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Abstract. We study a bounded domain from the perspective of Carathéodory distance,
and use it as a theme to inveestigate Kähler hyperbolicity, hyperconvexity, cohomological
and other geometric consequences solely from the property of the Carathéodory distance.

§0 Introduction

The goal of this paper is to investigate the geometry of a bounded domain from the point
of view of Carathéodory distance `C and its variations, and use it as a tool to study the
problem of geometric interests. In particular, we study Kähler hyperbolicity, hyperconvexity
and cohomology vanishing properties in this paper. Some of the results presented here can be
obtained from other methods. But we try to present it from the perspective of Carathéodory
distance and present rigorous proofs. The results are applied to some special domains of
interest, including holomorphic homogeneous regular/uniformly squeezing domains, which
in turn include Teichmüller spaces of hyperbolic punctured Riemann surfaces Tg,n and
bounded Hermitian symmetric domains.

The study of domains in Cn from the view of Carathéodory distance can be traced at
least to the time of [V]. We try to give a systematic study of several interesting geometric
problems related to bounded domains, hoping that it may rekindle some interests in this
direction.

The notion of Kähler hyperbolicity was introduced by Gromov in [Gr]. A smooth Kähler
metric is defined to be Kähler hyperbolicity if it is the differential of a bounded one form,
from which interesting geometric properties follow as was shown in [Gr]. We construct
metrics related to geometry of Carathéodory distance.

A complete Carathéodory distance also leads to hyperconvexity of the domain involved.
We will show that a general Kähler manifold satisfying hyperconvexity gives information
about vanishing and non-vanishing L2-cohomology as well, using Bochner type arguments
and L2-estimates.

The notion of holomorphic homogeneous regular/uniform squeezing domain was intro-
duced separately in [LSY] and [Y5], the latter stems from the arguments in [Y4]. We show
that all the results mentioned above are applicable to such domains.

Here is the outline of the article. In Section 1, we go through some preliminary dis-
cussions on geometry of bounded domains with complete Carathéodory distance. Some
foundation has already been set in the work of Vesentini [V]. The purpose here is to lay
down the necessary estimates, provide motivations and make the presentation self-contained.
In Section 2, we study Kähler hyperbolicity and deduce geometric consequences from the
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perspective of Carathéodory distance. In Section 3, we discuss cohomology vanishing or
non-vanishing from the point of view of hyperconvexity, which also follows from proper-
ties of the Carathéodory distance function. In Section 4, we apply the above discussions to
HHR/uniform squeezing domain to deduce geometric properties such as hyperconvexity and
Gromov Kähler-hyperbolicity. We also explain the relation to an error in [Y5]. In Section
5, we give remarks and further developments related to Carathéodory geometry. We have
also included some natural problems in this direction.

§1 Carathéodory distance

1.1 Basic analytic properties of Carathéodory metric have already been found classically,
such as in [V] and [TV]. To establish a notion for properties of Kähler hyperbolicity in the
next section and to be self-contained, we give some details in the following discussions.

Let ∆ = {z ∈ C : |z| < 1} be the unit disk in C. The Poincaré metric or the hyperbolic

metric is defined to be the one with Kähler form given by ωP =
√
−1dz∧dz

(1−|z|2)2 . The distance

between two points z1, z2 ∈ ∆ with respect to the Poincaré metric is

dP (z1, z2) =
1

2
log

1 + | z1−z21−z1z̄2 |
1− | z1−z21−z1z̄2 |

.

In the case that z1 = 0, the origin in C,

(1) `P (z) := dP (0, z) =
1

2
log

1 + |z|
1− |z|

=
1

2
log

(1 + |z|)2

1− |z|2
= tanh−1(|z|).

Lemma 1. (a).
√
−1∂∂`P (z) is positive definite for z > 0 and is positive as a current on

∆.
(b).

√
−1∂∂`P (z) > 2|∂`P (z)|2. At z = 0, this is interpreted as a current.

(c).
√
−1∂∂ log `P (z) is positive definite for z > 0 and is positive as a current on ∆.

Proof (a) follows from direct computation for z > 0. `P satisfies the Submean-value
Inequality by checking that `P (0) = 0 and `P (z) > 0 for z 6= 0. Hence `P is a subharmonic
function and

√
−1∂∂`P (z) is a current on ∆.

From direct computation, as |z| < 1,

∂ log(1 + |z|)2 =
|z|dz

z(1 + |z|)
,

√
−1∂∂ log(1 + |z|)2 =

|dz|2

2(1 + |z|)2|z|
,

−∂ log(1− |z|2) =
z̄dz

(1− |z|2)
,

−
√
−1∂∂ log(1− |z|2) =

|dz|2

(1− |z|2)2
.
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From (1),

∂`P =
|z|

2z(1− |z|2)
dz,(2)

√
−1∂∂`P =

(
1

4(1 + |z|)2|z|
+

1

2(1− |z|2)2

)
|dz|2(3)

=

(
1 + |z|2

4(1− |z|2)2|z|

)
|dz|2

=

(
1 + |z|2

|z|
· 1

4(1− |z|2)2

)
|dz|2

> 2

∣∣∣∣ |z|
2z(1− |z|2)

∣∣∣∣2 |dz|2
= 2|∂`P |2,

from which (b) follows. Also

√
−1∂∂ log `P =

1

`2P

(
`P
√
−1∂∂`P (z)−

√
−1∂`P ∧ ∂`P

)
=

1

`2P

(
1

2
(log

1 + |z|
1− |z|

)(
1 + |z|2

|z|
)− 1

)(
1

4(1− |z|2)2

)
|dz|2

=
1

`2P

(
(|z|+ 1

3
|z|3 +

1

5
|z|5 + · · · )(1 + |z|2

|z|
)− 1

)(
1

4(1− |z|2)2

)
|dz|2

> 0,

from which (c) follows. �

Remark In fact, the computations in (2) shows that
√
−1∂∂`P (z) = 1+tanh2(`P )

tanh(`P ) |∂`P (z)|2.

1.2 Let M be a complex manifold of complex dimension n. In fact, we are only interested
in non-compact complex manifold without boundary and is a bounded domain in Cn in this
article. The Carathéodory distance is defined as follows. For x, y ∈M , define

(4) `C(x, y) = dC(x, y) = sup{`P (h(x), h(y))|∃h : M → ∆ holomorphic}.
Since the Poincaré distance is invariant under an automorphism of ∆, we may assume

without loss of generality that h(x) = 0 in the above definition. Let x = xo be a fixed
point on M . `C(xo, y) is then a function in y. For a given y ∈ M , for any bounded
holomorphic function h : M → ∆ in the definition above, Cauchy’s estimates implies
that derivatives of h are bounded uniformly on any relatively compact neighborhood of y
in M . Hence the usual normal family argument implies that there exists a sequence of
holomorphic functions hy,k, k ∈ N depending on y, the set of natural numbers, such that
h∗y,k(`P (xo, y)) = `P (hy,k(xo), hk(y)) → `C(xo, y) as k → ∞ on a relatively compact set of

M . For simplicity of notation, we also denote the above expression by `P ◦ hy,k(y).
In the definition in (4), h∗`P (xo, y) is plurisubharmonic in y for each fixed h ∈ Hol(M,∆)

from Lemma 1. As `C(xo, y) is bounded for y in a relatively compact set on M , it follows
from the Remark below that `C(xo, y) is upper-semicontinuous in y. Hence `C(xo, y) as
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a supremum of a family of plurisubharmonic functions is itself a plurisubharmonic func-
tion. Through regularization by convolution in terms of molifliers, we may interprete√
−1∂∂`C(xo, y) as a positive (1, 1)-current, cf. [H] Theorem 2.6.3, or [De], §1C.

Here we remark briefly on the regularity of `C(xo, y). It was already pointed in [V] that the
length function is continuous. The following is an improvement in regularity, though we do
not need it in this paper.

Lemma 2. Let xo be a fixed point on M . Then `C(xo, y) is Lipschitz continuous in y.

Proof We now allow y to vary in a relatively compact set of M . Apply the discussion earlier
and assume that hy,k is a sequence of functions such that `P ◦ hy,k → `C(y) := `(xo, y) as
k → ∞. Let yo ∈ M and A = Br(y) a small Euclidean ball in a coordinate neighborhood
of yo which is relatively compact in M . From earlier discussions using Cauchy Estimates,
let us assume that there exists a constant C > 0 such that

hy,k, |Dhy,k| 6 C, for all y ∈ A
with respect to any first order derivative D of the coordinate basis. This immediately
implies by Chain Rule the existence of a constant C1 > 0 such that

`P ◦ hy,k, |D(`P ◦ hy,k)| 6 C1, for all y ∈ A.

From linear approximation, for y1 ∈ A,

`P ◦ hyo,k(y1) = `P ◦ hyo,k(yo) + (y1 − yo)D(`P ◦ hyo,k)(y2)

for some y2 on the line segment between yo, y2 and some first order derivative D along the
line. Hence from definition

`C(y1) > `P ◦ hyo,k(yo)− C|y1 − yo|.
Letting k →∞, we get

`C(y1) > `C(yo)− C|y1 − yo|.
Interchanging the roles of yo and y1, we get

`C(yo) > `C(y1)− C|y1 − yo|.
Hence

|`C(y1)− `C(yo)| 6 C|y1 − yo|
and we conclude that `C(y) is Lipschitz continuous in y. �

1.3 Let xo be a fixed point on M . Let x ∈ M . Since `P is plurisubharmonic, we can
still define ωC(x) =

√
−1∂∂`C(xo, x) as a current. Similarly, Lemma 1(c) shows that√

−1∂∂ log `C(xo, x) can be defined as a current. From
√
−1∂`P ∧ ∂`P = `P

√
−1∂∂`P (z)−

√
−1`2P∂∂ log `P

and taking the limit, it follows that
√
−1∂`C ∧ ∂`C can be interpreted as a current as well.

Cover M by a family of coordinate charts {Uα} so that any point x ∈ M is contained
in such a chart Uα. Denote by Ba(x) a Euclidean ball in a coordinate chart centered at x,
where a is taken to be sufficiently small. For a point xo ∈M , we also denote by ρa(xo) is a
cut-off function which is identically 1 on Ba/2(xo) and 0 outside Ba(xo) in M .
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Lemma 3. Let M be a bounded domain in Cn. Let xo be a fixed point on M . Let ωE be
the standard Euclidean Kähler form on M . Then
(a). ωC :=

√
−1∂∂`C(xo, x) defines a positive (1, 1)-current on M .

(b). ηC :=
√
−1∂∂ log `C(xo, x) defines a positive (1, 1)-current.

Proof (a) follows from the discussions in 1.2.
(b) is actually a result of Vesentini in [V]. It also follows from the argument of (a) and

Lemma 1(c).
�

§2 Kähler hyperbolicity

2.1 The notion of Kähler hyperbolicity was introduced by Gromov [Gr] and implies a lot of
interesting geometric properties. Recall from [Gr] that a complete smooth Kähler metric g
with Kähler form ωg on a complex manifold is said to be Kähler-hyperbolic if ω = dη for
some one form η which is bounded pointwise on M with respect to g.

Denote by Ap,q the space of smooth (p, q)-forms on M . A standard cut-off arguments
of Gaffney [Ga], there is still the Hodge decomposition, sometimes also known as Kodaira
Decomposition,

Lp,q2 (M) = ker 2p,q ⊕ ∂Lp,q−1
(2) ⊕ ∂∗Lp,q+1

(2) ,

where ∂(Lp,q−1
(2) ) is the closure in Lp,q2 (M) of ∂Lp,q−1

(2) and similarly for ∂
∗
Lp,q+1

(2) . Let

Hp,q2 (M) = ker 2p,q, which is the space of L2-harmonic (p, q) forms on M with respect
to ω.

Recall the following result in Main Theorem 2.5 of [Gr].

Proposition 1. Let M be non-compact complex manifold equipped with a complete strictly
positive definite Kähler hyperbolic metric which is locally integrable. Then Hp,q(2)(M) = 0 for

p+ q 6= n and is infinite dimensional for p+ q = n.

2.2 The following is some observation coming from the study of Carathéodory distance as
given in the last section.

Theorem 1. Let M be a bounded domain in Cn with complete Carathéory distance function.
Then there exists a complete Kähler hyperbolic metric constructed from the Carathéodory
distance function.

Proof It is well-known that completeness in Carathéodory length function implies hypercon-
vexity of the domain, cf. Lemma 4 and the discussions in §3 below. The result then follows
for example from Proposition 2.2 of the paper of Donnelly [Do], except that we would like to
add a few details about the regularity. In our setting, the function β := tanh2(`C(xo, x))−1
is a continuous plurisubharmonic exhaustion function taking value in [−1, 0) as to be ex-
plained in Lemma 4, with continuity from the discussions in (1.2). We may replace β by a
smooth one, from the regularization given in Proposition 1.2 of [KR], which in turn relies
on the result of Richberg [R]. Hence without loss of generality, we use the same notation
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β : M → [−1, 0) to represent a smooth plurisubharmonic exhaustion function on M . Let
ψ =

√
−1∂∂(− log(−β)). From direct computation
√
−1∂∂(− log(−β))) =

√
−1∂(− log(−β)) ∧ ∂(− log(−β)) + (−β)−1

√
−1∂∂β

>
√
−1∂(− log(−β)) ∧ ∂(− log(−β)),

noting that the second term on the right hand side of the first line is non-negative from
plurisubharmonicity of β. Hence ψ gives the Kähler-hyperbolic metric we need, which is
complete since β(z) is a bounded exhaustion function taking values in [−1, 0). �

Remark For some geometric applications such as the one given in Proposition 1, we need
to assume completeness of the metric as deduced by Theorem 1b. In §4, we will show that
this is the case for HHR/uniform squeezing domains. The readers may refer to [Gr] and
[Y1] for further geometric applications.

§3. Hyperconvexity

3.1 The goal of this section is to discuss some geometric consequences of hyperconvexity,
with applications to a domain with complete Carathéodory distance `C in mind.

Recall that a domain in Cn is called hyperconvex if there exists a bounded plurisubhar-
monic exhaustion function. In general for a non-compact complex manifold M , we say that
M is hyperconvex if there exists a bounded plurisubharmonic exhaustion function on M .

Examples of hyperconvex manifolds include bounded symmetric domains and Teichmüller
spaces of hyperbolic Riemann surfaces of finite volume, cf. [Kru] and [Y3] for the latter
fact.

The following result seems to be well-known.

Lemma 4. Let M be a bounded domain in Cn with complete Carathéodory distance function
`C . Then M is hyperconvex.

Proof Hyperconvexity follows from [B]. Here we give a simple argument in our setting. It
suffices for us to show that ϕ(x) = tanh2(`C(xo, x))−1 is plursubharmonic, where xo is any
fixed point on M . To see this, from direct computations, we get

√
−1∂∂ tanh2(`C)

= 2sech2`C
(
(1− 3 tanh2 `C)

√
−1∂`C ∧ ∂`C + tanh `C

√
−1∂∂`C

)
> 2sech2`C

(
(1− 3 tanh2 `C)

√
−1∂`C ∧ ∂`C + 2 tanh `C

√
−1∂`C ∧ ∂`C

)
> 0,

where we have used Lemma 1b and taking the supremum over all f : M → ∆ as in the
definition of the Carathéodory distance. Here the expressions are interpreted as currents.

�

3.2 In the following, we show that hyperconvexity imposes a strong restriction on cohomol-
ogy groups of Kähler manifolds. The theorem was already implicit in the proof of Corollary
1 in [Y3], treated for special cases of Teichmüller spaces. We include the proof here for
completeness of presentation.
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Theorem 2. Let (M,ω) be a complete Kähler manifold of complex dimension n. Assume
that M is hyperconvex equipped with a bounded plurisubharmonic function ϕ. Then
(a). Hp,q(2)(M) = 0 for p+ q 6= n.

(b). If
√
−1∂∂ϕ is positive definite on M , then Hn,0(2) (M) is infinite dimensional.

Proof Consider first p+ q < n. Let ϕ be a bounded plurisubharmonic exhaustion function
on M . Let xo ∈ M . Let d(xo, x) be the distance of x from xo with respect to the Kähler
metric on M . Let R > 0 and ρR be a cut-off function on M such that

ρR(x) =

{
1 if d(xo, x) < R,
0 if d(xo, x) > 2R,

and |∇ρR| 6 2
R on DR = {x : R < d(xo, x) < 2R}. Let H(p,q)

(2) (M) be the space of smooth

L2-harmonic forms on M . Equip the trivial line bundle E on M with the metric e−ϕ. Let

H(p,q)
(2),ϕ(M) be the space of L2, E valued harmonic forms on M with respect to the metric

e−ϕ in the fiber direction. Let 0 6= ψ ∈ H(p,q)
(2),ϕ(M). Regard ψ as a smooth section of E.

Then apply the Bochner type formula (1.3.8) of Siu [S] to the trivial line bundle E on M
equipped with metric eϕ, we get

‖∂(ρRψ)‖2(2),ϕ + ‖∂∗(ρRψ)‖2(2),ϕ − ‖∂(ρRψ)‖2(2),ϕ − ‖∂
∗(ρRψ)‖2(2),ϕ(5)

=
n− p− q

n
· 1

p!q!

∫
M

(
n∑

α=1

∂α∂αϕ)(ρ2
R|ψ|2g),

where ∂
∂zα is chosen to be an orthonormal basis of tangent vectors with respect to the Kähler

metric. Note that the curvature terms involved in (1.3.8) of [S] are given by Ω11̄aβ = ∂α∂βϕ

and trace Ω11̄ =
∑n

α=1 ∂α∂αϕ with respect to holomorphic tangent vectors ∂
∂zα and ∂

∂zβ

since we are considering the trivial line bundle with a metric induced from eϕ.
But the left hand side of (5) is bounded from below by

‖∂(ψ)‖2(2),ϕ + ‖∂∗(ψ)‖2(2),ϕ − ‖∂(ψ)‖2(2),ϕ − ‖∂
∗(ψ)‖2(2),ϕ − C1

∫
DR

|∇ρ|ψeϕ

for some constant C1 > 0. Hence moving the terms around and applying Cauchy-Schwarz
inequality, we get

‖∂(ψ)‖2(2),ϕ + ‖∂∗(ψ)‖2(2),ϕ − ‖∂(ψ)‖2(2),ϕ − ‖∂
∗(ψ)‖2(2),ϕ

>
n− p− q

n
· 1

p!q!

∫
M

(

n∑
α=1

∂α∂αϕ)(ρ2
R|ψ|2e−ϕ)− C

2R
(

∫
DR

|ψ|2e−ϕ)1/2,(6)

where C is a positive constant.
If ψ 6= 0, we may assume that ‖ψ‖ϕ = 1. As ϕ is non-constant plurisubharmonic, we

may assume that n−p−q
n · 1

p!q!

∫
M (
∑n

α=1 ∂α∂αϕ)(|ψ|2g)e−ϕ > C2, a positive number, so that
n−p−q
n · 1

p!q!

∫
M (
∑n

α=1 ∂α∂αϕ)(ρ2
R|ψ|2e−ϕ) > C2

2 if R is sufficiently large. On the other hand,

for R sufficiently large, we may assume that C
2R(
∫
DR
|ψ|2e−ϕ)1/2 6 C2

4 . This however leads to

a contradiction, since the left hand side of (6) is negative but the right hand side is at least
C2
4 . Hence ψ = 0. In other words, hp,q(2),ϕ = 0 for 0 6 p+ q < n. Since the dimension of the



8 SAI-KEE YEUNG

space of reduced cohomology is a quasi-isometry invariant, from the Hodge Decomposition
in 2.3, we conclude that hp,q(2) = 0 for 0 6 p+ q < n. From Kodaira-Serre Duality, it follows

that hp,q(2) = 0 for 2n > p+ q > n.

For the case of Hn,0(2) (M), it suffices for us to construct a L2 section of the canonical line

bundle K on M generating any order of jets on M .
Let us first construct a non-trivial L2 section at any given point first. Hence let xo ∈M .

Let U be a coordinate neighborhood of xo, with xo given by z = 0 on U . We may assume
that on U the canonical line bundle is generated by a holomorphic section eK . Let ρ be
a cut-off function supported in U , taking value 1 on U1 a relatively compact subset of U .
Extend ρ by 0 on M − U . We try to solve

(7) ∂f = ∂(ρeK)

for some L2 function f on M so that f(x) = 0. For this purpose we apply the standard
L2-estimates with weight given by kϕ + 2n(log |z|)ρ, cf. [H]. For k sufficiently large, we
would have

√
−1∂∂(kϕ+2n(log |z|)ρ) > 0 on M and > ω on U . From assumption, we know

that
√
−1∂∂(kϕ + 2n(log |z|)ρ) > c(z)ω for some positive function c(z) which is at least

1 on U. From construction,
∫
M

1
c |∂(ρeK)|e−kϕ−2n(log |z|)ρ < ∞. It follows from L2-estimate

that there exists a solution to (7) with

(8)

∫
M
|f |2e−kϕ−2n(log |z|)ρ 6

∫
M

1

c
|∂(ρeK)|e−kϕ−2n(log |z|)ρ <∞.

For the left hand side to be integrable, we conclude that f(xo) = f(0) = 0. Now ρeK − f
gives rise to a L2 holomorphic section of K on M and is non-zero at xo ∈ M . Such a
holomorphic section can be regarded as a harmonic (n, 0) form.

To generate l-th order jet at a point x ∈M , it suffices for us to choose a slightly different
weight function such as −klϕ− (2n+ l)(log |z|)ρ, which allows us to find a L2 holomorphic
section of K vanishing to order l at x, cf. the proof of Theorem 2 in [Y2]. Since l is arbitrary,

it is clear that Hn,0(2) is infinite dimensional.

�

3.3 The following corollary is an immediate consequence of Lemma 4 and Theorem 2.

Corollary 1. Let M be a bounded domain in Cn with complete Carathéodory distance `C .
Then hp,q(2)(M) = 0 for p + q 6= n and hn,0(2) (M) = ∞ with respect to any complete Kähler

metric on M .

§4. HHR/uniform squeezing domains

4.1 The notion of HHR/uniform squeezing domains were introduced in [LSY] and [Y5].
The terminology of [Y5] comes directly from the method of proof in [Y4]. In particular, a
domain is called a (a, b)-uniform squeezing domain in [Y5] if

(]): for each point x ∈M, there exists an embedding ϕx : M → Cn with
ϕx(x) = 0 and Bn

a (ϕx(x)) ⊂ ϕx(M) ⊂ Bn
b (ϕx(x)).

Here Bn
r = Bn

C(0, r) is the Euclidean ball of radius r in Cn.



GEOMETRY OF DOMAINS AND CARATHÉODORY DISTANCE 9

By rescaling, it is clear that the significant number here is b/a. In the following, instead
of using the notion of (a, 1)-HHR/uniform squeezing domain, we simply name it as (a, 1)-
squeezing domain. Furthermore, we choose the largest possible a for the given manifold M ,
in the sense that a is the minimum of the squeezing function on M .

In terms of squeezing function introduced in [DGZ], this is the condition that the squeez-
ing function on M is bounded from below by a.

4.2 Two distance functions d1 and d2 are said to be quasi-isometric, denoted by d1 ∼ d2 if
there exist constants c1, c2 > 0 such that c1d2(x, y) 6 d1(x, y) 6 c2d2(x, y). The notation is
consistent with the one used in [LSY], [Y4], [Y5] and perhaps can be termed more precisely
as biLipschitz. Similarly, we write two metrics g1 ∼ g2 if they are quasi-isometric, in the
sense that c1g2 6 g1 6 c2g2 for some positive constants c1, c2. We also represent quasi-
isometry in terms of (1, 1)-forms by c1ωg2 6 ωg1 6 c2ωg2 or ωg1 ∼ ωg2 . When ωgi are
positive (1, 1)-currents, we understand

c1ωg2 6 ωg1 6 c2ωg2

in terms of currents as well, namely integrals after pairing with continuous, locally supported
families of contravariant tensors on any small open set will satisfy the inequality. We still
use the notation ωg1 ∼ ωg2 to represent the quasi-isometry.

Denote by gY,KE the Kähler-Einstein metric on a manifold Y . Analogous notations
are to be used for gY,C , gY,K etc. From [Y5], we know that a complete gY,KE exists on a
HHR/uniform squeezing domain M .

Lemma 5. On a (a, 1)-squeezing domain M , the Carathéodory distance function dC is
complete.

Proof The argument is essentially known, cf. Lemma 3.2 in [M] for Teichmüller spaces
as well as the the proof of Theorem 3.1 of [Y4] comparing invariant metrics on domains
squeezed between two balls of radii 0 < a < b, to be recalled below.

Let ε > 0 be a given small number much smaller than 1. Let xi, i ∈ N be a Cauchy
sequence of points on M satisfying dM,C(xi, xj) < ε for all i, j ∈ N. It suffices for to show
that ϕx1(xi) converges to a point in ϕx1(M). For ε sufficiently small, we may assume from
(1) that dBr,E(z1, z2) = |z1 − z2| and dBr,C(z1, z2)are equivalent up to a factor of 2, for all

a 6 r 6 1 and |z1|, |z2| < tanh−1(ε). As ϕx1(x1) = 0, for any x ∈M , dϕx1 (M),E(0, ϕx1(x)) 6
dϕx1 (M),E(0, ϕx1(xi)) + dϕx1 (M),E(0, ϕx1(x)) 6 1 + 2ε. Hence

(9) Ba(0) ⊂ ϕx1(M) ⊂ B1+2ε(ϕx1(xi)).

It follows that

dϕx1 (M),E(ϕx1(xi), ϕx1(xj))

6 2dϕx1 (M),C(ϕx1(xi), ϕx1(xj))

6 2dBa,C(ϕx1(xi), ϕx1(xj)), from decreasing properties of dC ,

6 2dBa,C(0, ϕx1(xj)) + 2dBa,C(0, ϕx1(xi))

6 C1

(
2dϕx1 (M),C(0, ϕx1(xj)) + 2dϕx1 (M),C(0, ϕx1(xi))

)
,
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which follows from (9) and the argument of Theorem 3.1 of [Y4] that dC for two balls of
radii 0 < a < b are equivalent up to a constant depending on the ratio b

a on Ba/2. Here C1

is a constant bounded uniformly for ε 6 1. The above estimate is

= 2C1(dM,C(x1, xi) + dM,C(x1, xj)) 6 4C1ε.

Hence letting ε → 0, we conclude that the sequence xi, i ∈ N, lies in Bϕx1 (M),a/2(0) and
hence converges to an interior point of M . This implies that M is complete with respect to
dC .

�

4.3 Hence on a HHR/uniform squeezing domain, we define β to be a smoothing of (tanh(`C(xo, x))−
1), ψ(x) = − log(−β), and let ωC :=

√
−1∂∂ψ. We have the following conclusion.

Theorem 3. Let M be a HHR/uniform squeezing domain. Let xo be a fixed point on
M . Then the regularized Carathéodory distance `C(xo, x) is a plurisubharmonic exhaustion
function on M . Furthermore, M is Kähler-hyperbolic with respect to the smooth complete
Kähler metric ωC .

Proof The fact that `C(xo, x) is a plurisubharmonic exhaustion function follows from
Lemma 4 and Theorem 1b. Proposition 2 implies that `C is complete.

The rest of the argument follows from Theorem 1(b). �

4.4

Corollary 2. Let M be a HHR/uniform squeezing domain. Then
(a). tanh(`C(xo, x)) − 1 is a bounded plurisubharmonic exhaustion function. Hence M is
hyperconvex.

(b). Let H i,j
(2)(M) be the space of harmonic (i, j) forms on M (or the space of reduced

cohomology classes on M) with respect to the Kähler metric gs with Kähler form given by

ωC . Let hi,j(2)(M) be its dimension. Then hi,j(2)(M) = 0 for i+ j < n. Moreover, Hn,0
(2) (M) is

infinite dimensional.

Proof (a) follows from the proof of Theorem 3. (b) follows from (a) and Corollary 1. (b)
for gs also follows from Theorem 3 and Proposition 1. �

4.5 Andrew Zimmer kindly mentioned to the author that there is a gap in the proof of
Theorem 2(e) in [Y5], where it is claimed that gKE and gB are Kähler hyperbolic, see
Proposition 12.2 of [Z]. The problem is in the proof of Lemma 4 in [Y5], where at the
point with w, the coordinate in taking the Jacobian at x is with respect to the coordinate
associated to y in ϕy instead of y with respect to the coordinates ϕx.

Theorem 2(e) of [Y5] was not proved, but its direct geometric applications in [Y5] are
consequences of the results of this article.

In the following, we would explain the conditions under which Theorem 2(e) of [Y5]
remains valid, as elaborated below.

Let M = {z ∈ Cn : ρ(z) < 0} be a bounded domain in Cn equipped with a complete
Kähler metric g with Kähler form ω on M . The volume form of ω can be written as
det(g)|dz1∧· · ·∧dzn|n in terms of the coordinates on Cn. For simplicity, we write vg = det(g)
for the coefficient of the volume form.
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Definition 1. We say that a realization of M as a bounded domain in Cn and g satisfy
condition (C) if there exists r > 0, c > 0 such that for each x ∈M ,

1

c
<
vg(y)

vg(x)
< c

for all y ∈ Bg(x, r), where Bg(x, r) is a geodesic ball of radius r with respect to g centered
at x.

Proposition 2. Let M be a HHR/uniform squeezing domain. Suppose that there is a
realization of M as a bounded domain so that gKE (similarly gB) satisfies condition C on
M . Then (M, gKE) (similarly gB) is Kähler hyperbolic.

Proof Let us follow the proof of Lemma 4 in [Y5] and the notation there. It suffices for us

to prove that

∣∣∣ ∂

∂zk
log |J(ϕy,x)|2

∣∣∣√
g( ∂

∂zk
, ∂

∂z̄k
)

(0) 6 C for some constant C, which is true if and only if∣∣∣∣∣∣ 1√
g( ∂
∂zk

, ∂
∂z̄k

)

∂

∂zk

(
log | det(g(

∂

∂wi
,
∂

∂wj
))(ϕ(z))|2

)∣∣∣∣∣∣
z=0

6 C ′

for some constant C ′. It follows from Cauchy’s estimates or elliptic regularity that the above

are equivalent to
|J(ϕy,x)(z)|
|J(ϕy,x)(0)| 6 C1 or

|det(g)(ϕy,x(z))|
| det(g)(ϕy,x(0))| 6 C

′
1 for some constants C1 and C ′1, and

for all z ∈ B1/2(0) ∩ ϕ−1
y,x(Bδ(ϕy,x(0))/3(ϕy,x(0))). Here δ(w) is the Euclidean distance to the

boundary of ϕx(M).
Recall that on a HHR/uniform squeezing domain, there is a fixed radius within which

the KE metric is uniformly equivalent to the Euclidean metric in the deformation of the
squeezing constant. Hence the condition to be checked is implied by Condition (C).

�

Remarks Condition (C) is satisfied in the following cases. The reason is that within a
geodesic ball of fixed radius, the coefficient of the volume in the following cases does not
vary much.
(a). Strictly pseudoconvex domains with C2 boundary. In such case, vg(x) ∼ 1

σ(x)n+1 , where

σ(x) is the Euclidean distance of x to ∂Ω.
(b). Hermitian symmetric spaces in standard realization, where the vx is a rational function
of σ(x). In the case of bidisk, it is of order 1

σ2
1

1
σ2

2
, where σ1, σ2 are the Euclidean distance

to the boundary in the respective disks.
(c). Any bounded domain in Cn for which the metric is known to be of form 1

σ(z)m(log(σ(z)))n .

§5. Further remarks

5.1 In the earlier sections, we focus on the study of Carathéodory distance on bounded
domains in Cn. One may wonder if Carathéodory distance is useful for problems beyond
bounded domains. In [WY], Kwok-Kin Wong and the author study general manifolds which
universal covering has a complete Carathéodory distance. We say that a manifold is strongly
Carathéodory hyperbolic if Carathéodory distancethe is complete non-degenerate and and
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has non-degenerate infinitesimal Carathéodory metric. For example, the following result
was proved in [WY]

Theorem 4 (([WY). ) Let X be a quasi-projective manifold whose universal covering is
strongly Carathéodory hyperbolic. Then all quasi-projective subvarieties of X (including X
itself) are of log-general type and all projective subvarieties are of general type.

The result supports to the following conjecture for which the analogue for compact sub-
varieties was a conjecture of Lang.

Conjecture 1. ( Conjecture 0.5, [WY]) A quasi-projective variety X is Kobayashi hy-
perbolic if and only if all quasi-projective subvarieties of X are of log-general type and all
projective subvarieties are of general type.

Nevertheless, we need existence of enough bounded holomorphic function on the universal
covering to study geometry from the perspective of Carathéodory distance of metric. In
this aspect, we are naturally led to the classical problem of finding necessary or sufficient
conditions for the existence of a bounded holomorphic function on the universal covering of
a Kähler manifold.

5.2 The notion of the distance obtained from Carathéodory distance is in general different
from the distance obtained from integration of the infinitesemal Carathéodory metric. Even
for bounded domains in Cn, it is a delicate question when the two will be the same or quasi-
isometric, cf. [Ko]. In particular, the following problem is still not resolved.

Question 1. Is the Carathéodory distance quasi-isometric to the the distance obtained
from integration of the infinitesemal Carathéodory metric on a HHR/Uniform Squeezing
Domain?

The method used in [Y4] [Y5] for quasi-isometry of other invariant metrics cannot be
applied directly to the Carathéodory distance. Nevertheless, for this type of problems,
Schwarz Lemma such as the one given by Chen-Cheng-Lu in [CCL] may provide useful
guideline.

References

[B] Berg. G., Hyperconvexity and the Carathodory metric. Arch. Math. (Basel) 32 (1979),
189-191.

[CCL] Chen, Z. H., Cheng, S. Y. and Lu, Q, K., On the Schwarz lemma for complete Kähler
manifolds, Sci. Sinica 22 (1979), no. 11, 1238-1247.

[De] Demailly, J. P., Analytic methods in algebraic geometry, Springer-Verlag.

[Do] Donnelly, H., L2- cohomology of pseudoconvex domains with complete Kähler metric.
Michigan Math. J. 41 (1994), 433-442.

[DGZ] Deng F, Guan Q, Zhang L., Some properties of squeezing functions on bounded
domains. Pacific J Math, 257(2012), 319-341.

[GW] Greene, R. E., Wu, H., C∞ approximations of convex, subharmonic, and plurisub-
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Cl. Sci. (4) 6 (1979), no. 1, 39-68.

[WY] Wong, K.-K., Yeung, S.-K., Quasi-projective manifolds uniformized by Carathéodory
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