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Abstract The smallest topological Euler-Poincaré characteristic supported on a
smooth surface of general type is 3. In this paper, we show that such a surface
has to be a fake projective plane unless h1,0(M) = 1. Together with the classifica-
tion of fake projective planes given by Prasad and Yeung [PY], the recent work of
Cartwright and Steger [CS], and a proof of the arithmeticity of the lattices involved
in the present article, this gives a classification of such surfaces.

1. Introduction

1.1 The main purpose of this article is to prove the following result on classification
of smooth surfaces of general type with the smallest possible topological Euler-
Poincaré characteristic. The topological Euler-Poincaré characteristic, denoted by
e(M), is the same as the second Chern number c2(M) of the surface M . It is also
simply called the Euler-Poincaré characteristic or the Euler number in this paper.

Theorem 1. (a). Let M be a smooth surface of general type. Then the Euler-
Poincaré characteristic e(M) of M is at least 3.
(b). Suppose e(M) = 3. Then M = B2

C/Γ is the quotient of a complex hyperbolic
space by a torsion free lattice of PU(2, 1). Furthermore, unless h1,0(M) = 1, M is
a fake projective plane.
(c). Up to biholomorphism, there are only two examples of M with e(M) = 3 and
h1,0(M) = 1. The two examples are complex conjugate of one another.
(d). The moduli space of minimal surfaces of general type with e(M) = 3 is reduced
and consists of 102 points. 100 of such points correspond to fake projective planes
with h1,0 = 0. Two of such points correspond to surfaces with h1,0 = 1.

1.2 The main examples of smooth surfaces of general type with Euler-Poincaré
characteristic 3 are provided by fake projective planes, which are smooth surfaces
with the same Betti numbers as the projective plane but are not biholomorphic
to the projective plane. An example of fake projective plane was first constructed
by Mumford [Mu3], followed by constructions of Ishida-Kato [IK] and Keum [Ke].
Recently fake projective planes have been classified by Prasad and Yeung [PY] into
twenty-eight classes, each of which was shown to consists of at least of two fake
projective planes up to biholomorphism. Subsequently, Cartwright and Steger [CS]
showed that there were precisely 50 non-isometric fake projective planes among the
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twenty eight classes. It is known that for each fake projective plane as a Riemann-
ian manifold, it supports precisely two different conjugate complex structures (cf.
[KK]).

It is natural to ask whether fake projective planes exhaust all possibilities of
smooth surfaces of general type with Euler-Poincaré characteristic 3. In their work
[CS] to enlist all the fake projective planes in the twenty-eight classes classified
in [PY], Cartwright and Steger come up with an interesting surface with Euler-
Poincaré characteristic 3 and the first Betti number 2. The results of this article
show that fake projective planes as classified in [PY] and [CS], and the examples of
Cartwright-Steger in [CS] mentioned above, exhaust all smooth surfaces of general
type with Euler-Poincaré characteristic 3. The detailed computations are located
in the weblink provided in [CS].

1.3 The following is an outline of proof of Theorem 1. Part (a) follows from classical
results in geometry, as explained in §1. The main part of the article is in the proof of
the statement of (b) and (c). (b) and (c) are proved using combination of classical
methods from algebraic geometry as well as techniques of harmonic mappings into
appropriate Bruhat-Tits buildings. Finally, the classification of Prasad-Yeung [PY]
and Cartwright-Steger [CS] is applied to conclude the proof.

1.4 The author would like to thank Jungkai Chen, Matteo Penegini and Wing
Keung To for reading an early draft of the paper and pointing out some errors, to
thank Jiu-Kang Yu for helpful discussions, and to thank the referee for constructive
suggestions.

2. Preliminaries

2.1 Let us denote by ci = ci(M) the Chern numbers, bi = bi(M) the Betti numbers
of M and hi,j = hi,j(M) = dimCH

j(M,ΩiM ) the corresponding Hodge numbers.
c2(M) is just the Euler-Poincaré characteristic of M. For our convenience, let us
recall some standard identities.

c2 = 2b0 − 2b1 + b2(1)

1

12
(c21 + c2) = h0,0 − h1,0 + h2,0(2)

b1 = 2h1,0,(3)

b2 = 2h2,0 + h1,1,(4)

hi,j = hj.i,(5)

where the second one is the Noether formula and the third one comes from Hodge
decomposition.

For Theorem 1(a), let first M be a minimal surface of general type so that c21 > 0.
It is clear from Miyaoka-Yau inequality that c21 6 3c2. Noether’s Formula implies
that

0 <
1

12
(c21(M) + c2(M)) 6

1

3
c2(M).

It follows that e(M) = c2(M) > 3.
Suppose now that M is an arbitrary surface of general type. Let M ′ be a

minimal surface of general type obtained by contracting some −1 curves on M.
Since contracting a −1 curve decreases the Euler Poincaré characteristic by 1, we
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know that e(M) > e(M ′) > 3. In particular, if e(M) = 3, the above discussions
imply that M = M ′. This concludes the proof of Theorem 1(a).

Since the far right hand side of the above sequence of inequalities is 1, it follows
that the inequality sign 6 is actually an equality. We conclude that c21(M) = 9 =
3c2(M). It is well known that a compact complex surface M with c21(M) > 0 is
projective algebraic (cf. [BHPV], page 161). The results of Aubin [A] and Yau
[Ya] on the Calabi Conjecture in the case of negative scalar curvature implies the
existence of Kähler-Einstein metric, see also [Mi]. This in turn implies that the
metric is the standard hyperbolic metric using the fact that c21(M) = 3c2(M), see
for example the survey in [Y2], page 391. Hence M is a compact complex ball
quotient.

We summarize the observation above as follows.

Proposition 1. Let M be a smooth surface of general type. Then the Euler-
Poincaré characteristic e(M) > 3. Moreover, the equality occurs if and only if
M = B2

C/Γ is the quotient of a complex hyperbolic space by a torsion free lattice of
PU(2, 1).

2.2 The moduli space of such surfaces M with e(M) = 3 is well-known to come
with a natural scheme structure. The infinitesimal deformation of any such M in a
local Kuranishi family of deformation is given by an element in H1(M,Θ), where
Θ is the sheaf of holomorphic vector fields on M. Since any such M is a locally
Hermitian symmetric space, according to the local rigidity of Calabi and Vesentini
[CV], H1(M,Θ) = 0. It follows that the virtual dimension of any deformation space
is zero, which implies that the actual deformation space is of dimension 0. As the
dimension of the virtual deformation is the same as the dimension of the actual
deformation, we conclude that the moduli space is reduced. As the dimension is
zero, the moduli space consists of a finite number of points.

Hence to prove Theorem 1, our working assumption from this point on is that
M is a compact complex two ball quotient. From Noether’s formula (0.2),

h0,0(M)− h1,0(M) + h2,0(M) =
1

12
(c21(M) + c2(M)) = 1.

We conclude that h1,0(M) = h2,0(M). The purpose of §3-5 is to employ classical
algebraic geometric method to prove that h1,0(M) 6 2. The case h1,0(M) = 0
corresponds to fake projective plane and has been classified in [PY] and [CS]. For
the cases h1,0(M) = 1 and 2, we show that the arguments in [Ye1] and [Ye2] can
be modified to prove the arithmeticity of the lattice involved in §6, from which the
classification results in [PY] and [CS] can be applied again.

2.3 For our later discussions, let us recall the following result on the canonical line
bundle of M.

Lemma 1. The canonical line bundle KM of a smooth surface M of general type
with e(M) = 3 satisfies c21(KM ) = 9

∫
M

Θ(H
M̃

) ∧ Θ(H
M̃

), where Θ(H
M̃

) is the

curvature form of an ample line bundle H
M̃

on M̃ . H
M̃

may not descend to M but∫
M

Θ(H
M̃

) ∧Θ(H
M̃

) ∈ Z.

Proof Denote by H
M̃

the SU(2, 1)-equivariant line bundle discussed in §10.4 of

[PY] as well as in [Ko]. Let π : M̃ → M = M̃/Π be the uniformization map. On

M̃ , H
M̃

is a third root of π∗KM as an SU(2, 1) line bundle, but may not descend
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to M as a holomorphic line bundle since Π in general only lives in PU(2, 1). We
only know that H

M̃
descends as a multivalued line bundle with ambiguity lying in

Z3. However, the curvature form Θ(H
M̃

) descends as a genuine (1, 1) form on M .

Let F be a fundamental domain of M in M̃ , It follows that∫
M

Θ(H
M̃

) ∧Θ(H
M̃

) =

∫
F

Θ(H
M̃

) ∧Θ(H
M̃

) =
1

9
c1(KM ) · c1(KM ).

However, we observe from Chern number equality c21(M) = 3c2(M) and the Noether
Formula that c2(M) = 1

4 (c21(M)+ c2(M)) = 3χ(OM ). Hence c21(M) = 9χ(OM ) and∫
M

Θ(H
M̃

) ∧Θ(H
M̃

) ∈ Z. �

3. Case of irregularity > 3.

3.1 We note that for any two linearly independent holomorphic one forms ω1 and
ω2 on M, the wedge product ω1 ∧ ω2 cannot be identically zero on M . Otherwise
Castelnuovo-de Franchi Theorem implies that there is a fibration π : M → S of M
over a Riemann surface S of genus at least 2 (cf. [BPHV], page 157). Let g(S) be
the genus of S and g(Ms) be the genus of a generic fiber Ms of π. Denote by e(M)
the Euler-Poincaré characteristic of a manifold M. It follows that

(6) e(M) = e(S)e(Ms) +
∑
so

nso ,

where the sum is taken over the finite number of singular fibers Mso of π, of which
each nso = e(Mso)− e(Ms) is a non-negative integer, and is positive unless Mso is
a multiple fiber with (Mso)red nonsingular elliptic (cf. [BHPV], page 118). Hence
e(M) > (2g(S)−2)(2g(Ms)−2) > 4. This contradicts our assumption that c2(M) =
3. Hence ω1 ∧ ω2 is a non-trivial holomorphic two form on M whenever ω1 and ω2

are linearly independent.
Since ω1 ∧ ω2 6= 0, this implies that h2,0 > 2h1,0 − 3 by considering ω1 ∧ ωi

and ωi ∧ ω2, where {ωi}16i6h1,0(M) is a basis of H0(M,Ω). Since we know that

h1,0(M) = h2,0(M), we conclude that h1,0(M) = h2,0(M) 6 3.

3.2 The case of h1,0(M) = h2,0(M) = 3 was ruled out from the classification of
Hacon and Pardini ([HP], Theorem 2.2, see also [CCM]).

Denote by A = A(M) the Albanese variety of M and α : M → A the Albanese
mapping. We are going to eliminate in the next section the case of h1,0 = 2. The
case of h1,0 = 1 will be discussed in §5-6.

4. The case of irregularity 2

4.1 This section can be skipped without affecting the the rest of the paper. It has
been our original hope to eliminate the case h1,0 = 2 completely by classical alge-
braic geometric method. It turns out that we only succeeded in obtaining a weaker
statement stated as Proposition 2 below using the conventional methods. The
case would finally be eliminated using methods of harmonic maps into Bruhat-Tits
buildings in §6. The purpose here to record how far we can push using conventional
methods.

Proposition 2. Let M is a complex two ball quotient with e(M) = 3. Assume
that KM is numerically 3H

M̃
as a line bundle and that the Albanese map does not

contract any divisor on M . Then h1,0 6= 2.
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Proof We assume for the sake of proof by contradiction that h1,0(M) = 2.
Applying equation (6) and the argument of the first paragraph of §3, we conclude

that α(M) cannot be an algebraic curve. Hence we conclude that α(M) is of
complex dimension two and hence α(M) = A. We claim that A is a simple Abelian
surface. Otherwise from Poincaré Complete Reducibility Theorem, there exists
an elliptic curve C in A and the quotient subvariety A/C is another an elliptic
curve. Let p : A(M) → A/C be the holomorphic projection. p ◦ α gives rise to a
fibration of M over an elliptic curve. From hyperbolicity of M again, we know that
the fibers of the fibration are hyperbolic. Instead of analyzing the problem as in
previous section, we refer to the result of Zucconi [Z] on the classification of surface
of Albanese general type admitting an irrational pencil of curves to rule out this
situation. Note that the pencil cannot be isotrivial from the argument in the first
paragraph of §3 again.

4.2 Let R =
∑n
i=1 aiRi be the ramification divisor of α, where Ri are reduced and

irreducible curves and ai are positive integers. In particular, ai + 1 is the local
branching order at a generic point of Ri. We have

(7) 9 = KM ·KM = KM · (α∗KA +R) =

n∑
j=1

aiKM ·Ri.

Each Ri is cohomologous to biHM + Ti as a rational linear combination of ele-
ments in the Neron-Severi group modulo torsion, where Ti is a (1, 1)-class orthog-
onal to HM with respect to the quadratic form obtained from intersection pairing.
From Hodge Index Theorem (cf. [BHPV], Cor 2.14, page 142), we conclude that
Ti has negative self-intersection unless Ti is cohomologous to 0. Since both KM

and HM represent classes in H2(M,Z) and hence lie in the Neron-Severi group of
M, the same is true for Ti. It follows that Ti is an element in the Neron-Severi
group. Clearly by taking intersections with H, we see that bi is a rational number.
As (3HM ) · (3HM ) = KM · KM = 9, we conclude that HM · HM = 1 and hence
bi = Ri ·HM/HM ·HM are positive integers.

Computing KM ·HM , we conclude that

(8) 3 = KM ·HM =

n∑
j=1

biai.

Since ai and bi are both positive integers, the followings are all the possibilities
for n and (ai, bi), i = 1, · · ·n.

Cases n (ai, bi)
I 3 (1, 1), (1, 1), (1, 1)
II 2 (1, 1), (2, 1)
III 2 (1, 1), (1, 2),
IV 1 (3, 1)
V 1 (1, 3)

Furthermore, since

9 = KM ·KM = (
∑
i

aibiHi + aiTi)
2 = (

∑
i

aibi)
2 + (

∑
i

aiTi) · (
∑
i

aiTi).
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It follows from equation (8) that (
∑
i aiTi) · (

∑
i aiTi) = 0. Again, according to

Hodge Index Theorem it follows that the following divisor is trivial,

(9) T :=
∑
i

aiTi = 0.

We introduce some notations. For a curve C, denote by e(C) and χ(C) the topo-
logical Euler number and the Euler number of C as an embedded curve respectively.

The two notions are the same if C is smooth. Let ν : C̃ → C be the normalization
of C, we denote (cf. [Be], page 96)

εC := e(C̃)− e(C) = h0(ν∗CC̃/CC) =
∑
x∈C

dimC(ν∗CC̃/CC),(10)

δC :=
∑
x∈C

dimC(ν∗OC̃/OC)x.

For each Ri, it follows from Adjunction formula that

(11) 3bi+b2i +Ti ·Ti = KM ·Ri+Ri ·Ri = −χ(Ri) = 2(gRi−1) = 2(gR̃i
+δRi−1).

Denote Si = α(Ri). From earlier discussions, we may assume that Si is an hyper-
bolic curve and hence genus of its normalization is at least 2. Proposition 2 now
follows from Proposition 3 below.

Proposition 3. With the assumption of Proposition 2, none of the cases I-V can
occur.

Proof Since the proof is given by detailed case by case analysis, let us first explain
briefly the idea behind our argument. The argument is based on the following
three facts, (i) from Lemma 2 and 3, none of the components of the ramification
divisor for the albanese map α : M → A(M) is collapsed to a point by α, (ii)
c2(M) = 3, c21(M) = 9, c2(A(M)) = c21(A(M)) = 0 are all small non-negative
integers, and (iii) all divisors on M have genus at least 2. As a result, the possible
set of branching divisors is very restricted. The situation will be simpler if the
divisors involved are smooth. However, a singularity in a divisor contributes to the
genus formula as in identity (11) below, which leads to further constraints on the
numerical data. In the end, the numerical conditions, some detailed analysis near
branching divisors in the favor of Weierstrass Preparation Theorem, and Hurwitz
Formula finally lead to contradiction for each of the above cases. Though it may
take some work to go through all the above five cases, the basic idea of proof is
already presented in the proof of Case IV below. The proof of the other cases are
some technical improvements.

4.3 We need the following lemma for local analysis of the mappings around the
branching locus. Parts (a) and (b) deal with branching behavior near points which
are either smooth or in simple normal crossings. As we will see, the numerical con-
straints on the Chern numbers impose restrictions on singularities, and (a) and (b)
are sufficient for several of the above cases. For the remaining cases, the conclusion
in case (c) is sufficient after applying more detailed analysis.

Lemma 2. (a). Suppose R is a local irreducible component of the ramification
divisor of α. Let m be the ramification index of α along R. Suppose p ∈ R is a
smooth point of R at which the local index of α is greater than m. Then locally
p ∈ R1, where R1 is another local ramification divisor intersecting R.
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(b) Suppose R1 and R2 are the only two branches in simple normal crossing at a
point p and the branching order of α around R1 and R2 are m1 and m2 respectively.
Then the local degree d1 of α|R1 at p is at least m2, the local degree d2 of α|R2 is
at least m1, and the local index of p is at least m1m2.
(c). In general, if p is the intersection of at least two local components R1, . . . , Rl
of the ramification divisor. Then the degree of α|R is at least 2.

Proof Note that R1 and R may belong to the same global irreducible component
of the ramification locus. The whole problem is local. We choose an appropriate
local holomorphic coordinate system (z, w) in a neighborhood Up of p, and a local
holomorphic coordinate system (u, v) of α(p), such that R is defined locally by
z = 0, α(R) is locally defined by u = 0, and the mapping α|Up is given by

u = zmf(z, w)

v = g(z, w)

for some local holomorphic functions f and g defined on Up. A direct computation
shows that

du = (mzm−1f + zmfz)dz + zmfwdw,

dv = gzdz + gwdw,

du ∧ dv = zm−1[(mf + zfz)gw − zfwgz]dz ∧ dw
Letting h(z, w) := (mf + zfz)gw − zfwgz, the above shows that the Jacobian of
α has constant vanishing order along R ∩ Up if and only if h(z, w) is a non-zero
constant c on Up. In particular, if the local index at p is larger than m, h(z, w) = 0
gives rise to another local component R1 of the ramification locus. This leads to
the conclusion in (a).

For (b), in the above discussion, R2 has to be given locally by h(z, w) = 0 from
assumption. h(z, w) is not identically zero on z = 0. Along z = 0, h(0, w) =
mf(0, w)gw(0, w). Hence the vanishing order of h(z, w) is bounded from below by
the vanishing order of gw(0, w). We may expand h by Weierstrass Preparation
Theorem (or by Taylor expansion) (cf. [GH])

h(z, w) = ψ(z, w)(wd + a1(z)wd−1 + · · ·+ ad(z))

where ψ(0, 0) 6= 0 and ai(0) = 0 for i = 1, . . . , d.
Since R2 is defined by h(z, w) = 0 and at generic point of h(z, w) = 0, the

Jacobian J (α) is precisely given by the vanishing of h(z, w) at z 6= 0. Note that α
does not contract in the direction tangential to R2 at the intersection {z = zo}∩R2

for a generic z0. h(z, w) has vanishing order m2 along a generic point of R2. Hence
we may write h(z, w) = (l(z, w))m2 at a generic point of Up, so that R2 is defined
by l(z, w) = 0 set theoretically. At z = 0, the set R2 is defined by l(0, w) = 0
(which coincides with w = 0 when z = 0.) Hence by semi-continuity, the vanishing
order of α|Up∩{z=0} is at least m2.

Reversing the roles of R1 and R2, we see that the same conclusion holds for R2.
Moreover, the vanishing order of the Jacobian J(α) at (z, w) = (0, 0) is bounded
from below by the corresponding one from zm1wm2 .

For (c), the mapping around p can be described in general by u = f(z, w), v =
g(z, w) for some holomorphic coordinates z and w. Then du ∧ dv = (fzgw −
fwgz)dz ∧ dw. Suppose we can factor H := (fzgw − fwgz) into irreducible poly-
nomials Hi, 1 6 l, where l > 2, such that H1 = 0 (respectively H2 = 0) gives rise
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to R1 (respectively R2). Changing the coordinates if necessary, we may assume
that H1, H2 do not vanish identically along w-axis. From Weierstrass Preparation
Theorem, we may consider without loss of generality that H1, H2 are Weierstrass
polynomials in w in a neighborhood of p = (0, 0). Using Weierstrass Division the-
orem, we may write near (0, 0), H2 = A(z, w)H1 + B(z, w), where B(z, w) is a
Weierstraass polynomials of degree less than that of H1. (cf. [GH]). B(z, w) is not
a constant, for otherwise the constant is 0 and there is only one irreducible com-
ponent through p. Hence restricting to H1 = 0, dα has extra vanishing order at p
coming from the contribution of H2.

4.4 We are now going to eliminate the cases I-V one by one.

Case IV: a = 3 and b = 1. Since there is only one component R = R1 in
∑
i aiTi,

equation (9) implies that T = 0 and R = H. It follows from equation (11) that

g(R̃) + δ(R)− 1 = 2. From hyperbolicity of R, we have the following two subcases,

(i), g(R̃) = 3, δ(R) = 0 and hence R is smooth with R̃ ∼= R; and

(ii), g(R̃) = 2, δ(R) = 1
In subcase (i), R is a smooth curve and has no self-intersection. According to

the previous lemma, the local index of α is equal to 4 everywhere along R. The
mapping α|M−R hence has local index 4 everywhere on M −R. Considering Euler
number by cell decomposition according to S and A− S, we conclude that

3 = e(M) = 4(e(A)− e(S)) + e(R) = −4ce(S)− (3 + b) · b.
The right hand side is even and we reach a contradiction. Note that if there is an
irreducible component Ro of α−1(S), Ro should have trivial intersection with R,
otherwise there will be extra local index of α at the intersection point, contradicting
Lemma 2a.

Consider now subcase (ii). In such case, there is a simple normal crossing of R
at say, q ∈ R. Let Ra and Rb be local branches of R∩Uq for a small neighborhood

of q. Since S is hyperbolic from earlier discussions, it follows that the genus g(S̃)
of the normalization of S is at least 2. As S is covered by R, it follows that there

is a holomorphic covering α̃ : R̃ → S̃. Hence we conclude that g(S̃) = 2 from
Riemann-Hurwitz Formula, and that α̃ is actually a biholomorphism. In particular,
α|Uq∩R−{q} is one to one in a punctured neighborhood of Uq−{q} of q. On the other
hand, in the notation of Lemma 2, we see that the mapping α|R : R→ S has degree
d ≥ 2 on Uq, ramifying at q. This clearly contradicts the fact that α|Uq∩R−{q} is
injective. The contradiction rules out Case IV.

Case III: there are two components R1 and R2 in the ramification locus. Let
Si = α(Ri) for i = 1, 2. For R1, a1 = 1 and b1 = 1. For R2, a2 = 1 and b2 = 2.
From equation (11), we conclude that

g(R̃1) + δ(R1) = 3 +
1

2
T1 · T1(12)

g(R̃2) + δ(R2) = 6 +
1

2
T2 · T2.(13)

We claim that T1 · T1 = 0. Assume on the contrary that T1 · T1 6= 0. From

equation (12), as g(R̃1) > 2 from hyperbolicity, and δ(R1) > 0, the left hand side
is at least 2. Hence as T1 · T1 6= 0, it is a negative number and the only possibility
is T1 ·T1 = −2 to make sure that the left hand side is at least 2, which also leads to
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g(R̃1) = 2 and δ(R1) = 0. In such case R̃1 = R1. From equation (9), we know that
a1T1 +a2T2 = 0 and hence T2 ·T2 = T1 ·T1 = −2. Hence equation (10) implies that

g(R̃2) + δ(R2) = 5 and χ(R2) = 8. Furthermore, T1 · T2 = −T1 · T1 = 2. It follows
that R1 ·R2 = b1 · b2 + T1 · T2 = 4. Si is a curve on A. Since we assume that there
is no elliptic curve on A, it follows that the genus g(S̃i) > 2 and χ(Si) 6 −2. Since

S1 is covered by R1, for which the normalization R̃1 has genus 2, it follows from

Riemann-Hurwitz Formula that g(S̃1) = 2 as well, and R̃1
∼= S̃1 following from the

argument of Case V. In particular, α|R1
induces a map α̃ : R1 → S̃1 which has to

be a biholomorphism since R̃1 and S̃1 have the same genus. Note that R1 ·R2 > 0
from earlier discussions and hence they do intersect. On the other hand, as R1

is smooth, we know from Lemma 2 that at p ∈ R1 ∩ R2, the vanishing order of
p ∈ R1 ∩R2 is d, which is at least 2, the local index of α at a generic point of R2.
This implies that α|R1 has local degree d > 2 in a neighborhood of p, contradicting

the earlier conclusion that α̃|R1
: R1 → R̃2 is a biholomorphism. Hence we conclude

that T1 · T1 = 0. The claim is proved.
It follows from the claim and the Signature Theorem that T1 = 0 = T2.

Lemma 3. In the case of g(R̃1) + δ(R1) = 3, we conclude that δ(R1) = 0 and R1

is smooth with g(R̃1) = 3.

Proof Assume on the contrary that δ(R1) > 0. The only possibility is δ(R1) = 1 and

g(R̃1) = 2. In particular, let q be the singularity, where since δ = 1, there is simple

normal crossing of R1 at q. The same reason as above implies that α̃ : R̃1 → S̃
is a biholomorphism and hence α|R1

is of degree 1 on R1. The above argument
making use of Lemma 2 implies that R1 ∩ R2 occurs at the single point q. Recall
that there are two local branches R1a and R1b of R1 at q. Lemma 2 applied to R1a

and R2 again implies that the local degree of α|R1a in a neighborhood of q is d > 2,

contradicting again that α̃|R̃1
: R̃1 → S̃1 is a biholomorphism. Hence δ(R1) = 0,

concluding the proof of the lemma.

Since H ·H = 1 on M, we know that R1 ·R2 = 2. Hence R1 and R2 have positive

intersection. Let q ∈ R1 ∩R2. As α|R1
: R1 → S1 is a covering map and g(R̃1) = 3

from Lemma 2, we conclude easily that the followings are the only possibilities,

(i) g(S̃1) = 3, and

(ii) g(S̃1) = 2.
In Subcase (i), α|R1 has degree 1 at a generic point of R1 and the induced map

α̃ : R̃→ S̃ is a biholomorphism. However, according to Lemma 2(c), at q ∈ R1∩R2,
α|R1

has local degree at least 2 at a generic point of a neighborhood Uq of q. This
contradicts the conclusion above that α̃ is an biholomorphism.

In Subcase (ii), α̃ : R̃1 → S̃1 is a holomorphic map. Since S̃ has genus 2
and α̃ has genus 3, the Riemann-Hurwitz Formula implies that α|R̃1

is an unram-
ified holomorphic covering of degree 2. On the other hand, recall that there exists
q ∈ R1 ∩R2, and α|Uq∩R1

has local degree at least 2 at a generic point of Uq ∩R1

according to Lemma 2(c). It follows that d = 2. In fact, if we choose the neighbor-
hood Uq of q sufficiently small, α|Uq∩R1−{q} is a two to one mapping everywhere,

but α|Uq∩R1 is ramified at q. The mapping α|Uq∩R1 is given by x→ x2 in terms of

suitable holomorphic coordinates. This clearly contradicts the fact that α̃ : R̃1 → S̃
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is an unramified mapping. Again, as R1 is smooth, R̃1 = R1. The contradiction
eliminates Case III.

Case II: In this case, a1 = 1, b1 = 1 for R1, and a2 = 2 and b2 = 1 for R2. From
equation (9), we conclude that

g(R̃i) + δ(Ri) = 3 +
1

2
Ti · Ti

for i = 1, 2.
Assume that T1 · T1 6= 0. Then a1T1 + a2T2 = 0 implies that T2 · T2 6= 0 as

well. Hyperbolicity implies that the left hand side of the above identity is at least
2. Hence we conclude for i = 1, 2 that Ti · Ti = −2, g(Ri) = 2 and δ(Ri) = 0. This
however contradicts T1 · T1 = (a2a1 )2T2 · T2 = 4T2 · T2.

We conclude that T1 · T1 = 0 and hence T2 · T2 = 0 as well. Hence Ti = 0 from
Signature Theorem for each i = 1, 2. From Adjunction Formula, g(R̃i) + δ(Ri) =
1
2 (3+ bi)bi+1. Hence g(R̃i)+δ(Ri) = 3 for i = 1, 2. Lemma 3 allows us to conclude

that δ(Ri) = 0, Ri is smooth and g(Ri) = g(R̃i) = 3 for i = 1, 2.
Let us now apply the argument in the last paragraph of Case III to R2. In

particular, we have two subcases (i) g(S̃2) = 3, and (ii) g(S̃2) = 2. The same
argument as in the proof for Case III implies that none of the subcases can occur.
We conclude that Case II cannot occur.

Case I: there are three irreducible components R1, R2, R3 in the ramification locus
with ai = 1 = bi for i = 1, 2, 3. We write Ri = HM + Ti, which satisfies

(14) T1 + T2 + T3 = 0

from Signature Theorem.
Assume that one of the Ti 6= 0, say, T1 6= 0 so that T1 · T1 < 0 according

to the Signature Theorem. Then equation (12) is still valid, which implies that

T1 ·T1 = −2, g(R̃1) = 2 and δ(R1) = 0. Equation (14) shows that at least one of T2

and T3 is non-trivial. Suppose T2 6= 0. The same argument as above implies that

T2 · T2 = −2, g(R̃2) = 2 and δ(R2) = 0. Hence R1 and R2 are both smooth.
Note that R1 ·R2 = 1 +T1 ·T2 > 1 > 0. Hence R1 ∩R2 6= ∅. Let q ∈ R1 ∩R2. As

R2 is smooth, Lemma 2(c) implies that the local degree of α|R2∩Uq
is d > 2. This

clearly contradicts the earlier conclusion that deg(α|R1
) = 1.

Hence we conclude that Ti = 0 for each i. In such case, arguments in the previous

cases imply that g(R̃i) + δ(Ri) = 3. Lemma 3 implies immediately that δ(Ri) = 0
for each i. As in Case II, there are two subcases to consider again, depending on

whether g(S̃i) = 3 or g(S̃i) = 2. In either subcase, the argument as in Case II leads
to a contradiction. Hence Case V can be eliminated as well.

Case V: In this case, a = 1 and b = 3. Since there is only one irreducible component
R = R1 in

∑
i aiTi, equation (8) implies that T = 0 and R = bH = 3H. As

a = 1, suppose U is a sufficiently small neighborhood of a generic point x ∈ R,
α|U : U → α(U) is locally a two fold ramified covering branching along a single
divisor S ∩ α(U), where S := α(R), though we do not have control on the degree
of α.

Consider first the case that R is smooth. Then from Lemma 2(a), the ramifica-
tion index of α along R is constantly 2.
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We claim that if Ro is a component in α−1(S) different from R, R ∩ Ro = ∅.
Suppose p ∈ R ∩ Ro. Note that the degree of α along a generic point of Ro is 1.
Assume first that R and Ro meet in normal crossing at p. Let E be a generic curve
on A intersecting S transversally at α(p), such that tangent vectors to S and E at
α(p) are linearly independent, and there is a component D of α−1(E) such that α|D
is non-degenerate at p. v := TpD is a linear combination of R and Ro, and α∗(v)
is thus mapped to a vector in TpS as α is smooth and α(R) = α(Ro) = S, which
contradicts the fact that α∗v is a non-trivial tangent vector in Tα(p)E transversal
to R. In case that R and Ro meet but do not meet transversally, we consider
embedded resolution of R ∩ Ro by repeated blowing ups, and similar argument
leads to a contradiction. The claim is proved.

From the claim the restriction of α to such Ro is unramified everywhere. Since
e(A) = 0 and an unramified cover of A does not contribute to change in Euler
number, the only non-trivial contributions to change in Euler number in applying
topological Hurwitz formula occur only along the ramification divisor, which gives
rise to

(15) 3 = e(M) = −(2c)e(S) + e(R),

where c is the degree of α|R : R → S. Assume that R is smooth. Then the right
hand side is 2ce(S)− (3 + b) · b, an even number and we reach a contradiction.

Hence the case that R is smooth can be ruled out and we may assume that R is
singular. Let S(R) be the set of singular points of R. We are going to consider the
following subcases,
(i), there exists q ∈ S(R) such that R∩Uq has more than two irreducible components
for a sufficiently small neighborhood Uq of q, and
(ii), for all q ∈ Sq, R ∩ Uq consists of only one irreducible component.

Let us consider first subcase (ii). In this case, since there is only one local
component of R ∩ Uq for each singularity q of R, Lemma 2(a) still implies that
the ramification index of α along R is constantly 2 and hence formula (15) applies.

Moreover, the normalization replaces each singular point by another point on R̃,
as explained in [G], Chapter 2. It means that dimC(ν∗CR̃/CR) = 0 and hence

e(R̃) = e(R) according to equation (11). Hence equation (15) still leads to a
contradiction as the polarities of the left and right hand sides are different.

Let us now consider subcase (i). Let S1 is a local component of S at a singular
point p ∈ S(R). Let R1 be a local component of R ∩ α−1(S1) on which α ramifies,
and R1o a local component of R ∩ α−1(S1) on which α does not ramify. Then
arguments of the claim above still implies that R1 ∩R1o = ∅. Hence equation (15)
still holds.

According to equations (9), (11), Riemann-Hurwitz formula and (15), we have

10 = g(R̃) + δ(R)(16)

e(R) = 2− 2g(R̃)− ε(R)(17)

e(S) = 2− 2g(S̃)− ε(S)(18)

2− 2g(R̃) = c(2− 2g(S̃))− r(19)

3 = −2c(2− 2g(S̃)− ε(S)) + 2− 2g(R̃)− ε(R)(20)
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where r :=
∑
i∈R̃(ri − 1), and ri is the local index of α̃ : R̃ → S̃ induced from

α|R : R → S. Since ε(R̃) 6 δ(R̃) (cf. [Be], page 98), we conclude from equations
(20) and (16) that

2c(2g(S̃)− 2 + ε(S)) = 1 + 2g(R̃) + ε(R)

6 1 + 2g(R̃) + δ(R)

= 11 + g(R̃)

Assume first that 2g(S)− 2 + ε > 3. The above inequality then implies that

(21) c 6
1

6
(11 + g(R̃)) =

1

6
(11 + 10− δ(R̃)) 6

10

3
.

Hence c 6 3. On the other hand, we are in subcase (ii) so that there exists at
least a q ∈ S(R) at which there are two local branches Ra and Rb of R ∩ Uq
passing through q. From Lemma 2, we know that the branching along R2 gives
rise to an extra vanishing order to q compared to x ∈ Uq − {q}. This implies that
α|Ra∩Uq

: Ra ∩ Uq → S is ramified at q, to order of at least two. Hence the
local degree of α|Ra∩Uq is at least 2. The same argument applied to Rb implies
that the local degree of α|Rb∩Uq is at least 2 as well. Hence for a generic point of

y ∈ S ∩α(Uq)−{α(q)}, the cardinality of α−1(y) is at least 4. This contradicts the

earlier conclusion that the degree of α̃ : R̃→ S̃ is c 6 3.
Hence we need only to consider the case that ε(S) = 0 so that S is smooth, and

g(S̃) = 2. In this case, equation (20) becomes

(22) c 6
1

4
(11 + g(R̃)) =

1

4
(11 + 10− δ(R̃)) 6 5.

From equation (19), we conclude that g(R̃) 6 6. Substituting to equation (22),
we conclude that c 6 1

4 (17) and hence c 6 4. On the other hand, since we are in
subcase (ii), there exists q ∈ S(R) lying in the intersection of local branches of R,
and the discussions in the last paragraph implies that c > 4. Hence we conclude that

c = 4. Equation (19) with r = 0 implies that g(R̃) 6 5. On the other hand, the first

inequality in (22) then implies that g(R̃) > 5. Hence g(R̃) = 5, and α̃ : R̃→ S̃ ∼= S

is an unramified covering of order 4. As the mapping α̃ : R̃ → S is unramified,
there exists τ > 0 such that for every point y ∈ S, the mutual distance between

any of the four points of α̃−1(y) is at least τ with respect to Bergman metric on R̃,

from compactness of S̃ and R̃. However for points y ∈ α(Uq)− {q}, the two points
xy1, xy2 in the set (α|Uq∩Ra)−1(y) get arbitrarily close to each other as y → q. As

the normalization map ν : R̃ → R is continuous and proper without collapsing
any subvarieties, it is clear that the distance between ν−1(xy1) and ν−1(xy2) gets
arbitrarily close to 0 as y → q. This contradicts the earlier conclusion that the
distance has to be at least τ. Hence subcase (ii) does not occur as well and Case V
is ruled out.

In conclusion, none of the cases I to V can occur. Proposition 3 and hence
Proposition 2 are proved.

5. Example of M with irregularity 1 and e(M) = 3

5.1 In trying to enumerate the set of all fake projective planes in the class C11

according to [PY], Cartwright and Steger [CS] came across a torsion free lattice
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of Euler-Poincaré characteristic 3 and h1,0(M) = 1. This is surprising since before
their work, it was generally expected that smooth surfaces of general type with
c2 = 3 were fake projective planes. To describe the example, we need to explain
the scheme of classification in [PY] briefly. We will refer the readers to [PY] for all
the unexplained notations in the following discussions.

An arithmetic lattice Λ for PU(2, 1) is described as follows (cf. [PY]). We refer
the readers to [PY] for all the unexplained notations. Let k be a totally real number
field. Let ` be a totally imaginary quadratic extension of k. Let D be a division
algebra with center ` of degree 3 equipped with an involution σ of second kind, such
that for the hermitian form h0 on D defined by h0(x, y) = σ(x)y, the group SU(h0)
is isotropic at vo, and is anisotropic at every other real place of k. For x ∈ D×, let
Int(x) denote the automorphism z 7→ xzx−1 of D. Let Dσ = {z ∈ D |σ(z) = z}.
Observe that for all x ∈ Dσ, Int(x) · σ is again an involution of D of the second
kind, and any involution of D of the second kind is of this form. Now for x ∈ Dσ,
given an hermitian form h′ on D with respect to the involution Int(x) · σ, the
form h = x−1h′ is a hermitian form on D with respect to σ, and SU(h′) = SU(h).
Therefore it suffices to work just with the involution σ, and to consider all hermitian
forms h on D, with respect to σ, of determinant 1, such that the group SU(h) is
isotropic at vo, and is anisotropic at all other real places of k. Let h be such a
hermitian form. Then h(x, y) = σ(x)ay, for some a ∈ Dσ. The determinant of h
is Nrd(a) modulo N`/k(`×). As the elements of N`/k(`×) are positive at all real
places of k, we see that the signatures of h and h0 are equal at every real place of k,
which leads to the isometry between the hermitian forms h and h0. Hence, SU(h)
is k-isomorphic to SU(h0). Thus D determines a unique k-form G of SU(2, 1), up
to a k-isomorphism, namely SU(h0), with the desired behavior at the real places of
k. The group G(k) of k-rational points of this G is

G(k) = {z ∈ D× | zσ(z) = 1 and Nrd(z) = 1}.
Let P = (Pv)v∈Vf

be a coherent collection of parahoric subgroups Pv for each
place v ∈ Vf , the set of all finite places of k, chosen as in [PY] (see also the
Addendum). In [PY], the set of all possible arithmetic lattices Γ with e(B2

C/Γ) = 3
was classified into a small number of classes. Each of these classes determines a
unique principal arithmetic subgroup Λ (= G(k)∩

∏
v∈Vf

Pv), whose normalizer in

G(kvo) is denoted by Γ. Each Λ determines a class of fake projective planes with
fundamental group given by a lattice Π of PU(2, 1), where Π is an element in

AΛ = {Π < Γ : [Γ : Π] =
3

χ(Γ)
, |Π/[Π,Π]| <∞, and Π is torsion-free}

It follows that from the work of [PY] that there are twenty-eight distinct set
{k, `,G, (Pv)v∈Vf

} which can support fake projective planes. Five more classes
which may contain smooth surfaces of Euler number 3 are listed in [PY] but are
not expected to support fake projective planes. The latter was confirmed by [CS]
which also shows that there is precisely one class containing Γ with e(B2

C/Γ) = 3
and h1,0(B2

C/Γ) = 1, and there is only one such Γ. The defining number fields

(k, `) for the example of h1,0(M) = 1 found in [CS] are given by k = Q(
√

3) and
` = Q(ζ12), the cyclotomic field associated to the 12th root of unity. The pair of
number fields is denoted by C11 in [PY]. The division algebra in the definition of
the lattice is chosen to be D = `. There is a maximal arithmetic lattice Γ defined
over C11 which may contain a torsion free lattice of Euler number 3 as explained in
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page §8.2 of [PY]. It follows from the volume formula of Prasad [P], (see the table
on page 354 of [PY]), that orbifold characteristic e(B2

C/Γ) = 1/288. Cartwright and
Steger showed in [CS] that indeed a torsion-free subgroup Γ of index 864 existed in
Γ. Moreover, Γ is in fact a congruence subgroup of Γ. This is obtained by writing
down explicitly a set of generators for Γ, from which a torsion-free subgroup of
index 864 is found.

From explicit computation, Cartwright and Steger verify that the first Betti
number of B2

C/Γ is 2.
In the next section, we will sketch a proof that the example constructed by

Cartwright and Steger is unique in the sense that the fundamental group of any
such example has to be conjugate to the one constructed by Cartwright and Steger.

6. Classification of M with e(M) = 3

6.1 In this section, we approach the remaining cases, h1,0 = 1 and 2, by a method
very different from §4. It is a modification of the approach developed in [Kl], [Ye1],
[PY] and [CS] for the classification of fake projective planes. Before we go to the
actual proof, we would like to outline the principle involved and the idea of proof.

Here are the main steps, working under the assumption that the smooth surface
M satisfies the conditions that KM ·KM = 9.
Step 1: To show that M is a complex two ball quotient B2

C/Γ, where Γ is a torsion-
free lattice in PU(2, 1).
Step 2: To show that the lattice Γ is an arithmetic lattice in PU(2, 1).
Step 3: To classify all possible torsion-free arithmetic lattices Γ for which the
corresponding M satisfies the topological condition above.

Step 1 was already achieved in §2. Step 2 is the key step in this section and is
a modification of the argument used in [Ye1]. Step 3 has already been achieved by
the results in [PY] and [CS], since the setting of [PY] actually aims at classification
of all torsion-free arithmetic lattices in PU(2, 1) with Euler number 3. As explained
in §5, it is shown in [PY] and [CS] that among all such arithmetic lattices, there is
only one lattice with h1,0 = 1. All the others have h1,0 = 0 and are fake projective
planes.

6.2 The following is the result for Step 2.

Proposition 4. Let M = B2
C/Γ be a smooth compact complex two ball quotient

with e(M) = 3. Then Γ an arithmetic lattice.

Proof The structure of proof will be similar to the approach we took in [Ye1],
which was originally designed for a lattice corresponding to a fake projective plane.
In [Ye1], we need the assumptions that the Picard number is 1 and h1,0 = 0.
The argument of the original article of [Ye1] and its corrections in the erratum
was presented in a self-contained and coherent way in [Ye2], stated as Theorem
7 in [Ye2]. For Proposition 4, M = B2

C/Γ is a torsion free compact complex ball
quotient with e(M) = 3. Comparing to the conditions required for the results in
[Ye1] or [Ye2], the only modification needed is that the Picard number may not be
equal to 1.

Before we go to the actual places of [Ye2] where modification is needed, we would
like to outline the main idea of proof.
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A result of Weil tells us that any cocompact lattice Γ of PU(2, 1) is locally rigid,
from which it follows that Γ can be defined over a number field, that is, there
exists an injective homomorphism ρ : Γ → G(k), G an algebraic group defined
over a number field k with a Archimedean place vo such that G(kvo) ∼= PU(2, 1).
We say that Γ is integral if there exists a subgroup Γ′ of finite index in Γ so that
ρ(Γ′) ⊂ G(Ok). The details of the above can be found in §1 of [Ye1].

6.3 As in the proof of [Ye1], [Ye2], there are two main steps for Step 2 above.

Step 2A, to prove that Γ is integral, and
Step 2B, to prove an analogue of archimedean superrigidity as in §4.7 of [Ye2], in
the sense that there is ρ as above satisfying the condition that G(kv) is compact
for all v 6= vo.

Let us first give an overview of the proofs of Step 2A and Step 2B before we
work on the details.

Step 2A is a modification of the proof of Integrality in §4.4 and §4.5 of [Ye2] (§2-4
of [Ye1]). For the sake of proof by contradiction, assume that Γ is not integral so
that there exists for a finite place v a non-trivial unbounded representation ρv : Γ→
G(kv). Then there exists a faithful energy minimizing ρv-equivariant harmonic map

f : M̃ → X, the Bruhat-Tits building associated to G(kv), as explained in the first
two paragraphs of §4.4 in [Ye2], using a result of Gromov and Schoen. The Bruhat-
Tits building is either of rank 1 or 2, from which the pull back of the differentials
of the affine coordinate functions on an apartment by the harmonic map leads to
harmonic forms on a finite sheeted cover M1, namely a spectral covering, of M.
The covering group is given by W 1, a subgroup of the Weyl group associated to
the root system of G(kv). Bochner formula implies the existence of non-trivial
holomorphic one forms ω on M1, from which we construct a non-trivial Albanese
map associated to ω’s from A1 to an abelian variety AlbW 1,ω

, to be explained in
more details below. The key point of the argument is to use properties of the
Albanese map, its relation to the original harmonic map into the buildings and the
geometry of the Bruhat-Tits building to prove that M1 is an unramified covering
of M, from which we conclude a contradiction as explained in [Ye1] or page 406 of
[Ye2].

For Step 2B, the idea is a modification of §4.7 of [Ye2] (§5 of [Ye1]). Let
vi, i = 2, . . . , n be the other Archimedean places of k so that we may consider
Rk/Q(G)(R) = G(kvo) × G(kv2) × · · ·G(kvn). From the type of Lie algebra and a
result of Simpson on complex variation of Hodge structure, we conclude that G(kvi)
for i > 2 is either PU(2, 1) or PU(3). The key point is to rule out the possibility
that G(kvi) = PU(2, 1) for some i > 2. Assume that such an i exists. It follows

that there exists a Γ-equivariant harmonic map Φ from M̃ = B2
C to B2

C, the latter
corresponding to the symmetric space associated to G(kvi), i > 2. Bochner type
argument implies that Φ gives rise to a holomorphic mapping. The idea then is to
show that Φ has no ramification divisor and hence is biholomorphic, making use
of c1(M)2 = 9. This would then lead to a contradiction as in §4.7 of [Ye2], using
the fact that the homomorphism induced by conjugation corresponding to different
embeddings of k in C is not even continuous.

To carry out the scheme of proof of [Ye2] in our situation, we need to get rid
of the use of Picard number 1 in both steps 2A and 2B above. For Step 2A, this
is achieved by Lemma 4 below and the two paragraphs near the end of 6.4, which
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will be used in the proof of Step 2A in [Ye2] to replace the restriction on the Picard
number 1. For Step 2B, we get rid of Picard number 1 by a more skillful use of the
fact that KM ·KM = 9, using an argument related to Hurwitz Formula.

6.4 In this subsection, we will provide a more detailed exposition of Step 2A par-
allel to the discussions in [Ye1] and [Ye2]. We will also provide the details of the
modification required for our case when it is needed.

Lemma 4. Let V be a proper algebraic subvariety in a compact complex ball quo-
tient M . Let i : V →M be the embedding. Let π1(V ) be the fundamental group of
V . Then i∗(π1(V )) ⊂ π1(M) is non-trivial.

Proof Suppose on the contrary that i∗(π1(V )) ⊂ π1(M) is trivial. Let p : M̃ →M
be the universal covering map. Let Vo be a connected component of p−1(V ). The
restriction p : Vo → V is an unramified covering. Let ` be any closed loop on V
based at p ∈ V. Since i∗(π1(V )) is trivial, the lift ˜̀of ` to Vo has to be a contractible
loop on Vo. Hence p : Vo → V is a one-sheeted cover of V and therefore is a

diffeomorphism since it is a covering map. Hence Vo is a compact subvariety of M̃.

However on M̃ = BnC , there exists a strictly plurisubharmonic function given by
|z|2 =

∑n
i=1 |zi|2, the restriction of which to Vo is still plurisubharmonic. As Vo is

compact, the plurisubharmonic function has to attain a maximum. This however
contradicts the Submean Value Inequality for a plurisubharmonic function, thereby
concludes the proof of the Lemma.

In the following we will go through the structure of proof in [Ye2], explain in
details places that need to be modified under our new weakened assumption, while
refer the readers to [Ye2] for details that were already written there.

As mentioned in the brief overview above, if the lattice Γ involved is not integral

in k, there exists a finite place v and a Γ equivariant harmonic map from M̃, the
universal covering of M, to X, the Bruhat-Tits building associated to the induced
representation of Γ in the corresponding group G(kv). Pulling back the coordinate
differentials on X by the harmonic map, we get some multivalued harmonic one

forms on M̃ , which after descending to M and considering the (1, 0) part provide
multivalued holomorphic one forms. The fact that the one forms are multivalued
follows from the construction, since there is an action of the affine Weyl group on
X. The multivalued one forms become a set of single valued holomorphic one forms
denoted by {ωi} after going to a finite spectral covering M1 of M, with the covering
group W 1 being a subgroup of the Weyl group of the root system of X involved.
The details are given in the first seventh paragraphs in §4.4 of [Ye2].

The dimension of X may be 1 or 2 depending on the rank of G over kv. Suppose
first that rankkv (G) = 1 so that X is a tree. This corresponds to the argument given
in page 400 of [Ye2]. In this case, there is a mapping α : M1 → AlbW 1,{ωi}(M1),

which is the quotient of the Albanese variety by the W 1-invariant abelian subvariety
annihilated by all the ωi obtained earlier. We also know that AlbW 1,{ωi}(M1) has

complex dimension 1 in this case. Let xo be a fixed point and x be an arbitrary point
on M1. As in the proof of Lemma 3 in §4.6 of [Ye2], a generic fiber of the mapping

hR : M̃1 → R given by x→
∫ x
xo
Re(ω) is a generic fiber of f̃1 : M̃1 → M̃

α→ X. Since

hR can be considered as the real part of the universal covering of α, it follows that
a generic fiber Vx of α̃, where x is generic point in AlbW 1,{ω}i(M1), is mapped to

a point by f̃1. Hence for a generic x, ρv(i∗(π1(Vx)) is acting trivially at f ◦ π(Vx)),
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where i is the inclusion mapping. Since f is ρ-equivariant, we know that for each

y ∈ M̃, (ρv(γ))(f(y)) = f(γ(y)) for each y ∈ M̃ and γ ∈ π1(M). It follows that
ρv(i∗(π1(Vx)) acts trivially on X. Hence ρv(i∗(π1(Vx)) is trivial. As ρv is one to
one, i∗(π1(Vx)) is trivial for a generic x ∈ AlbW 1,{ωi}(M1). This however contradicts

Lemma 4. The claim is proved. The above is the first modification needed in Step
2A.

The more difficult case is that rankkv (G) = 2 so that the dimension of X is 2. In
this case, an apartment in X can be written as Σ = {(x1, x2, x3) ∈ R3|x1+x2+x3 =
0} ∼= R2, and there are three holomorphic one forms ωi, i = 1, 2, 3 on M1 coming
from pulling back of coordinate differentials by the harmonic map f into X as
mentioned earlier. The Weyl group of the root system is the symmetric group of
three elements S3 and the spectral covering group W 1 is a subgroup of the Weyl
group S3. In this case, the corresponding Albanese map α as defined earlier may
have dimension one or two image in AlbW 1,{ωi}(M1). First we claim that α(M1)

cannot be a dimension one subvariety in AlbW 1,{ωi}(M1). Assume on the contrary

that α(M1) is of complex dimension one. In such case, for a generic point on α(M1),

the inverse image in M1 is a curve. Consider the mapping h̃R : M̃1 → R2 defined
by

h̃R(z) = (

∫ z

zo

(f ◦ π)∗dx1,

∫ z

zo

(f ◦ π)∗dx2,

∫ z

zo

(f ◦ π)∗dx3)

∈ {(w1, w2, w3) ∈ R3|
3∑
i=1

wi = 0} ∼= R2,

where f is the harmonic map into the building, and xi’s are the affine functions

defining an apartment of X, cf. [Ye2], §4.4. Clearly h̃R(z) is just the projection of

α̃ onto the real part of C2. Again, fibers of h̃R correspond to fibers of f̃ . Similar to
the argument in the last paragraph, ρv(i∗(π1(Vx)) is trivial. As ρv is one to one,
i∗(π1(Vx)) is trivial for a generic x ∈ AlbW 1,ω

(M1). This again contradicts Lemma
4. The claim is proved. The argument of this paragraph is a replacement of a
similar argument on page 400 of [Ye2] and is the second modification required.

Hence we know that α(M1) has complex dimension 2. The key point of the argu-
ment is to show that in such a case, the spectral mapping π : M1 →M is unramified.
This is achieved via proof by contradiction. Hence assume that π is ramified. Let D
be an irreducible codimension one component of the ramification divisor on M1 cor-
responding to ωi−σωi = 0 for some ωi and σ ∈W 1 in the construction of the spec-
tral covering. There is at least one such component whose image on M is a branch-
ing divisor, otherwise π would be unramified. Since α is the Albanese map defined
by the one forms {ωi}, the image α(D) is an algebraic curve in AlbW 1,{ωi}(M1)

and is an Abelian subvariety in AlbW 1,{ωi}(M1), following from the same argument

as in §4.5 of [Ye2]. To derive a contradiction, we relate α to the harmonic map f
as given in §4.5 of [Ye2] so that the geometry of X comes into play. Consider a

generic fiber Ca of the projection M1
α→ AlbW 1,{ωi}((M1)→AlbW 1,{ωi}(M1)/α(D).

The contradiction is achieved by proving the following two statements. On the one
hand, p∗(π(Ca)), the Zariski closure of p∗(π(Ca)), is a non-trivial normal subgroup
of the group G. Since G as a real Lie group is isomorphic to PU(2, 1), it is simple.

We conclude that p∗(π(Ca)) = G. On the other hand, f(π(Ca)) is a tree lying in
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X, of which the stabilizer is given by a proper subgroup of G. The two statements
contradict each other. Hence we conclude that π : M1 →M is unramified once the
above two statements are proved.

The proof of the two statements is given in details in §4.5 (page 400-405) of
[Ye2], where no further assumption is used. However it is drawn to the attention
of the author that line 13 on page 403 of [Ye2], which corresponds to Sublemma
on page 284 of the Erratum of [Ye1], needs to be explained. In the case that the
Picard number of M is one in the setting of [Ye1] and [Ye2], Sublemma follows from
the following observation. Suppose that D is a divisor contracted by α to a point
on AlbW 1,{ωi}(M1). It follows that D lies in the kernel of ωi for i = 1, 2, 3 from

definition of the Albanese map, and hence in the kernel of σ∗ωi for each σ ∈ W.
Since W induces an action on AlbW 1,{ωi}(M1) and α induces a map β : M →
AlbW 1,{ωi}/W, this implies that π(D) is contracted by β : M → AlbW 1,{ωi}/W ,

which contradicts the assumption that the Picard number of M is 1. In our current
situation we do not know if the Picard number of M is 1. However the Sublemma
is only used to make sure of the assertion on line 20 of page 284 in Erratum of [Ye1]
that α∗EQ does not contain a contracted curve, where Q ∈ AlbW 1,{ωi}(M1)/α(D).

In the setting, Q is parametrized by α(S), where S is a component of the the
singularity set of f at which Ca meet on M1. Note that as mentioned in [Ye1],
[Ye2], there is nothing to be proved if Ca does not meet any singularity set of f on
M1, and when such a singularity set S is present, it is defined as ωj − σkωj = 0

for some σk ∈ W 1, and AlbW 1,{ωi}(M1) is isogeneous to α(D) × α(S). With a

slight abuse of notation, we may consider Q ∈ α(S). It cannot be true that α∗EQ
contains a contracted divisor for all Q ∈ α(S), for otherwise α(M1) would be of
complex dimension 1. Hence for a generic choice of Ca corresponding to a generic
choice of Q, α∗EQ does not contain a contracted curve. We choose such a Q and the
associated Ca. The rest of the arguments in [Ye1] as well as §4.5 of [Ye2] can then
be applied to conclude the proof of the statements. This is the third modification
required.

Hence the spectral mapping π : M1 → M is unramified. However, unless W 1 is
trivial, this will contradict topological consideration arising from the action of W 1

on M1 as well as α(M1) induced from the action of the affine Weyl group on an
apartment of X. We refer the readers to §4.6 of [Ye2] for details of the argument.
Hence W 1 is trivial and therefore M = M1. In such case, h1,0 > 2 as α(M) = α(M1)
is of complex dimension 2, our working assumption. Hence the case of h1,0 = 1 is
eliminated. The only remaining case is h1,0 = 2. Here we are going to utilize more
the structure of the Bruhat-Tits building involved (cf. [Br]). Since W 1 is trivial,
ρ(Γ) can only act on each fixed apartment Σ by translation. We observe that the
only subgroup G1 of G(Qp) which acts by translation on each apartment of the
Bruhat-Tits building X is trivial. To prove the claim, we note that the stabilizer
GΣ of an apartment Σ in G(kv) is precisely the normalizer of the split torus T
associated to Σ. Moreover, g ∈ GΣ acts by translation if and only if g ∈ ZG(T ),
the centralizer of T. Hence G1 ⊂ H := ∩TZG(T ), where T ranges over the set of
all maximal split torus T. Now H is normalized by G(Kp). Since G is simple, H is

trivial. The observation is proved. It follows from the observation that ρ∗γ(f̃(Σi))
is trivial, contradict to our assumption from the very beginning of proof of Theorem.
This is the fourth modification required.
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The contradiction above completes the proof for Step 2A.

6.5 In this subsection, we will give necessary details for the outline of proof men-
tioned in subsection §6.3 for Step 2B. As mentioned in §6.3, the key point is to
rule out the possibility that G(kvi) = PU(2, 1) for some i > 2, where vi is another
embedding of k in C different from vo. Suppose such an i exists, there exists a

Γ-equivariant harmonic map Φ : M̃ → M̃2, where M̃2 is also biholomorphic to B2
C

corresponding to the symmetric space associated to G(kvi).
We claim that Φ is holomorphic or conjugate-holomorphic. This follows again

from the Strong Rigidity of Siu [Siu] if the real rank of fi is at least 3. Consider
now the case that the real rank of Φ is less than or equal to 2. Since Φ is a ρσi

-

equivariant map from M̃ to another complex two ball Nσ, the argument of Carlson
and Toledo [CT], page 196-198, can be applied to conclude that one of the following
two cases happens,

(i) Φ(M̃) is a totally geodesic curve ` in Nσ ∼= B2
C, or

(ii) fi can be written as Φ = ψ◦ϕ, where ϕ : M̃ → S is a Γ-equivariant holomorphic
map from M to a Riemann surface S, and ψ : S → N is a ϕ∗Γ-equivariant harmonic
mapping from S to N . The only modification compared to the original setting of
[CT] is that we are considering Γ-equivariant harmonic map for cocompact Γ instead
of considering the map on a quotient manifold.

Case (i) implies that the induced action of ρσi
on the boundary ∂Nσ of Nσ fixes

the point on ∂Nσ corresponding to the line `. This contradicts the fact that ρ and
hence ρσi

gives rise to a Zariski dense action on B2
C. For case (ii), we argue as in

the proof of Lemma 8.1 in [CT]. As ρσi is faithful, we conclude that ϕ∗ is injective
and ϕ∗Γ acts freely on the universal cover of S. Hence the cohomology dimension
of Γ is at most 2. This contradicts the fact that Γ has cohomology dimension 4

since it is cocompact in M̃ , of which the real dimension is 4.
We conclude that neither case (i) nor (ii) can occur, thereby conclude the proof of

the claim. It follows from the claim that Φ is holomorphic or conjugate holomorphic.
In the latter case, we replace Φ by its complex conjugate so that we may assume
that all Φ is holomorphic.

The canonical line bundle K
M̃

on M̃ is identified as the pull back of KM by the

universal covering. According to Lemma 1, we may write KM ·KM = 9
∫
M

Θ(H
M̃
∧

Θ(H
M̃

), which by abuse of notation we write KM ·KM = 9H
M̃
·H

M̃
.

Note also that since Φ is holomorphic as an Γ-equivariant mapping M̃1 → M̃2,
we conclude that Φ is open and that the image of a fundamental domain of F is

relatively compact in M̃2. Hence the image of Γ is a cocompact lattice of M̃2
∼= B2

C
as well.

It follows that with our abuse of notation,

K2
M = 9nH2 ·H2 + 2Φ∗K

M̃2
·R+R ·R.

Since n is a positive integer and Φ∗K
M̃2
· R > 0 as K

M̃2
is ample, it follows that

R ·R 6 0 since the left hand side of the above identity is precisely 9.
On the other hand, we may write Φ∗K

M̃2
= KM − R and hence π∗KM · R =

KM ·R−R ·R. Hence we may rewrite the above identity as

K2
M = 9nH2 ·H2 + 2KM ·R−R ·R
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Again, since R is effective, KM · R > 0. The same argument as above shows that
R ·R > 0. Hence we conclude that R ·R = 0.

As the left hand side of the above identity is 9 and each term on the right hand
side is non-negative, we conclude that n = 1, and KM ·R = 0. As KM is ample and
R is effective, this implies that R is trivial as well. Hence we conclude that Φ is a
biholomorphism. This however leads to a contradiction, since the correspondence
between the images of two different embeddings of k into C is not even continuous
with respect to the standard topology on C.

The above discussions complete the proof of Proposition 4.

6.6 We can now state the uniqueness of the examples with h1,0 = 1.

Proposition 5. Let M = B2
C/Γ be an arithmetic complex two ball quotient with

e(M) = 3 and h1,0(M) = 1. Then M is holomorphic or conjugate holomorphic to
the surface constructed by Cartwright and Steger mentioned in §6.

Proof The classification of Prasad and Yeung [PY] covers all arithmetic complex
two ball quotients of e(M) = 3. In particular, the set of all arithmetic lattices
of e(M) = 3 consists of 28 classes with [D, `] > 1, each of which contains fake
projective planes, and five more classes, C1, C8, C11, C18, or C21 with D = ` in the
notation of [PY] that may contain examples. Finally in [CS], Cartwright and Steger
show that there are precisely 100 fake projective planes within the first twenty-eight
classes, and there exists precisely one arithmetic lattice Γ with e(M) = 3 in the
remaining five classes above, lying within the class with number field give by C11 and
has h1,0(B2

C/Γ) = 1. We conclude that the fundamental group of a torsion free ball
quotient M with e(M) = 3 and h1,0(M) = 1 has to be isomorphic to the example
of Cartwright and Steger mentioned in §6. It is easy to show that the complex
conjugate of such a ball quotient does not give the same complex structure, which
has been shown in [KK] for fake projective planes. For the case at hand, it is known
from the work of Cartwright Steger that the automorphism group of the surface has
order 3. Suppose on the contrary that there is a complex conjugate diffeomorphism
h on the surface. It follows that either h or h3 is a conjugate involution, which has
a totally real manifold as the fixed point set. Hence the fixed point set is either the
real sphere or the real projective plane. Neither of the cases is possible from the
proof in Lemma 4.

Hence there are precisely two such surfaces up to biholomorphism. This con-
cludes the proof of part (b).

6.6
Proof of Theorem 1 This follows by combining the results of Proposition 1,
Proposition 4 and Proposition 5.
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