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Abstract The purpose of this article is explain some aspects in complex hyperbol-
icity, through discussions of examples. We would focus our discussions on some
recent results of Wing-Keung To and myself on Kobayashi hyperbolicity of some
moduli space of polarized varieties, but would also mention some related results in
complex hyperbolicity, as well as some examples for arithmetic problems related to
hyperbolicity.

1 Introduction

Complex hyperbolicity is a notion in complex geometry which could be understood
either from the point of view of value distribution of entire holomorphic curves in a
complex manifold, or the point of view of existence of non-positive curved metric.
The two commonly used notions are Brody hyperbolicity and Kobayashi hyperbol-
icity. A complex manifold M is said to be Brody hyperbolic if it does not contain
the image of any non-trivial holomorphic map from C. M is said to be Kobayashi
hyperbolic if the Kobayashi metric on M is non-degenerate, cf. [44]. For simplic-
ity, we regard a pseudo-metric as a metric in this exposition. The Kobayashi metric
can be characterized as the largest among all the pseudo-distance functions δM on
M satisfying δM( f (a), f (b)) ≤ dP(a,b) for all holomorphic maps f : ∆ → M and
a,b ∈ ∆ , where ∆ is the unit disc in C and dP is the hyperbolic distance func-
tion on ∆ , cf. [22]. It follows immediately that any Kobayashi hyperbolic manifold
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is Brody hyperbolic as well, since the image of any entire holomorphic curve on
M would have degenerate Kobayashi semi-distance. For a compact manifolds, the
two notions are equivalent, following a normal family argument as given by Brody
reparametrization argument in [9]. For non-compact manifolds, there are examples
of Brody hyperbolic manifolds which are not Kobayashi hyperbolic.

In recent years, interests in complex hyperbolicity have been kindled by conjec-
tured parallelism between complex hyperbolicity and Mordellic properties in dio-
phantine geometry, due to conjectures of Bombieri, Lang, Osgood and Vojta, cf.
[54]. For a smooth projective variety V defined over a number field k, we say that
V is Mordellic if the number of rational points in k is at most finite. In case that V
is quasi-projective, we say that V is Mordellic if the number of integral points with
respect to the infinity divisor is finite. A general conjecture of Lang [27] states that
a smooth projective variety V defined over a number field k is complex hyperbolic
if and only if it is Mordellic.

It is in general a difficult problem to prove that a complex manifold is complex
hyperbolic, and even more so to prove Mordellic properties. The main purpose of
this article is to consider some aspects of these topics through some explicit exam-
ples.

It is a pleasure for the author to thank Wing-Keung To for his helpful comments
on the first draft of this article.

1.1 P1
C−{0,1,∞} revisited

The example of P1
C−{0,1,∞} is historically among the first interesting examples

in complex hyperbolicity. Little Picard Theorem concludes that P1
C −{0,1,∞} is

hyperbolic.
To give a conceptually simple reason, we recall a handy criterion in the proof of

hyperbolicity, the Schwarz Lemma of Ahlfors. Suppose M is a complex manifold
equipped with a Hermitian metric h with holomorphic sectional curvature bounded
from above by a negative constant. Ahlfors Schwarz Lemma states that a holomor-
phic map f : ∆ →M satisfies f ∗h≤ cgP, where gP is the Poincaré metric on ∆ and
c is a positive constant. An immediate consequence is that M as above is complex
hyperbolic.

Little Picard Theorem can be explained conceptually from Riemann Uniformiza-
tion Theorem, which states that the universal covering of P1

C−{0,1,∞} is biholo-
morphic to the unit disk ∆ in C. Now the Poincaré metric on ∆ has constant negative
holomorphic sectional curvature −4, from which hyperbolicity follows after apply-
ing Ahlfors Schwarz Lemma.

Another observation is that P1
C−{0,1,∞} = ∆/Γ2, where Γ2 is the second con-

gruence subgroup of PSL(2,Z) of level 2. As such ∆/Γ2 is naturally a cover-
ing of ∆/PSL(2,Z). On the other hand it is well-known that ∆/PSL(2,Z) can
be considered as the parameter space of the space of all elliptic curves. Hence
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P1
C −{0,1,∞} = ∆/Γ2 naturally parametrizes a family of elliptic curves. This is

the simplest of a moduli space which satisfies hyperbolic properties.
The example and the above two observations lead naturally to two directions

which lead to a lot of developments for complex hyperbolicity.
The first one is whether the complement of a divisor of high degree in Pn

C is
hyperbolic. Clearly we may also ask for similar or more refined questions for other
pairs of manifolds as well. The second one is whether a natural moduli space of
some appropriate complex manifolds are hyperbolic or not.

The first direction is well-motivated and has generated a lot of research activities
with a vast amount of literature. Since there are already good overviews of this di-
rection in literature such as [45], we would only remark briefly on known results in
the Section 2, but focus on the second direction as well as some arithmetic consid-
erations in later sections.

In the following we explain some further motivations for the second direction.

1.2 The moduli space of curves Mg for g> 2

The moduli space of curves Mg as a topological space is the set of all equivalence
classes of Riemann surfaces of genus g with the equivalent relation given by biholo-
morphism. It is known that Mg can be given the structure of a complex space with
at worst orbifold singularities, or stacks. We may represent Mg as the quotient of
a Teichmüller space Tg by the mapping class group Γg, and the Teichmüller space
can be regarded as a bounded domain in C3g−3. The complex structure on Mg can
also be understood in terms of Kodaira-Spencer theory on deformation of complex
structures.

On Mg a natural biholomorphic invariant metric is given by the Weil-Petersson
metric. Let t ∈Mg representing a Riemann surface Mt of genus g. A holomor-
phic tangent vector to Mg at t can be identified with the Kodaira-Spencer class in
H1(Mt ,Θ), where Θ is the sheaf of holomorphic tangent vector fields on Mt . De-
note by H 1(Mt ,Θ) the set of harmonic representative in H1(Mt ,Θ). Classically
these are known as harmonic Beltrami differentials. Hence a tangent vector at x is
represented by Φx ∈H 1(Mt ,Θ). The Weil-Petersson metric gWP is represented by

(Φ1,Φ2)WP :=
∫

Mt

〈Φ1,Φ2〉ωP (1)

where 〈·, ·〉 is the pointwise inner product with respect to the Poincaré metric gP on
Mt , and the integral is taken with respect to the volume form ωP of the Poincaré
metric. It follows from the work of Ahlfors that gWP is Kähler. Furthermore, it is
known from the work of Ahlfors ([2], [3]) and Royden [38] that the holomorphic
sectional curvature of gWP is negative with negative upper bound. In [58] Wolpert
showed that the pointwise curvature of gWP from the point of view of differential
geometry can be expressed in closed form as
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R(WP)
i j̄k ¯̀ (t) = 2

∫
Mt

((2−2)−1〈Φi,Φ j〉) · 〈Φk,Φ`〉ωP (2)

+2
∫

Mt

((2−2)−1〈Φk,Φ j〉) · 〈Φi,Φ`〉ωP.

Here 2 is the Laplace-Beltrami operator. As a result, the holomorphic sectional
curvature is bounded above by − 1

2π(g−1) . Note that 2(g− 1) is the degree of the
canonical line bundle on Mt . We conclude that Mg is Kobayashi hyperbolic from
Ahlfors Schwarz Lemma.

1.3 Algebraic geometric results in moduli spaces of higher
dimensional varieties

The results of Sect. 1.1 show that moduli spaces of smooth projective curves with
ample or flat canonical line bundle are Kobayashi hyperbolic. The result has the fol-
lowing algebraic geometric interpretation. Suppose that π : M→ P1

C is an algebraic
family of generically smooth curves. Then there are at least 3 singular fibers. The
reason is that P1

C minus three or more points is hyperbolic, but P1
C minus two or

fewer points is not hyperbolic, since it contains C∗, or image of C after the expo-
nential mapping. Similarly if the base curve is an elliptic curve, there is at least one
singular fiber.

From an algebraic geometric point of view, it is interesting to know if the above
observation is true also for family of higher dimensional varieties of general type.
In fact, results in this direction have been proved by Migliorini [32] and Kovacs
[25], [26]. A typical result is that for a P1

C family of canonically polarized projective
algebraic varieties, there are at least 3 singular fibers in the family. As P1

C minus 3
points is hyperbolic, the above result is the consequence of a result of Viehweg and
Zuo [57], that the base manifold of any family of non-trivial canonically polarized
projective algebraic manifolds is Brody hyperbolic. For a precise statement, we refer
the readers to statement in .

Two questions arise naturally. The first one is whether the base manifold above
is Kobayashi hyperbolic as well. As mentioned before, the notion of Kobayashi hy-
perbolicity is strictly stronger than Brody hyperbolicity for non-compact manifolds.
The second is whether similar results hold for families of polarized Kähler Ricci flat
manifolds. We would address the above the problems from Section 3 to Section 4.

2 Some tools in the study of complex hyperbolicity

The purpose of this section is to explain some examples in the first direction men-
tioned in the introduction of this paper. We would also explain some techniques
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known in the study of complex hyperbolicity which directly or indirectly motivate
the discussions in the later sections.

A far reaching generalization of Little Picard Theorem is Nevanlinna theory.
Nevanlinna theory provides the formalism and techniques for the study of entire
holomorphic curve, which is the image of an entire holomorphic map from C in
a complex manifold. In particular, the classical Little Picard Theorem is a conse-
quence of the formulation that the defect of any entire holomorphic curve on P1

C is
at most 2+ ε for arbitrarily small ε > 0, which itself is consequence of the Second
Main Theorem of Nevanlinna.

A direct generalization of Little Picard Theorem to higher dimensions is the ques-
tion of complex hyperbolicity or its analogs for Pn

C−D, where D is the union of a
finite number of hyperplanes in general positions. Among many interesting results,
we just mention a few below. For statements in value distribution of entire holomor-
phic curves, there is the result of H. Cartan on Truncated Second Main Theorem
[10], a direct generalization of the result of Nevanlinna to higher dimensional pro-
jective spaces. There is also the result of Ahlfors [1], who introduced the notion of
associated curves and studied their defects. In an inhomogeneous representation of
an entire holomorphic curve f : C→ Pn

C, the associated curve can be considered as
a wedge product of the mapping f and its successive derivatives, f ∧ f ′∧·· · f (k), re-
garded as a map from C taking values in the Grassmanian resulted. Ahlfors obtained
Second Main Theorem and defect relations for the associated maps iteratively. Hy-
perbolicity of complement of 2n+1 hyperplanes in generic positions in Pn

C is proved
by Greens. Replacing 2n+1 hyperplanes by 2n+1 hypersurfaces, the result is also
known due to Ru and other people, cf. [40] and the references there. for results in
this direction.

The more difficult situation is the question of hyperbolicity of Pn
C −D for a

generic divisor D of high degree. For a generic D, defined by a polynomial of degree
d, G(X1, · · ·Xn+1) = 0 in Pn

C, we may consider the branch cover M of Pn
C−D defined

by
T d = G(X1, · · ·Xn+1) (3)

in Pn+1
C . In this way, a hyperbolicity problem on Pn

C−D is reduced to the correspond-
ing problem on a hypersurface M on Pn+1

C . The statement can be made precise. In
particular, Kobayashi conjectured that Pn

C−D is hyperbolic if degD> 2n+1, sim-
ilarly for a generic hypersurface D ⊂ Pn+1 of degree at least 2(n+ 1). Analogous
results for a general manifold have been conjectured by Lang and Vojta, cf. [27],
[54]. The precise degree is expected to be dictated by the geometry of the manifold
involved, such as the degree of the canonical class.

The Kobayashi Conjecture as mentioned has led to a lot of research activities,
though still not solved. In [48], Siu and myself showed that the conjecture is true for
n = 2 if the degree of D is very large. The degree was lowered greatly by the work
of McQuillen [28] and Demailly-Elgoul [14]. In higher dimensions, a breakthrough
comes from [44], see also [45], where Siu introduced the method of slanted vector
fields on moduli of hypersurfaces and showed that the statements of the conjectures
of Kobayashi were true if the degree of D is sufficiently large. Reasonable effective
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bounds of the method in dimensions 2 and 3 have been given as in Paun [37] and
Rousseau [39]. For the analogous problem of algebraic degeneracy of the image of
entire holomorphic curves, results with bounds on the degree of D has been obtained
by Diverio-Merker-Rousseau [16], see also [30].

As used in [48], there are in general the following steps in proving complex hy-
perbolicity. The first step is the construction of some non-trivial jet differentials ω

vanishing on some ample divisor on M. Once this is available, a suitable Schwarz
Lemma for holomorphic jet differentials implies that the image of an entire holo-
morphic curve f : C→M satisfies f ∗ω = 0. This means that the image of f is con-
fined in the sense its jets satisfy a differential equation coming from ω . The second
step involves further restriction of the image, by either repeating the construction
of sections on the restriction of the jet bundles on the Zariski closure of the image
of f in the jet space, or by showing that there are a lot of freedom in the choice
of the jet differentialsω so that their common vanishing set could be shown to be
small when projected down to the manifold M. For the first step, the usual method
is by Riemann-Roch together with estimates of higher cohomology groups as given
in [21], [12], [45], or by explicit Siegel Lemma type argument as in [48], Section
2, and [45]. See the results of [13], [31] and the references there for more recent
works. For the second step, a direct computation using Riemann-Roch type theorem
on the image of jets of entire holomorphic curve works only in special situation or
low dimensions. The method of slanted vector fields introduced in [44] is general
but the degree involved is still quite large at this stage. The latter approach is parallel
to the restrictions of rational curves on a very general hypersurface of large degree
in projective spaces as studied by Clemens [11], Ein [17] and Voisin [53].

The Schwarz Lemma for holomorphic jet differentials was proved for special two
jet in dimension 2 in [48], here the word special means that the jet differential has
invariant form under reparametrization, and is generalized to all situations in [50],
[12] and [45].

As mentioned earlier, the formulation of complex hyperbolicity of a complex
manifold M in terms of geometry either in the form of M or a pair (M,D) has
been generalized by Lang and Vojta, cf. [27], [54]. Apart from Pn

C, one may for
example ask the same question for ample divisors M in Abelian varieties A and
the complement of an ample divisor D in an Abelian variety A. For the case of
M ⊂ A, the results of Bloch essentially implies that the Zariski closure of an entire
holomorphic curve in M is a translation of some sub-Abelian variety, cf. [6], [45].
The modern use of jet differentials as well as some analogues of Schwarz Lemma
can be traced to the work of [6]. The case of A\D has been a conjecture of Lang and
was settled in [49], [50]. The corresponding result for semi-Abelian varieties were
discussed in [36]. The situation of Abelian varieties has an analogue in arithmetics,
which would be discussed in Sect. 5.

We mention that the use of generalized Weil-Petersson metric on iterated Kodaira-
Spencer class in [51] to be explained in Sect. 3 is motivated by this version of
Schwarz lemma. The formulation of telescoping estimates of the curvature expres-
sions mentioned in Subsect. 3.3 is motivated by the formulation of Ahlfors for as-
sociated curves as mentioned above.
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3 Moduli of canonically polarized manifolds

In the following two sections, we would explain results in the second direction men-
tioned in the Subsection 1.1. From a differential geometric point of view, it would
be desirable to generalize the computation of curvature for a family of Riemann
surfaces of fixed genus as given in Subsection 1.2 to a family of higher dimensional
manifolds, from which complex hyperbolicity would follow naturally. We consider
a holomorphic family π : X → S of compact canonically polarized complex mani-
folds over a complex manifold S. By this we assume that π : X → S is a surjective
holomorphic map of maximal rank between two complex manifolds X and S, and
each fiber Mt := π−1(t), t ∈ S, is a compact complex manifold such that KMt is am-
ple. From results of Aubin [5] and Yau [59], every compact complex manifold with
ample canonical line bundle admits a Kähler-Einstein metric of negative Ricci cur-
vature, which is unique up to a positive multiplicative constant. Hence on each Mt ,
the Ricci curvature tensor of the Kähler-Einstein metric g satisfies R

αβ̄
(t) = kg

αβ̄
(t)

for some constant k < 0.
The formulation of the problem and the first breakthrough are given by the paper

of Siu in [44].

3.1 Curvature formula of Siu for the Weil-Petersson metric

For a holomorphic family π : X → S of complex manifolds, holomorphic tangent
vectors at t ∈ S are represented by Kodaira-Spencer map ρt : TtS→ H1(Mt ,T Mt).
We say that π is effectively parametrized if each ρt is injective. One can easily define
Weil-Petersson metric with respect to the Kähler metric in the same way as in the
case of one dimensional fibers. The curvature formula for higher dimensional fibers
is however complicated and the sign is difficult to determine.

Here are some details. Consider an effectively parametrized family π : X →
S of canonically polarized manifolds. For t ∈ S and a local tangent vector field u
(of type (1,0)) on an open subset U of S, there is a unique lifting of u such that
Φ(u(t)) is the harmonic representative of Kodaira-Spencer class ρt(u(t)) for each
t ∈ S, which is called the canonical lifting or horizontal lifting of u, cf. [43], [41]
When u = ∂/∂ t i is a coordinate vector field, we will simply denote its canonical
lifting by vi := v∂/∂ t i and the associated harmonic Kodaira-Spencer representative

by Φi := Φ(∂/∂ t i). The Weil-Petersson metric h(WP) = ∑
n
i, j=1 h(WP)

i j̄ dt i⊗ dt̄ j on S
is defined as in equation (1) by

h(WP)
i j̄ (t) :=

∫
Mt

〈Φi,Φ j〉
ωn

n!
, (4)

where 〈Φi,Φ j〉 := (Φi)
γ

ᾱ
(Φ j)

δ

β̄
g

γδ̄
gᾱβ denotes the pointwise Hermitian inner prod-

uct on tensors.
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It follows from Koiso’s result [24] that h(WP) is Kähler. Let R(WP) denote the
curvature tensor. By [43], p. 296, the components of the curvature tensor R(WP) of
h(WP) with respect to normal coordinates (of h(WP)) at a point t ∈ S are given by

R(WP)
i j̄k ¯̀ (t) = k

∫
Mt

((�− k)−1〈Φi,Φ j〉) · 〈Φk,Φ`〉
ωn

n!
(5)

+k
∫

Mt

((�− k)−1〈Φk,Φ j〉) · 〈Φi,Φ`〉
ωn

n!

+k
∫

Mt

〈(�− k)−1LviΦk,Lv j Φ`〉
ωn

n!

+
∫

Mt

〈H(Φi ?Φk),H(Φ j ?Φ`)〉
ωn

n!
.

Here by normal coordinates of h(WP) at the point t ∈ S, we mean h(WP)
i j̄ (t) = δi j,

and ∂kh(WP)
i j̄ (t) = ∂k̄h(WP)

i j̄ (t) = 0. The notation LvΦ denotes the Lie derivative of
Φ with respect to the vector field v and H(Φi ?Φk) denotes the harmonic projection
as a bundle-valued form of the wedge product of Φi and Φk in both the form and
tangent vector directions.

The pointwise computation of the curvature formula in (5) is a beautiful formula
on which all later curvature computations of Weil-Petersson type metrics built on.
The deduction comes from clever grouping of terms and involved loops of integra-
tion by parts guided from geometric intuitions.

The holomorphic sectional curvature curvature corresponds to components of
form R(WP)

iīiī . The first two terms on the right hand side of (5) are negative from
our assumption of effective parametrization and the third one is semi-negative. The
problem is on control of the fourth term which is semi-positive. Hence beautiful as it
is, the formula (5) is not sufficient to deduce hyperbolicity properties of the moduli
space except under very restrictive situations corresponding to the vanishing of the
fourth term.

For a long time, people have been trying to dominate the fourth term by the first
three terms. This seems to be not possible in general (cf. the remark in [52]). In
the next subsection, we will introduce the method of [51] to handle the difficulty.
At this point, we mention that the approach of (5) has been applied to the case of
families of polarized Kähler Ricci flat manifolds in Nannicini [35]. The results of
(5) has also been formulated in a sometimes more efficient way in [41]. The work
of [51] follows more closely the formulation in [43], but also makes use of some
simplifications in [41]. In Sect. 4, we will present the results on hyperbolicity for
family of Kähler-Ricci flat manifolds.
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3.2 Generalized Weil-Petersson metric and curvature formula

In the next few subsections, we will summarize the results in [51], whose goal is to
provide a Finsler metric with holomorphic sectional curvature bounded from above
by a negative constant so that the space is Kobayashi hyperbolic. Results in this
section is the first step, which is a generalization of the formula of Siu in (5).

We fix a coordinate open subset U ⊂ S with coordinate functions t = (t1, . . . , tm)
such that the origin t = 0 lies in U . For each t ∈ S and each coordinate tangent vector
∂

∂ t i , we recall the horizontal lifting vi and the harmonic representative Φi of ρt(
∂

∂ t i )
on Mt as given earlier. Fix an integer ` satisfying 16 `6 n, and let J = ( j1, . . . , j`)
be an `-tuple of integers satisfying 16 jd 6 m for each 16 d 6 `. We denote by

ΨJ := H(Φ j1 ? · · ·?Φ j`) ∈A 0,`(∧`T Mt) (6)

the harmonic projection of Φ j1 ? · · ·?Φ j` . As t varies, we still denote the resulting
family of tensors by ΨJ (suppressing its dependence on t), when no confusion arises.

Observe that from definition, the expression Φ j1 ? · · ·? Φ j`) ∈A 0,`(∧`T Mt) is
symmetric in j1, . . . , j`. Hence after composing with the Kodaira-Spencer map, we
may define a Hermitian metric on S`(TS) with norm given by

‖vi1 · · ·vi`‖
2
2 =

∫
Mt

〈vi1 · · ·vi` ,vi1 · · ·vi`〉
ωn

n!
. (7)

We call such an expression a generalized Weil-Petersson metric. To compute the
curvature, we need to study ∂i‖ΨJ‖2

2. The following proposition is a direct general-
ization of the identity in (5).

Proposition 1 We have

∂i∂i log‖ΨJ‖2
2 (8)

=
1
‖ΨJ‖2

2

(
− k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ)− k((�− k)−1〈Φi,Φi〉,〈ΨJ ,ΨJ〉)

−k((�− k)−1(LviΨJ),LviΨJ)−
∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣2

−(H(Φi ?ΨJ),H(Φi ?ΨJ))
)
.

In the remaining part of this subsection, we give some ideas for the proof of Propo-
sition 1. The expression that we need to compute is given by

∂i∂i log‖ΨJ‖2
2 = ∂i(

∂i‖ΨJ‖2
2

‖ΨJ‖2
2
)

=
∂i∂i‖ΨJ‖2

2

‖ΨJ‖2
2
− (∂i‖ΨJ‖2

2)(∂i‖ΨJ‖2
2)

‖ΨJ‖4
2

. (9)

For this purpose, we observe that
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∂i‖ΨJ‖2
2 =

∂

∂ t i

∫
Mt

〈ΨJ ,ΨJ〉
ωn

n!

=
∫

Mt

〈LviΨJ ,ΨJ〉
ωn

n!
+
∫

Mt

〈ΨJ ,LviΨJ〉
ωn

n!

=
∫

Mt

〈LviΨJ ,ΨJ〉
ωn

n!
,

where in the last step we have used the fact that ΨJ is harmonic and that (LviΨJ)
(0,`)
(`,0)

is ∂ -exact (cf. [51], Lemma 3), so that∫
Mt

〈ΨJ ,LviΨJ〉
ωn

n!
= 0 (10)

Differentiating the complex conjugate of above expression, we get

0 =
∂

∂ t i

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!

=
∫

Mt

〈LviLviΨJ ,ΨJ〉
ωn

n!
+
∫

Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
. (11)

We obtain

∂i∂i‖ΨJ‖2
2 = ∂i∂i‖ΨJ‖2

2 =
∂

∂ t i

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!

=
∫

Mt

〈LviLviΨJ ,ΨJ〉
ωn

n!
+
∫

Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
.

= I + II + III, (12)

where

I : = −
∫

Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
, (13)

II : =
∫

Mt

〈L[vi,vi]ΨJ ,ΨJ〉
ωn

n!
= (L[vi,vi]ΨJ ,ΨJ),

III : =
∫

Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
= (LviΨJ ,LviΨJ).

after applying the identity LviLvi = LviLvi +L[vi,vi]. It remains to compute the
expressions I, II and III. After some careful manipulation of the terms similar to
[43], we find that

I = −k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ)− (Φi ·ΨJ ,Φi ·ΨJ) (14)
+(Φi↘ΨJ ,Φi↘ΨJ)+(Φi↗ΨJ ,Φi↗ΨJ),

II = −(〈Φi,Φi〉,〈ΨJ ,ΨJ〉)− k((�− k)−1〈Φi,Φi〉,〈ΨJ ,ΨJ〉),
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III = (Φi ?ΨJ ,Φi ?ΨJ)− (H1(Φi ?ΨJ),H1(Φi ?ΨJ))

−k((�− k)−1(LviΨJ)LviΨJ),

where Φi ↘ΨJ ∈ A 1,`−1(∧`T Mt) and Φi ↗ΨJ ∈ A 0,`(∧`−1T Mt ∧T Mt) are de-
fined by

(Φi↘ΨJ)
α1···α`

δβ1···β`−1
:= (Φi)

σ

δ
(ΨJ)

α1···α`

σβ1···β`−1
and (15)

(Φi↗ΨJ)
α1···α`−1γ

β1···β`
:= (Φi)

γ

σ
(ΨJ)

α1···α`−1σ

β1···β`

respectively. Proposition 1 follows by putting the above information together.

We remark that the above calculations follows closely the one in [43], where
the case of ` = 1 was treated. Note that the fourth term on the right hand side is
controlled by the third term there from spectral decomposition. Hence the first four
terms gives rise to a non-negative sign, but the fourth one is of non-positive sign and
is the one to be controlled.

After the completion of the paper [51], we noticed that an analogous formula
in dual formulation had been obtained independently by [42]. Here by dual for-
mulation, we refer to computation of curvature for the dual bundle in the sense of
Kodaira-Serre, cf. [23].

3.3 A telescopic formulation

The second step in the construction of the Finsler metric in [51] is to formulate
estimates in identity (8) in a way that we may apply a telescopic argument.

Fix vi ∈ T S and let Φi the corresponding harmonic representative in the Kodaira-
Spencer class. For a positive integer `, we define the relative tensor

H(`) := H(Φi ? · · ·?Φi︸ ︷︷ ︸
`−times

), (16)

so that H(`) = ΨJ with J given by the `-tuple (i, i, · · · , i), here H(·) refers to the
projection to the harmonic component. The second main step of our argument is the
following.

Proposition 2 Suppose ‖H(`)‖2 > 0 (which automatically implies that ‖H(`−1)‖2 >
0. Then we have

∂i∂i log‖H(`)‖2
2 ≥

‖H(`)‖2
2

‖H(`−1)‖2
2
− ‖H

(`+1)‖2
2

‖H(`)‖2
2

. (17)

Here is the outline of proof. From Proposition 1 and the remark there, we con-
clude that
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∂i∂i log‖H(`)‖2
2 >

1
‖H(`)‖2

2

(
− k((�− k)−1(Φi ·H(`)),Φi ·H(`)) (18)

−k((�− k)−1〈Φi,Φi〉,〈H(`),H(`)〉)
−(H(Φi ?H(`)),H(Φi ?H(`)))

)
.

The key point of our argument in this step is to neglect the second term on the
right hand side, and observe that numerator of the first term satisfies

(−k((�− k)−1(Φi ·H(`)),Φi ·H(`)) > (H(Φi ·H(`)),Φi ·H(`))

≥
∣∣(Φi ·H(`),

H(`−1)

‖H(`−1)‖2

)∣∣2
=
‖H(`)‖4

2

‖H(`−1)‖2
2
.

In the above the first inequality follows from spectral decomposition. The key ob-
servation is the second identity which follows from linear algebra. The proposition
follows directly from combining the above estimates.

3.4 Construction of the Finsler metric

Given the above Proposition, we may hope to absorb the bad of term of the right
hand side of estimates (17) for ` by the good term for `+ 1. Observe that the bad

term ‖H(`+1)‖22
‖H(`)‖22

= 0 for ` = n, since Hn+1(Mt ,∧n+1Θ) = 0. However, the term may

vanish for some `< n and the greatest such ` may be different for different base point
t. As a result, the search for Finsler metric with negative upper bound in curvature is
rather challenging. This is the third step of the proof in [51]. Our result is as follows.

Let N ≥ n be a fixed positive integer. Let

A :=
(2π)nKn

Mt

knn!
. (19)

Let C1 := min
{

1, 1
A

}
and C` =

C`−1
3 = C1

3`−1 for 2 ≤ ` ≤ n. Let a1 = 1 and a` =( 3a`−1
C1

)N
=
( 3

C1

)N(N`−1−1)
N−1 for 2 ≤ ` ≤ n. Define for u ∈ TtS and t ∈ S a function

h : T S→ R given by

h(u) =
( n

∑
`=1

a`‖u‖2N
WP,`

) 1
2N

(20)

Then

∂t∂t̄ log((h(
∂

∂ t
))2)≥ Cn

n
1
N a

1+ 1
N

n

· (h( ∂

∂ t
))2. (21)
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This implies that the holomorphic sectional curvature is bounded by a negative con-
stant. Hence we conclude the following theorem after applying Ahlfors Schwarz
Lemma.

Theorem 1. Let π : X → S be an effectively parametrized holomorphic family of
compact canonically polarized complex manifolds over a complex manifold S. Then
S admits a C∞ Aut(π)-invariant Finsler metric whose holomorphic sectional curva-
ture is bounded above by a negative constant. Hence S is Kobayashi hyperbolic.

Here we say that a Finsler metric h on S is Aut(π)-invariant if f ∗h = h for any
pair of automorphisms (F, f ) ∈ Aut(X )×Aut(S ) satisfying f ◦π = π ◦F .

We remark that the upper bound of the holomorphic sectional curvature in (21)
depends only on the degree Kn

Mt
of the fibers. In complex dimension one, the result

is essentially the same as (2), the formula of Wolpert for moduli space of Riemann
surfaces.

4 Moduli of polarized Kähler Ricci-flat manifolds

Recall that in complex dimension 1, the space P1
C−{0,1,∞} parametrizes a fam-

ily of elliptic curves, and the base space is Kobayashi hyperbolic. Elliptic curves
have trivial canonical line bundle. A higher dimensional analogue of the result is to
consider the same problem for a holomorphic family of polarized Kähler Ricci-flat
manifolds. Hence a natural question is whether such a family is Kobayashi hyper-
bolic or not. In particular, one asks if it is possible to study such problems from the
point of view of Weil-Petersson metric. The question is answered in [52]

Theorem 2. Let π : X → S be an effectively parametrized holomorphic family of
compact polarized Ricci-flat Kähler manifolds over a complex manifold S. Then
S admits a C∞ Aut(π)-invariant Finsler metric whose holomorphic sectional cur-
vature is bounded above by a negative constant coming from generalized Weil-
Petersson metrics. As a consequence, S is Kobayashi hyperbolic.

A holomorphic family of compact complex manifolds π : X → S over a com-
plex manifold S is said to be a family of polarized Ricci-flat Kähler manifold if it
satisfies the following properties. The mapping π : X → S is a surjective holomor-
phic map of maximal rank between two complex manifolds X and S, and each fiber
(Mt ,ωt) is a Ricci-flat Kähler manifold polarized by ωt , where Mt := π−1(t), t ∈ S.
Moreover, we require that the cohomology class [φ ∗t ωt ] ∈ H2(M0,C) is a constant
class for all t, where φt : M0→Mt is the restriction of φ to M0×{t} for a smooth
trivialization φ : M0× I→X .

Historically, a result analogous to the work of [43] for a family of polarized
Kähler Ricci-flat manifolds was obtained by Nannicini [35] as follows.
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R(WP)
i j̄k ¯̀ (t) = − 1

4V
(hi jhlk +hikhl j)−

∫
Mt

〈(LviΦk,Lv j Φ`〉
ωn

n!

+
∫

Mt

〈H(Φi ?Φk),H(Φ j ?Φ`)〉
ωn

n!
,

here V is the volume of Mo.
Modifying the argument of the last section, Wing-Keung To and myself obtained

in [52] first the following generalization to the higher dimensional cases.

∂i∂i log‖ΨJ‖2
2

=
1
‖ΨJ‖2

2

(
H(Φi ·ΨJ),Φi ·ΨJ)+(H(〈Φi,Φi〉),〈ΨJ ,ΨJ〉)

+((H(LviΨJ),LviΨJ)−
∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣2− (H(Φi ?ΨJ),H(Φi ?ΨJ))

)
.

The rest of the argument is then a modification of the arguments in Sect.3. In
particular, in place of A chosen in (19), we define

A :=
(2π)nωn

t

knn!
=

(2π)nωn
0

knn!
. (22)

Similar to the case of a family of canonically polarized manifolds, the upper bound
on the holomorphic sectional curvature depends only on A.

5 Some higher dimensional examples of varieties with finite
number of rational points

In this final section, we remark on a few observations related to the arithmetic as-
pects of complex hyperbolic manifolds. A basic conjecture of Lang states that a
smooth projective algebraic manifold defined over a number field k is complex hy-
perbolic if and only if it has a at most a finite number of rational points over k,
and a similar statement for integral points with respect to the divisor given by a
compactifying divisor, cf. [27].

The conjecture in complex dimension one for hyperbolic compact Riemann sur-
faces is verified by the solution of Mordell Conjecture by Faltings [18]. The quasi-
projective case in complex dimension one is known earlier in the results of Siegel.
An alternative proof of the Mordell Conjecture is given by Vojta [55]. The prob-
lem in higher dimensions is wide open. An interesting class of examples known in
higher dimension is the result of Faltings [19], [20] on subvarieties X of Abelian
varieties A defined over a number field k, which states that the Zariski closure of the
set of rational points on X is a the translate of an Abelian subvariety in A. A similar
statement for integral points on the complement of an ample divisor is proved in the
papers as well. Note that the corresponding results for complex hyperbolicity were
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proved by Bloch [6] and Siu-Yeung [48] mentioned in Sect. 3. The arithmetic results
on semi-abelian varieties was given by Vojta [56].

From Riemann Uniformization Theorem, the universal covering of a compact hy-
perbolic Riemann surface is just the complex ball of dimension one, B1

C
∼= ∆ 1, and

similarly for a non-compact Riemann surface of finite volume. From differential
geometric point of view, the simplest complex hyperbolic manifolds are provided
by complex hyperbolic spaces Bn

C/Γ for some discrete group Γ . The hyperbolicity
follows from Ahlfors Schwarz Lemma and the existence of a Kähler metric with
negative Riemannian sectional curvature. The only other compact complex mani-
folds known to possess a Kähler metric of negative Riemannian sectional curvature
are the examples known as Mostow-Siu surfaces, see [34] and [15]. In the following
we describe a few examples studied in [60] for which results in complex geometry
and the results of Faltings above allow us to deduce Mordellic properties. We will
only consider complex dimension two. First we make the following observation in
[60].

Proposition 3 Let M be a smooth projective algebraic surface defined over a num-
ber field F. Assume that there exists an unramified covering M′→M defined over
some number field F ′ so that the irregularity q(M′) = dimH1(M′,OM′) is at least
3 and that there is no non-constant morphism from a curve of genus 0 or 1 into M,
then M(F) has finite cardinality.

The idea of the proof is to relate rational points M(F) on M to rational points
M′(F ′) for some finite extension F ′ of F by classical results of Hermite and
Chevalley-Weil. Then one considers the Albanese map on M′ and apply the results
of Faltings in [19] mentioned above.

We have the following immediately corollary, for which conditions in the propo-
sition above can be verified.

Corollary 1. The number of rational points on a smooth Picard Modular Surface
defined over a number field is finite. Similarly the result holds for the number of
rational points on a Mostow-Siu surface defined over a number field.

Proposition 3 shows that Mordellic properties would follow from virtual posi-
tivity of the first Betti number for surfaces, at least for complex two ball quotients.
In this way, the problem is related to the following problem in cohomology of Lie
groups and geometric topology. It has been conjectured by Borel [7], parallel to a
corresponding conjecture of Thurston for real hyperbolic spaces, that the first Betti
number of of a complex ball quotient is virtually positive. Recall that a property is
virtually true on a manifold if it holds after passing to a finite unramified covering if
necessary. Hence Mordellic properties of complex two ball quotients can be estab-
lished if the first Betti number is shown to be virtually at least 5. The conjecture of
Borel is open for a general compact complex ball quotient at this point. It is proved
in [60] that the conjecture is true for a non-compact complex ball quotient of finite
volume.



16 Sai-Kee Yeung

Theorem 3. Let M ∼= B2
C/Γ be a smooth cofinite complex two ball quotient. Then

given any N > 0, there exists a finite unramified covering of M′ with b1(M′) > N.
In particular, M has at most a finite number of integral points with respect to some
compactifying divisor.

The idea of proof is to observe that the Betti number of such a complex two
ball quotient increases with the number of cusps, which increases when one goes
to some unramified coverings. In the case of an arithmetic quotient of a complex
two ball, a compactification can be given by Baily-Borel compactification [8] which
adds a point to a cusp and is singular, or by toroidal compactification developed by
Ash-Mumford-Rapoport-Tai [4] which adds a torus to an end and is smooth. In the
case of non-arithmetic quotients, a differential geometric construction to each of the
above two cases has been developed by Siu-Yau [47] and Mok [33]. To find some
non-trivial class in H1, we consider the structure near the toroidal compactification
of an end, and in a sense show that some 1-cycle from the compactifying torus lifts
to M. Further discussions can be found in [61].

At this point, the situation for other complex ball quotients is still not completely
understood.
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Mathematica (Cluj) 7 (1933), 5-29.
[11] H. Clemens, Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986), 629-
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