the case when a

fake projective plane M has Aut(M) = C3 and H1(Y,Z) = C3, where Y = M/Aut(M). Since

there are three distinct Aut(M)-invariant cubic root L,L′, L′′ of KM from the discussion in

Section 2, by Lemma 9 it is enough to show that one of 2L, 2L′, 2L′′ has no global sections.

We assume the contrary and let Σ ∼ 2L,Σ′ ∼ 2L′,Σ′′ ∼ 2L′′ be three distinct Aut(M)-

invariant curves.

Lemma 24. If M is a fake projective plane with Aut(M) = C3 and H1(Y,Z) = C3, then an

invariant curve Σ ∼ 2L of type (N) or (X) does not exist.

Proof. If Σ is of type (N) and Σ = 2C ≡ 2L, then C is invariant and C ∼ L + α for some

3-torsion α coming from H1(Y,Z) = C3. Hence 3α can only be trivial and h0(M,L+α) 6= 0.

This contradicts to pg(M) = h0(M, 3L) = h0(M, 3(L+ α)) = 0. Similarly, if Σ = Σ1 + Σ2 is

of type (X), then Σi being invariant must be in the class L + ωi, where ωi is an invariant

3-torsion. But then 3Σi ∼ 3L = KM , contradicting to pg(M) = 0. �

Remark 3. Compare to the proof of Lemma 24, the proof of Lemma 16 shows that in general

it is harder to rule out all possible invariant curves in the numerical class 2L.

As a consequence of Section 6 and Lemma 24, to consider a triple of three distinct invariant

curves of numerical type 2L, we only need to consider pairs of invariant curves of the following

types in Lemma 18:

(1a) (I1, I2) with intersection configuration 3(tan− node) + 1(tr);

(1c) (I1, I3), (I3, I3) with intersection configuration 4(tan− tac);

Lemma 25. Type (I1, I2) of (1a) in Lemma 18 does not occur in a triple (Σ,Σ′,Σ′′).
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Proof. If (Σ,Σ′) is of type (I1, I2) of (1a) and say a ∈ Σ′ the node, then (Σ,Σ′′) can only

be of type (I1, I2) of (1a) or (I1, I3) of (1c). In the former case, (Σ′,Σ′′) is of type (I2, I2)

and must have Σ′ · Σ′′ > 4, which is absurd. In the latter case, we must have that b ∈ Σ′′ is

the tacnode. But then it is only possible that (Σ′,Σ′′) to be of type (I2, I3) in (1b-3) with

b = (tr− tac) and c = (tan− sm) for the third fixed point c of Aut(M). This case has been

ruled out in Lemma 23. �

Up to this point, we see that the triple (Σ,Σ′,Σ′′), up to reordering, can only be of type

(I1, I3, I3) or (I3, I3, I3), where (I1, I3) and (I3, I3) are both from (1c).

Lemma 26. The type (I1, I3, I3) does not occur.

Proof. Say we have type (I1, I3, I3) such that b ∈ Σ′ and c ∈ Σ′′ are tacnodes and {b, c} =

Σ′ ∩ Σ′′. But both (Σ,Σ′) and (Σ,Σ′′) being type (I1, I3) in (1c) then implies that Σ is

tangential to Σ′′ along b and c, which leads to

4 = Σ · Σ′′ = multb(Σ ∩ Σ′′) + multc(Σ ∩ Σ′′) ≥ 1 + 4.

�

Lemma 27. The type (I3, I3, I3) does not occur.

Proof. Say Σ = (s1 = 0), Σ′ = (s2 = 0), and Σ′′ = (s3 = 0) on M . Here si descends

to s̃i ∈ H0(Y, 2Li) and pulls back to ti := µ∗s̃i ∈ H0(Z, µ∗(2Li)), for i = 1, 2, 3. As all

invariant torsions has order three from the proof of Lemma 4, we can form the linear system

Λ := 〈t31, t32, t33, t1t2t3〉 on Z. Note that by construction Λ ⊆ |2KZ |.

It is easy to see that these four sections are linearly independent: Suppose this is not true.

Clearly there is an induced relation As3
1 + Bs3

2 + Cs3
3 + Ds1s2s3 = 0 for some constants

A,B,C,D. Then considering a generic point of s1 = 0, Bs3
2 + Cs3

3 = 0 along s1 = 0. But

s2, s3 have different vanishing orders at the fixed points. Hence B = C = 0 (say, by taking

derivatives along the curve s1 = 0). Now we have As3
1 + Ds1s2s3 = 0, or As2

1 + Ds2s3 = 0.

But again at a generic point of s1 = 0, s2 and s3 do not vanish. This forces D = 0. Hence

A = 0 as well. This also shows that Λ = |2KZ | as h0(Z, 2KZ) = 4 by Riemann-Roch formula

and Kawamata-Viehweg vanishing.

Note that Λ is base point free as ΣY ∩Σ′Y ∩Σ′′Y = ∅ and defines a morphism Φ : Z → P 3
C via

[x : y : z : w] = [t31 : t32 : t33 : t1t2t3].

Clearly, Φ(Z) = S = (w3 = xyz), which is a singular normal cubic surface with three A2

singularities. Since KZ · E = 0 exactly along µ-exceptional curves, there is a factorization

Φ : Z
µ−→ Y

Ψ−→ S. As 2KZ = Φ∗OS(1), Ψ is finite with

deg(Ψ) =
(2KZ)2

OS(1)2
= 4.
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Note that Y and S are Gorenstein and being a cubic KS = OS(−1). By Riemann-Hurwitz

formula, KY = Ψ∗KS + R. On one hand, local computation along generic point of (ti = 0)

gives the ramification index two. Hence

R ≥ D := 2((t1 = 0) + (t2 = 0) + (t3 = 0)) ≡ 4KY .

On the other hand, as Ψ∗KS = −Ψ∗OS(1) = −2KY , we get

3 = K2
Y = KY · (Ψ∗KS +R) = KY · (2KY + (R−D)) = 6 +KY · (R−D) ≥ 6.

This is a contradiction. �

We are now ready to prove the Main Theorem for fake projective planes in line 7 to 9 of

Table 1.

Corollary 2. Suppose that M is a fake projective plane with Aut(M) = C3 and H1(M/Aut(M),Z) =

C3. There is an invariant cubic root L with KM = 3L such that the sequence OM ,−L,−2L

forms an exceptional collection.

Proof. By Lemma 2 and 4, there are three Aut(M)-invariant cubic roots L,L′, L′′ of KM ,

i.e., KM = 3L = 3L′ = 3L′′. If all of 2L, 2L′,and 2L′′ have non-trivial global sections,

then by Lemma 6 there is a triple (Σ,Σ′,Σ′′) of distinct Aut(M)-invariant curves in the

numerical class 2L. However, from results in Section 6 and Lemma 24 to Lemma 27 in this

section, all possible configurations of such a triple are ruled out and this is absurd. Hence

one of 2L, 2L′, or 2L′′ has no global section. It follows that from Lemma 9 there exists an

exceptional collection of the expected type. �

8. The case of Aut(M) = C3 and H1(M/C3,Z) = C2 × C3

Suppose that M is a fake projective plane with Aut(M) = C3 and H1(M/Aut(M),Z) =

C2 × C3. There are 6 classes of such M in Table 1 and 3 classes in Table 3. First of all, by

using the same trick as in the last section, we show that there cannot be triples of different

invariant curves in numerical class 2L except one case, cf Proposition 4. This implies the

vanishing of many global sections for invariant line bundles of numerical type L or 2L. If

KM = 3L, then we find an exceptional collection, cf. Corollary 3. For fake projective planes

not treated in Corollary 2 and 3, we refer the reader to Section 9.

8.1 Again, we will consider a triple of three distinct Aut(M)-invariant curves (Σ,Σ′,Σ′′)

in the numerical class 2L. Note that Lemma 24 does not apply here and hence we cannot

quote results in Section 7 directly. From Section 6, the intersection type of any two invariant

curves can only be from the following list:

(1a) (I1, I2) with intersection configuration 3(tan− node) + 1(tr);
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(1b-1) (N, I3) with intersection configuration 4 = 2 · 2(tr − tac);
(1c) (I1, I3), (I3, I3) with intersection configuration 4 = 4(tan− tac);
(3b) (N, I1), (N, I2) with intersection configuration 4 = 2 · (1(tr) + 1(tr));

(3c) (N, I1), (N, I3) with intersection configuration 4 = 2 · 2(tan− sm).

Proposition 4. Suppose that M is a fake projective plane with Aut(M) = C3 and H1(M/Aut(M),Z) =

C2×C3. Then there exists no triple of three distinct Aut(M)-invariant curves (Σ,Σ′,Σ′′) in

the numerical class 2L except, up to reordering, when the type is (N, I1, I2):

Proof. As discussed above, we only need to consider the case when exactly one of these

invariant curves is of type (N), say Σ. By Lemma 21, none of Σ′ and Σ′′ can be of type

(N). Hence from the above list, the type of (Σ′,Σ′′) can only be (1a) or (1c). If (Σ′,Σ′′)

is of the type (I1, I2) in (1a), then we can only have a triple of type (N, I1, I2) as depicted

in the statement. Hence hereafter we assume that (Σ′,Σ′′)has intersection configuration

4 = 4(tan− tac) from (1c) of Lemma 18.

Assume that b ∈ Σ′′ is the tacnode and Σ′ intersects Σ′′ transversally at b so that Σ′ ∩Σ′′ =

{b}. Suppose that {a, b} ⊆ Σ′′ and {b, c} ⊆ Σ′. Note that Σ does not pass through a, b

simultaneously since there is no such type (N, I3) of (Σ,Σ′′) in the above list.

If Σ passes through a, c, then Σ ∩ Σ′ ∩ Σ′′ = ∅. In particular, a similar argument as the

proof of Lemma 27 applies: Since 6τ = 0 for all Aut(M)-invariant torsion line bundles, there

is a linear system Λ := 〈t61, t62, t63, t21t22t23〉 ⊆ |4KZ |. The same computation as in the proof of

Lemma 27 leads to a contradiction from

KY = Ψ∗KS +R = −4KY + (R−D) +D,

where

D := 5((t1 = 0) + (t2 = 0) + (t3 = 0)) ≡ 10KY .

Hence it is only possible that {b, c} ⊆ Σ and (Σ′,Σ′′) is of type (I1, I3) in (3b). In particular,

Σ ∩ Σ′ = {b, c}.

Assume that ΣZ intersects Eb1 and Ec1. Since 6τ = 0 for all Aut(M)-invariant torsion line

bundles, we can consider the subsystem

〈S := 6(ΣZ + Eb1 + Ec1), T := 6Σ′Z〉 ⊆ |12µ∗LY − 2Eb1 − 4Eb2 − 2Ec1 − 4Ec2|,

where S ·T = 0. As in the end of the proof of Lemma 20, this defines a morphism ϕ : Z → P 1
C

such that ϕ|Eb2 is a degree 6 ramified cover over P 1
C with ramification index 5 along S ∩Eb2
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and T ∩ Eb2. The connected curve Σ′′Z is disjoint from T and hence sits in the (scheme

theoretic) fiber F := ϕ∗(ϕ(Σ′′Z)) of ϕ : Z → P 1
C. Since Σ′′Z · Eb2 = 2 and F · Eb2 = 6, either

there are more than one components of F passing through one of {Q,Q′} := Σ′′Z ∩ Eb2 or

3Σ′′Z ≤ F . In either cases, the ramification index of ϕ|Eb2 at one of {Q,Q′} is at least 1.

The count of the ramification indices at the three points above violates Riemann-Hurwitz

formula as in the proof of Lemma 20. �

8.2 Write H1(M/Aut(M),Z) = 〈τ, ω〉, where 〈τ〉 ∼= C2 and 〈ω〉 ∼= C3. We will identify

τ = (1, 0), ω = (0, 1), and use the additive notion. Write KM = 3L + µ, where L is a fixed

Aut(M)-invariant line bundle and µ is some Aut(M)-invariant torsion. From the proof of

Lemma 4 and by abuse of notion, we can assume that µ ∈ 〈τ, ω〉 . There are two cases:

(1) M is not in the class C18: By Lemma 1, we can put µ = 0.

(2) M is in the class C18: As 3L + τ = 3(L + τ), we can always choose ω corresponding

to a generator of the C3-factor of H1(M/Aut(M),Z) so that µ = ω.

Hence hereafter we fix the setup:

H1(M/Aut(M),Z) = 〈τ, ω〉 and KM = 3L+ ω,

where ω = 0 if M is not in the class C18.

Lemma 28. One of 2L, 2(L+ ω), or 2(L+ 2ω) has no global sections.

Proof. Suppose that the contrary holds. From Proposition 4, there is a triple of invariant

curves of type (N, I1, I2) with Σ = 2C ∼ 2(L+ kω) being of type (N) for some k ∈ {0, 1, 2}.
Rewrite KM = 3(L + kω) + ω, we may assume that k = 0 and Σ = 2C ∼ 2L. From

Table 2, CZ is a smooth elliptic curve and 3Σ′ ∼ 3Σ′′ ∼ 6L restricts to two sections t1 :=

µ∗(3Σ′Y )|CZ , t2 := µ∗(3Σ′′Y )|CZ ∈ H0(CZ , µ
∗6LY |CZ ). From Riemann-Roch formula, it is easy

to see that h0(CZ , µ
∗6LY |CZ ) = 2 and is generated by global sections. On the other hand, t1

and t2 are linearly independent from the description of these three curves in Proposition 4

and hence |µ∗6LY |CZ | = 〈t1, t2〉. However, 〈t1, t2〉 has base points along µ−1(CY ∩Σ′Y ∩Σ′′Y ).

This is a contradiction. �

We can now prove the Main Theorem for fake projective planes in the last six lines of Table

1.

Corollary 3. Suppose that M is a fake projective plane with Aut(M) = C3 and H1(M/Aut(M),Z) =

C2 × C3. If M is not in class C18, then there is an Aut(M)-invariant line bundle L with

KM = 3L such that the sequence OM ,−L,−2L forms an exceptional collection.

Proof. We have KM = 3L for some Aut(M)-invariant line bundle from Lemma 2, and

L,L+ ω, L+ 2ω are three distinct invariant cubic roots of KM . Hence the corollary follows

immediately from Lemma 28 and Lemma 9. �
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9. Remarks on the other cases with Aut(M) = C3

The list of all the fake projective planes with a non-trivial automorphism which are not

treated in the Main Theorem is in Table 3. There are in total 36 non-biholomorphic of such

fake projective planes. With minor modifications, the results in Section 6 to 8 for a pair

or a triple of different invariant curves apply to all fake projective planes with non-trivial

automorphisms, except Lemma 24 and Lemma 28. The difficulty to prove Conjecture 2 in

general is to establish the following two key ingredients as done in Corollary 3.

The first ingredient is very technical and is the main difficulty in applying our approach

to the remaining fake projective planes: Lemma 28 holds if 3Σ′Y ∼ 3Σ′′Y , or slightly weaker

µ∗(3Σ′Y )|CZ ∼ µ∗(3Σ′′Y )|CZ . This is applicable to fake projective planes whose H1(M,Z)

contains a unique C3-factor, for which we consider three Aut(M)-invariant cubic roots of KM

as in Lemma 28. However, the proof does not work for a general choice of three invariant

line bundles. In particular, Lemma 28 fails for any choice of three invariant line bundles

when H1(M/Aut(M),Z) contains no C3-factor. To tackle the first difficulty, we propose the

following question.

Question 1. Let M be a fake projective plane with Aut(M) = C3 and KM ≡ 3L for an

Aut(M)-invariant line bundle L. Is it true that there exists no triple (Σ,Σ′,Σ′′) of distinct

Aut(M)-invariant curves of type (N, I1, I2) in the numerical class 2L as in Proposition 4?

A positive answer to Question 1 does not prove Conjecture 2 directly, but shall be taken as

a weak solution to it.

The second ingredient is that, even if Lemma 28 holds for the choice of three invariant cubic

roots of KM , we still need KM = 3L to apply Lemma 9. This is the main difficulty to prove

Conjecture 2 for fake projective planes in class C18. If M possesses many invariant torsions,

then we may apply our approach with the following generalization of Lemma 9.

Lemma 29. For a choice of torsions µ1, µ2, ω on a fake projective plane M such that KM =

3L+ ω, the sequence OM ,−(L+ µ1),−(2L+ µ2) forms an exceptional collection if and only

if

h0(M,L+ µ1) = h0(M,L+ ω − µ2) = h0(M,L+ µ2 − µ1) = 0

and

h0(M, 2L+ ω − µ1) = h0(M, 2L+ µ2) = h0(M, 2L+ ω + µ1 − µ2) = 0.

Proof. The required vanishing for the given sequence of line bundles to be an exceptional

collection is given by
h0(M,L+ µ1) = h1(M,L+ µ1) = h2(M,L+ µ1) = 0,

h0(M, 2L+ µ2) = h1(M, 2L+ µ2) = h2(M, 2L+ µ2) = 0, and

h0(M,L+ µ2 − µ1) = h1(M,L+ µ2 − µ1) = h2(M,L+ µ2 − µ1) = 0.
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Table 3. FPP with Aut 6= {1} not covered in Main Theorem

class M Aut(M) H1(M,Z) H H1(M/H,Z)

(a = 1, p = 5, ∅) (a = 1, p = 5, ∅, D3) C3 C2 × C4 × C31 C3 C2 × C4

(a = 1, p = 5, {2}) (a = 1, p = 5, ∅, {2}, D3) C3 C4 × C31 C3 C4

(a = 2, p = 3, {2}) (a = 2, p = 3, {2}, D3) C3 C2
2 × C13 C3 C2 × C2

(a = 2, p = 3, ∅) (a = 2, p = 3, ∅, D3) C3 C2
2 × C13 C3 C2 × C2

(a = 7, p = 2, ∅) (a = 7, p = 2, ∅, D3X7) C3 C2 × C7 C3 C2

(a = 7, p = 2, {7}) (a = 7, p = 2, {7}, D377) C3 C2 × C7 C3 C2

(a = 7, p = 2, {7}, D37′7) C3 C2
2 × C7 C3 C2 × C2

(a = 7, p = 2, {3}) (a = 7, p = 2, {3}, D3) C3 C2 × C4 × C7 C3 C2 × C4

(a = 7, p = 2, {3, 7}) (a = 7, p = 2, {3, 7}, D3) C3 C4 × C7 C3 C4

(a = 15, p = 2, ∅) (a = 15, p = 2, ∅, D3) C3 C2
2 × C7 C3 C2 × C2

(a = 15, p = 2, {5}) (a = 15, p = 2, {5}, D3) C3 C2 × C7 C3 C2

(C10, p = 2, ∅) (C10, p = 2, ∅, D3) C3 C2 × C7 C3 C2

(C10, p = 2, {17−}) (C10, p = 2, {17−}, D3) C3 C7 C3 {1}
(C18, p = 3, {2}) (C18, p = 3, {2}, D3) C3 C2 × C3 × C13 C3 C2 × C3

(C18, p = 3, {2}, (dD)3) C3 C2 × C3 C3 C2 × C3

(C18, p = 3, {2}, (d2D)3) C3 C2 × C3 C3 C2 × C3

(C20, {v2}, {3+}) (C20, {v2}, {3+}, D3) C3 C4 × C7 C3 C4

(C20, {v2}, {3−}) (C20, {v2}, {3−}, D3) C3 C4 × C7 C3 C4

By Serre duality, e.g. h2(M,L+µ1) = h0(M, 2L+ω−µ1), this gives the necessary condition.

Conversely, together with pg(M) = q(M) = 0 and χ(L′) = χ(2L′) = 1 for any positive

line bundle L′ generating NS(M)Q, the prescribed vanishing of h0 implies all the required

vanishing of h1. �

To apply Lemma 29, one can consider all possible invariant numerical torsions (µ1, µ2, ω) and

apply the discussion in Section 6 to 8 to obtain some vanishing of invariant global sections.

However, we have checked that in some cases there is no compatible choice of torsion line

bundles to generate all the required vanishing conditions.
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