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Abstract The first goal of this paper is to study the question of finiteness of integral
points on a cofinite non-compact complex two dimensional ball quotient defined over
a number field. Along the process we will also consider some negatively curved
compact surfaces. Using some fundamental results of Faltings, the question is to
reduce to a conjecture of Borel about existence of virtual holomorphic one forms on
cofinite non-cocompact complex ball quotients, the study of which for an arbitrary
dimension is the second goal of this paper.

1. Introduction

(1.1) It has been an interesting problem to understand the relation between nega-
tivity of the curvature of a Kähler metric on a projetive algebraic manifold defined
over a number field and finiteness of the set of rational points. In particular, it
follows from some well-known conjectures of Lang [La] and Vojta [Vo1] that a hy-
perbolic projective algebraic manifold defined over a number field has only a finite
number of rational points, and a hyperbolic quasi-projective manifold defined over
a number field has only a finite number of integral points. Here a complex manifold
is said to be hyperbolic if the Kobayashi semi-metric is non-degenerate (cf. [La] and
[Vo1]). In the case that M is compact, this is equivalent to the property that there
is no non-trivial entire map from C. The results of Faltings on Mordell Conjecture,
subvarieties of abelian varieties and of Vojta on semi-Abelian varieties are the most
significant results in this direction, see [F1], [F2] and Vojta [Vo2].

From a complex geometric, or more precisely, metrical point of view, the sim-
plest hyperbolic complex manifolds are given by complex ball quotients since they
support a Kähler metric with constant negative holomorphic sectional curvature.
These are quotients of the complex balls of radius 1 in Cn by a torsion free lattice in
PU(n, 1), which is the automorphism group of the complex ball. Hence one may ask
if the conjecture on finiteness of rational or integral points is valid on such smooth
complex ball quotients. The purpose of this article is to study the above conjecture
for such smooth complex ball quotients in complex dimension 2. In fact, there
is only one other class of complex manifolds that are known to support Kähler
metrics of strictly negative Riemannian sectional curvature, first constructed by
Mostow and Siu [MS], see also [D]. For complex ball quotients and the examples
of Mostow-Siu, first we observe that they can be defined over a number field (cf.
Lemma 1 and Proposition 4). For simplicity, we call the resulted varieties defined
over a number field to be an arithmetic model. The first aim of this article is
to consider finiteness of rational points for an arithmetic model of some compact
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complex two ball quotients, all non-compact complex two ball quotients and the
examples of Mostow and Siu.

(1.2) The method of proof is to reduce the arithmetic problem to a geometric
problem on the existence of holomorphic one forms on some appropriate unramified
covers of the manifolds involved. The geometric problem is by itself very interest-
ing and is still open in general. In a real hyperbolic space form, a conjecture of
Thurston states that there exists a finite unramified covering with non-trivial first
Betti number. Borel conjectured that the same conjecture should be true for a
complex ball quotient from cohomological study of such manifolds (cf. [B]). Hence
one expects existence of non-trivial holomorphic one forms on some appropriate
covers of any complex ball quotients. The relation of the conjecture to the earlier
problem on finiteness of rational points is provided by the results of Faltings [F2]
and Vojta [Vo2] mentioned above.

Hence we first look for examples of complex ball quotients for which the con-
jecture of Borel is satisfied. Such examples for compact ball quotients have been
provided by Kazhdan [K] and Shimura [Sh]. For a general compact complex two
ball quotient, the conjecture is still open, though quotients which arise from arith-
metic lattices of first type do enjoy such properties, see §3.2 for the definition. In
particular, this is the case for examples of complex ball quotients arising from geo-
metric consideration as studied by Picard [P], Terada [T], Deligne-Mostow [DM],
Mostow [Mos] and Livne [Li]. This list above contain some non-arithmetic lattices
as well. Moreover, the same is true for Mostow-Siu examples.

The main geometric observation of this paper is that such a cover always exists
for any non-compact complex two ball quotients.

Once the geometric result on existence of virtual holomorphic one forms is
proved, we reduce the arithmetic problem of finiteness of rational points to the
corresponding question on an appropriate unramified covering, where the results of
Faltings [F2] are applied. During the process, we have also proved that the varieties
and the mappings involved can all be defined over some number fields.

(1.3) Here is the organization of the paper. In §2, we give some preliminary dis-
cussions and collect some number theoretical tools to be used. In §3, finiteness of
rational points for compact surfaces, including arithmetic complex two ball quo-
tients of first type, and Mostow-Siu surfaces, is discussed. In §4 and §5, we study
some geometric properties of non-compact complex two ball quotients which have
finite volume with respect to the Bergman metric. In §4, we study the problem
of Borel for cofinite complex two ball quotients. In §5, we study the growth of
number of cusps and space of holomorphic one forms on cofinite complex two ball
quotients. Finally, in §6, finiteness of integral points for quasi-projective complex
two ball quotients is established. The arithmetic results are given in Theorem 1,
2 and 5 of §3 and §6, and the geometric results are given in Theorem 3, 4 and
Proposition 3 of §4 and §5.

(1.4) The author is grateful to Matthew Stover and Pierre Py for pointing out an
error in an earlier draft of the paper and to Ben McReynold for his interests. The
author would also like to express his appreciation to Wing-Keung To and Stefano
Vidussi for reading and making valuable suggestions to the proof of Theorem 3 and
Proposition 3.
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2. Preliminaries

(2.1) Let us recall some number theoretical results in this section. Let k be a
number field and k̄ its algebraic closure. For a projective variety M defined over a
number field k, the set of rational points is well defined and is denoted by M(k).
The notion of integral points of M with respect to an effective Cartier divisor D
is defined as follows (cf. [Vo3], page 154). Let Vk be the set of all valuations on
k. A Vk-constant is a collection (cv) of constants cv ∈ R for each v ∈ Vk such that
cv = 0 for almost all v ∈ Vk. Let S be a finite set of places containing S∞, the set
of Archimedean places of k. A set Σ ⊂ M(k̄) is said to be a (D,S)-integral set of
points if Σ∩ supp(D) = ∅ and there is a Weil function λD for D and a Vk-constant
(cv) satisfying λD,w(x) 6 cw for all x ∈ Σ and for all places w ∈ Vk−S. In the case
of an affine variety X with inclusion i : X → Ank , this is the same as requiring that
i(x) ∈ (1/a)Ok,S for some a ∈ k and all x ∈ Σ. We say that the set of (D,S)-integral
points has finite cardinality if all such Σ has a finite cardinality. For simplicity, we
would also say that X has a finite number of integral points with respect to D.

(2.2) We recall the result of Chevalley-Weil, and Hermite, related to defining num-
ber fields of an unramified covering (cf. [Vo3], page 156, [HS], page 292-293, [Vo1],
page 58, or [Se]). Let k be a number field and π : Y → X be a finite unram-
ified covering of normal projective varieties defined over k. Then there exists a
finite extension k′ of k such that π−1(X(k)) ⊂ Y (k′). Similarly, suppose that
π : Y − E → X − D a finite unramified covering of normal quasi-projective va-
rieties defined over k. Then there exists a finite extension k′ of k such that for any
(D,S) integral set Σ, Σ′ = π−1(Σ) is a (E,S) integral set on Y . The statement
implies that the pull back of set of rational points (resp. integral points) in k on X
are rational (resp. integral) points on Y in k′, where k′ is a finite extension of k.

(2.3) The following results of Faltings (cf. [F2]) provide the crucial tool for our
argument.

Let A be an abelian variety defined over k and X be a k-closed subvariety of A.
Then the irreducible components of the Zariski closure X(k) of X(k) are translates
of abelian subvarieties of A over k by elements of X(k).

By considering the Jacobian of a hyperbolic projective algebraic curve defined
over a number field, this provides an alternative proof of Mordell Conjecture which
was solve earlier by Faltings in [F1] Mordell conjecture states that the cardinality
of the se of rational points on such a curve is finite.

The analogue of the results for semi-abelian varieties have been obtained by
Vojta [Vo2] in the following way. Let k be a number field, with ring of integers Ok.
Let X be a closed subvariety of a semiabelian variety A, where we assume both are
dened over k. Then the Zariski closure of the set of integral points of X in Ok is a
translation of a semi-abelian subvariety of A.

(2.4) For a variety to be defined over a number field, we need to introduce the
notion of rigidity.

A complex manifold is said to be locally rigid if there is no local definition of
the complex structure on M. Let M be a compact complex manifold. Then M is
locally rigid if the Kodaira-Spencer class ρ ∈ H1(M,Θ) vanishes, where Θ is the
sheaf of holomorphic vector field on M. Suppose M is a quasi-projective variety
M ∼= M − D, where D is a normal crossing divisor. Then M is locally rigid if



4 SAI-KEE YEUNG

the corresponding Kodaira-Spencer map ρ ∈ H1(M,Ω(logD)∗) vanishes, where V ∗

denotes the dual bundle of a vector bundle V.

Proposition 1. (cf. [Va], page 83) A projective manifold M can be defined over
a number field if H1(M,Θ) = 0. Similarly, a quasi-projective manifold (M,D) can
be defined over a number field if H1(M, [Ω(logD)]∗) = 0.

(2.5) We refer the readers to [BHPV], [Mu] and [GH] for standard facts concern-
ing Albanese mappings and Abelian varieties. For semi-abelian varieties and the
Albanese mappings for quasi-projective varieties, we refer the readers to Itaka [I]
for dicussions. Here we briefly recall the construction in terms of holomorphic one
forms or holomorphic logarithmic one forms.

On a projective algebraic manifold M , Albanese map α is a mapping α : M →
Alb(M) defined as follows. Let ωi, i = 1, . . . n, be a basis of holomorphic one forms
on M. Let hj , j = 1, . . . , 2n be a basis of H1(M,Z). Fix a point xo ∈ M. For any
point x ∈M, we join x to xo by a path ` and define α : M → Alb by

α(x) = (

∫
`

ω1, . . . ,

∫
`

ωn)/Λ,

where Λ is the lattice on Cn generated by
∫
hj
ωi for each 1 6 i 6 n and 1 6 j 6 2n.

It is known the Albanese variety is dual to the Picard variety.
On a quasi-projective manifold M = M−D, where M is compact and D is a nor-

mal crossing divisor, the Albanese map can be defined as above, except that now we
use a set of generators for holomorphic logarithmic one forms ωi ∈ H0(M,Ω(logD))

instead of holomorphic one forms on M̃ (cf. [I]).
It is known that if M (resp. (M,D)) is defined over a number field k, the

Albanese (resp. the quasi-Albanese) maps can be defined over a number field if the
original manifold M is defined over the same number field. This can be found in
[Mi], [I] and [Vo2].

In this paper, we would only need the fact for the Albanese map for a compact
projective algebraic variety.

3. Rational points on some compact surfaces

(3.1) Let us first make the following observation for projective algebraic manifold
defined over a number field.

Theorem 1. Let M be a smooth projective algebraic surface defined over a number
field F . Assume that there exists an unramified covering M ′ → M defined over
some number field F ′ so that the irregularity q(M ′) = dimF ′H1(M ′,OM ′) is at
least 3. Assume also that there is no non-constant morphism from a curve of genus
0 or 1 into M , then M(F ) has finite cardinality.

Proof We are going to prove the theorem by contradiction. Hence we assume that
M(F ) has infinite cardinality. It follows from our hypothesis that there exists an
unramified covering M ′ of M on which the dimension of the space of holomorphic
1−forms is at least 3, where both M ′ and the morphism M ′ →M are defined over
a number field F1. Let F2 be the field generated by F1 and F . According to the
theorem of Chevalley-Weil as stated in §2.2, we conclude for some fixed F ′ with
[F ′ : F2] = t 6 d, M ′(F ′) has infinite cardinality.
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Let x ∈ M ′(F ′). The Albanese variety AlbM ′(F ′) is the dual abelian variety of
the Picard variety. The rank of the Albanese map α : M ′ → AlbM ′(F ′) is given by
the irregularity q(M ′), which is at least 3 from our hypothesis.

The set of rational points on M ′, M ′(F ′), cannot be Zariski dense in M ′, for
otherwise α(M ′) has complex dimension 2 and is an Abelian subvariety of Alb(M ′)
according to the results of Faltings in §2.3. This contradicts the fact that A as the
Albanese variety of M ′ is generated by f(M ′).

Hence an irreducible components of M ′(F ′) has dimension either 0 or 1. Let D
be an irreducible component of dimension 1. From the results of Faltings in §2.3,
f(D) is defined over F ′, since it is the translation by an element over F ′ of an
abelian subvariety defined over F ′. As f is defined over F ′, it follows that D is
defined over F ′ as well. The genus of D is at least 2 from our hypothesis. According
to the solution of Mordell Conjecture of Faltings as stated in §2.3, we conclude that
D has only a finite number of rational points over F ′, contradicting the assumption
that M ′(F ′) has infinite cardinality. This concludes the proof of Theorem 1.

�

Remark In a similar way, one can prove algebraic degeneracy of the Zariski closure
of the set of rational points in higher dimensions.

(3.2) As mentioned in the introduction, it has been a consequence of some con-
jectures of Lang and Vojta [Vo1] that a complex hyperbolic manifold defined over
a number field has at most a finite number of rational points. From a differential
geometric point of view, one may consider the conjecture on a more restricted set of
manifolds, namely projective algebraic manifolds equipped with a Kähler metric of
strictly negative Riemannian sectional curvature which can be defined over a num-
ber field. Apart from complex hyperbolic ball quotients, the only examples with
such negative sectional curvature are given by surfaces constructed by Mostow-Siu
[MS], see also [D]. First we make the following observation.

Lemma 1. A compact complex two ball quotient can be defined over a number field.
Similarly, a Mostow-Siu surface can be defined over a number field.

Proof It is known that the sectional curvature for such surfaces are strongly nega-
tive in the complexified sense and hence are rigid complex analytically (cf.[Siu] and
[MS]). In particular, they cannot be locally deformed. Hence these surfaces have
models defined over appropriate number fields according to Proposition 1.

�

We say that an arithmetic lattice of PU(2, 1) is of Second Type if it is defined
by a Hermitian form over a division algebra with involution of second type, which
is a non-trivial extension of a number field `, which itself is a totally imaginary
quadratic extension over a totally real number field k. The lattice is of First type
if the lattice is defined by a Hermitian form over ` directly, in the sense that the
division algebra is just `, cf [Y3].

Theorem 2. (a). Let M be a compact complex ball quotient of complex dimension
2 which has a finite unramified covering with irregularity at least 3. Assume that
M has a model defined over a number field F. Then M(F ) has finite cardinality.
(b). In particular, this is the case for arithmetic lattices of PU(2, 1) of first type,
and all the examples of lattices of PU(2, 1) appearing in the list of [DM], [Mos] or
[Li].
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(c). Let M be an example of Mostow-Siu surface with negative sectional curvature.
Assume that M is defined over a number field F. Then M(F ) has finite cardinality.

Proof (a) follows from Theorem 1 and the fact that M is hyperbolic. We may now
apply Theorem A.

For (b), we know that for an arithmetic lattices Γ of first type, there is a con-
gruence subgroup of Γ1 of finite index such that first Betti number of B2

C/Γ1 is at
least 5, following the results of Kazhdan, Shimura or more generally Borel-Wallach
in [BW]. All arithmetic lattices in the list of Picard-Terada-Deligne-Mostow as in
[DM] are of first type. [DM] also listed some non-arithmetic lattices in PU(2, 1).
For non-arithmetic examples in [DM], one can show that after going to a finite
unramified covering of sufficiently large order, there exists a holomorphic map to
a complex one ball quotient, and the pull-back by the map to a one-ball quotient
actually supports at least three holomorphic one forms, cf. [DM] or [D]. It is also
known that the list of Livne was included in the list of [DM].

For (c), we first observe that according to Proposition 1, a Mostow-Siu example
is analytically rigid, since it has strictly negative sectional curvature, and the Strong
Rigidity of Siu [Siu] is applicable. A Mostow-Siu surface can be considered as a
branch cover of a smooth Deligne-Mostow surface N over a totally geodesic curve
(cf. [D]). By taking a finite unramified covering of both M and N if necessary,
we may assume that N has irregularity at least 3. This immediately implies that
M has irregularity at least 3 as well, after pulling back the holomorphic one forms
from M. We may now apply Theorem 1 to conclude the proof.

�

(3.3) In the next few sections, we will consider the geometric problem of existence
of holomorphic one forms on non-compact complex ball quotients.

4. A conjecture of Borel in the case of cofinite complex hyperbolic
space forms

(4.1) It is a conjecture of Thurston that any real hyperbolic space supports some
unramified covering which has non-trivial first Betti number. The conjecture has
been extended by Borel to complex hyperbolic spaces in [B]. For compact complex
ball quotients, the first such example has been obtained by Kazhdan and Shimura,
cf. [BW]. However, the question is still open in general. For such quotients coming
from arithmetic lattices of the first type, that is, those defined by Hermitian forms
over a number field, the conjecture was known. On the other hand, for arithmetic
lattices of the second type, that is, defined over a non-trivial division algebra, it is
proved by Rogawski [R] and Clozel [C] that towers defined by congruence subgroups
all have vanishing first Betti number. However, there may still be unramified cover-
ings which do not arise from congruence subgroups, since the Congruence Subgroup
Property does not hold for such cases.

The section deals with the conjecture of Borel mentioned above for non-compact
complex ball quotients of finite volume. Since the author does not know of any
reference in this aspect in the literature, the details of the proof, though elementary,
are presented here. The result will be used in the next section to produce finiteness
of integral points on some models of such a manifold defined over a number field.

(4.2) Since we are considering non-compact manifolds, we need to consider various
notions of cohomology. Let M be a non-compact complex manifold of complex
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dimension n equipped with a complete Kähler metric g. The usual k-th de Rham
cohomology, denoted by Hk

dR(M), is the quotient of the space of d-closed smooth
k-forms by the space of d-exact smooth k-forms. The k-th de Rham cohomol-
ogy with compact support, denoted by Hk

c (M), is the quotient of the space of
d-closed smooth k-forms with compact support by the space of d-exact smooth k-
forms with compact support on M . Hk

c (M) is the same as the relative cohomology
Hk(M,∂M), which is quotient of the space of smooth d-closed k forms vanishing
on the boundary ∂M by the space of exact k forms given by dβ, where β vanishes

at the boundary. The k-th L2 cohomology, denoted by H̃k
2 (M), is the quotient

of the space of d-closed L2 k-forms by the space of L2-exact k-forms. The k-th
reduced L2 cohomology, denoted by Hk

2 (M), is the quotient of the space of d-closed
L2 k-forms by closure of the space of L2-exact k-forms with respect to the L2-
topology. For complex manifolds, we similarly define Dolbeault cohomology and
reduced Dolbeault cohomology in terms of ∂-operator instead of d-operator. We de-

note the corresponding cohomology groups by H̃p,q(M) and Hp,q
2 (M) respectively,

in analogous to the compact situation.
From de Rham Theorem, Hk

dR(M) is isomorphic to the singular k-th cohomology
H1(M,R). From Poincaré Duality, there is an isomorphism between Hk

dR(M) and
H2n−k
c (M). The calculus for L2-cohomology on a complete manifold is essentially

the same as on a compact manifold, thanks to the use of cut-off functions as given by
Gaffney [G]. From Hodge Theory, the reduced cohomology Hk

2 (M) is isomorphic to
the space of L2 harmonic k forms on M with respect to a given Kähler metric. The
usual Hodge Decomposition allows us to decompose Hk

2 (M) =
∑
p+q=kH

p,q
2 (M).

(4.3) Before we concentrate on the complex ball quotients, let us recall the cor-
responding picture for a general locally symmetric spaces, which shows that the
picture is somewhat different in the cases that the symmetric spaces involved are
neither real nor complex balls as considered in the conjecture of Thurston and
Borel.

Let M = Γ\G/K be a locally symmetric space, where G is a semi-simple Lie
group, K is a maximal compact subgroup, and Γ is a lattice in G. We have the
following vanishing theorem following essentially the work of Matsushima [Ma].

Proposition 2. Assume that G/K is a symmetric space of non-compact type which
is neither a complex nor real hyperbolic space.
(a). Suppose Γ is cocompact. Then the first Betti number of M = Γ\G/K vanishes.
(b). Suppose Γ is cofinite. Then the reduced L2 first Betti number vanishes.

Proof For compact Γ, this follows from the original work of Matsushima [Ma],
Kaneyuki-Nagano [KN 1-2] and Kazhdan [K] for the quaternionic and Kähler hy-
perbolic cases. A uniform geometric proof in terms of Bochner formula can be given
as in [MSY], see also [Y1] for related ideas. In terms of the Bochner formula, the
arguments are readily applicable to cofinite lattices. The reason is as follows. As
mentioned in 4.1, a class in the reduced L2-cohomology can be represented by a
L2-harmonic forms on M by Hodge Theory. Now the Bochner formula in [MSY]
still applies to a locally symmetric space of finite volume. The reason is that inte-
gration by part still makes sense for L2-harmonic forms, noting that the curvature
terms involved in the Bochner formula in [MSY] are all bounded in locally sym-
metric spaces. The argument of cut-off functions as given by Gaffney [G] can be
readily applied to complete the proof.
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�

(4.4) From this point on, we focus on cofinite complex ball quotients. The following
is the main result of this section.

Theorem 3. Let M = Γ\PU(n, 1)/(U(n) × U(1)) be a cofinite (non-compact)
complex ball quotient. Then there exists non-trivial holomorphic one forms on a
Toroidal compactification M of M. Moreover, the reduced L2 first cohomology of
M is non-trivial.

Proof For simplicity of presentation, consider first the case of n = 2. There is a
holomorphic map π : M → N , where N is a projective-algebraic compactification
of the non-compact ball quotient M by a finite number points corresponding to

each cusp of N , cf. [Mok]. Recall that M = M ∪
⋃N
i=1 Ti, where Ti are smooth

elliptic curves. Since N is projective algebraic, we may consider N as a subvariety
in a Pa for some positive integer a.

Let T be one of the Ti. Denote p = π(T ), which may be considered as the
origin 0 ∈ Ca ⊂ Pa

C. The mapping π : M → N in a small neighborhood of p
is a contraction corresponding to a single blow-up of p, as π−1(p) has only one
component in T . Let π1 : Ca ⊂ Pa

C → C2 ⊂ P2
C be a generic projection such that

π(M) is a graph over an open neighborhood U of p1 = π1(p) = 0 ∈ C2.
Let α and β be generating one cycles on T , so that both are diffeomorphic to S1

and intersect at a single point q ∈ T . Consider now a family of smooth deformation
αt, βt, |t| < ε of α and β, so that α0 = α, β0 = β, αt ∪ βt ∈ M − T , αt ∩ βt is a
single point qt and (αt ∪ βt) does not intersect α ∪ β, and that ∂tαt|t=0, ∂tβt|t=0 ∈
TM\T (T ). This is possible since α∪β has real dimension 1 and has real codimension
3 in M . In the following, we use vs to denote ∂tαt|t=0 at s ∈ α and wr for ∂tβt|t=0

at r ∈ β. The goal is to show that vs is going generate an algebraic curve As on M
so that ∪s∈αAs is a real 3-cycle intersecting β only at α ∩ β.

To illustrate the idea, let us first consider the simplified picture that π : M → N
is a simple blow up of a smooth point on a surface N ⊂ Pa

C. In this case, tangent
vectors to T are mapped by π to zero at p, while normal (transversal) vectors to
T on M are mapped to different vectors of the tangent space of N at p, and the
image would cover TqN . From construction, π(α) ∩ π(β) = {p}. Consider now a
generic projection π1 : Pa

C → P2
C. Let f = π1◦π. Again by dimension consideration

and the fact that π1 is generic, we may assume that f(αt) and f(βt) meet only at
a single point f(pt), and that f(αt) ∩ f(βt) does not contain p. Let s ∈ α and
denote vs = ∂tαt|t=0, where ∂t = ∂

∂t . In this case, f∗vs is a tangent vector to C2 at
f(q) = π1(p). Denote by αt,s the deformation of s in the family αt. It follows that
vs is tangential to αt,s at t = 0.

Let `s be the projective line in P2
C tangential to (π1 ◦ π)∗vs. Then π−11 `s is a

hyperplane in Pa
C whose restriction toN is a curve passing through p with tangential

vector π∗vs ∈ TpN . Let As be the proper transform of π−1(π−11 `s). Note that As is
uniquely defined once the projection π1 is fixed. Hence ∪s∈αAs gives rise to a real
3-cycle on M . From construction, we see (∪s∈αAs) ∩ β = {p}, where {p} = α ∩ β,
since in the case of a simple blow-up, different points on the blown up divisor
corresponds to different lines through the center of the blow-up.

In the general situation, we know that π : M → N can be considered as a blow-
down in which π−1(p) = T . It is known that the blow-down map can be achieved
by sections of Γ(M,p(KM +[D])) for some p, where D is the line bundle associated
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to the boundary divisor D = ∪ki=1Ti, cf. [Mok], §2.2. There exists a section
σ0 ∈ Γ(M,p(KM +[D])) which never vanishes on T from appropriate L2 estimates.

Given any σ ∈ Γ((M,p(KM + [D])), it follows that σ|T is a constant. The reason
is that σ

σ0
is a global meromorphic function on T which is bounded everywhere

and hence has to be a constant. Choosing any basis of Γ((M,p(KM + [D])) and
subtracting for each of those an appropriate multiple of σ0, we see that there exists
a basis {σ0, . . . , σa} of Γ((M,p(KM + [D])) so that σi|T = 0 for 1 6 i 6 a.

As in [Mok], the projective structure of M can be given by π := [σ0, · · · , σa],
from which T is blown down to a point on Im(π) ⊂ P aC . From the fact above for
σi along T , the mapping π in local coordinate with image in affine coordinates is
given by

(x, y) 7→ (
σ1
σ0
,
σ2
σ0
, . . . ,

σa
σ0

)

= (xk1g1(x, y), . . . , xkaga(x, y)) ∈ Ca ⊂ P aC ,

where ki are positive integers, and ga(x, y) are holomorphic functions for which
ga(0, y) is not identically zero. In particular, on a Zariski open neighborhood V
of a point denoted by (0, 0) ∈ T and a small Euclidean open set ∆ ⊂ C in the
normal direction of V so that U = ∆× V is a neighborhood of (0, 0) ∈ T , we may
assume that the coordinate function x, y are chosen such that σ1/σo = xk1 , and the
mapping is given on U by

(1) (x, y) 7→ (xk1 , xk2g2(x, y), . . . , xkaga(x, y)) ∈ Ca ⊂ P aC
Furthermore, as the manifolds involved are projective algebraic and in fact with
embeddings given by p(KM + D) with large p, we may assume that y = 0 on M

are algebraic curves on M defined by meromorphic functions.
Consider the Taylor series expansion on a smaller open set of the same type as

U , which we still denote by U , we may write

gl(x, y) =

∞∑
s=0

xsgls(y)

for some holomorphic functions gls. As π is injective on M − T , given any two
points y1, y2 ∈ T ∩U , there exists 2 6 i 6 a such that xkigi(x, y1) 6= xkigi(x, y2) for
all x 6= 0 with |x| sufficiently small measured with respect to any smooth metric on

M , which in turn infers that for some N1 sufficiently large, xki
∑N1

s=0 x
sgis(y1) 6=

xki
∑N1

s=0 x
sgis(y1). Again we have power series expansion gls(y) =

∑∞
t=0 blsty

t for
each index set (l, s), where blst is a constant. From the same argument as above
and restricting U to a smaller neighborhood U if necessary, we may find a integer
N2 such that for all y1 6= y2 ∈ T ∩ U = V , there are 2 6 i 6 a such that

xki
N1∑
s=0

N2∑
t=0

bistx
syt1 6= xki

N1∑
s=0

N2∑
t=0

bistx
syt2

for all x 6= 0 with |x| sufficiently small. Let s1 be the smallest index in s such that
for generic pairs of points y1, y2 ∈ U ∩ T ,

N2∑
t=0

bis1ty
t
1 6=

N2∑
t=0

bis1ty
t
2.
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Similarly, let t1 be the smallest index 0 6 t 6 N in the above expression such that
bis1ty

t
1 6= bis1ty

t
2.

For the index i, s1, t1 chosen as before and each fixed y ∈ U ∩T , we consider now
the algebraic curve Cy := N ∩ Sy with Sy defined on (z1, . . . , za) ∈ Ca ⊂ P aC by

(2)

{
zi = z

(ki+s1)/k1
1 bis1t1y

t1 ,

zj = z
kj/k1
1 gj(z

1/k1
1 , y), for 2 6 j 6 a, j 6= i,

where z
1/k1
1 represents x. Note from our construction, we may consider the curve

as cut out from the pull-back by

πi : Ca → C2, (x1, . . . , xa) 7→ (x1, xi)

of the curved defined by the first equation of (2) in C2. This is an algebraic curve
and can also be described in the affine space (w1, z1, . . . , za) ∈ Ca+1 ⊂ P a+1

C as

(3)


z1 = wk11 ,

zi = wki+s11 bis1t1y
t1 ,

zj = w
kj
1 gj(w1, y), for 2 6 j 6 a, j 6= i

for which w1 plays the role of x.
From the above discussion, distinct points (x, u1), (x, u2) ∈ U lead to distinct

curves defined by (1).
The curves for each fixed y ∈ T ∪ U are pulled back to a curve By on M

intersecting T . Let now α and β mentioned earlier be one real cycles lying in the
Zariski open set V ⊂ T , where we recall that U = ∆× V . The above construction
gives a correspondence Φ : s ∈ α∩ V 7→ Bs, an algebraic curve on P aC . The same is
true for the cycle β and gives Ψ : t ∈ β ∩ U 7→ Bt. Let As be the proper transform
of Bs in the blow-up by π−1. From our choice, different choices of y ∈ T ∩ U gives
rise to different curves described in (2), by considering x = w1. Hence the curve
given by (2) for y ∈ α meets the point (0, 0) = π∗(T ) only once and its pull-back
to M meets α ∪ β only once, since α ∪ β ⊂ V . As β intersects α only at a point q,
from our construction and choice of i, we conclude the curves in the first family for
s ∈ α would intersect β only at p.

We remark that the first equation in (4) or the second line in (5) plays the role
of choice of curves in the simplified situation of simple blow-up of a point discussed
earlier.

As ∪s∈αAs is a real 3-cycle on M meeting β only at the point α ∩ β, it follows
that ∪s∈αAs is a homologically non-trivial real 3-cycle and β is a homologically non-
trivial 1-cycle. Hence the first Betti number of M is non-trivial, thereby proving
Theorem 4.2.

The same argument works for n > 2, by considering α to be a 2n− 3 real cycle
on the n − 1 complex torus T , generating by 2n − 3 real homology one cycles on
T . Moreover, since M is a complex ball quotient, it follows from a result of Zucker
([Z], page 210), that H1

(2)(M) ∼= H1(M) is non-trivial.

�

5. Cusps, holomorphic one forms and rigidity on a tower
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(5.1) We recall some notations. Let M ∼= B2
C/Γ be a cofinite complex two ball

quotient. It is well known that the lattice Γ is residually finite. Hence there exists
a tower of normal covering in the following sense. There exists a tower of normal
subgroups Γ0 > Γ1 > · · · > {1} of Γ0 = Γ corresponding to an infinite sequence of
normal coverings of M, so that ∩∞i=0Γi = {1}. Denote by Ni the number of cusps
of Mi.

Proposition 3. Let M ∼= B2
C/Γ be a smooth cofinite complex two ball quotient.

Let Mi = B2
C/Γi be a tower of coverings as before. Then there exists ik > 0 such

that for i > ik, b1(Mi) > k.

Proof It follows from a well-known result of Kazhdan that Γ is finitely presented
as 〈Fr : R〉, where Fr = 〈x1, . . . , xr〉 is a free group of r generators and R =
{R1, . . . , Rs} are the relations. Let Gm := Z/mZ. As b1(M) 6= 0 from 1, we let
αm : Γ → Gm be the natural epimorphism and Xαm

be the associated unramified

covering of M with fundamental group given by the kernel of α. Denote by Ĝ the

character group of G. Let α̂ : Ĝ ↪→ Γ̂ be the inclusion map. From [H] Proposition
2.5.6 and Proposition 2.5.7, we conclude that

b1(Mαm) = b1(M) +

r−1∑
i=1

|Vi(Γ) ∩ α̂m(Ĝm\1̂)|(4)

=

r∑
i=1

|Wi(Γ) ∩ α̂m(Ĝm)|,(5)

where Vi(Γ) = {ρ ∈ Γ̂|rank(M(Fr,R))(ρ) < r−i} in terms of the Alexander matrix

M(Fr,R), and Wi(Γ) = {ρ ∈ Γ̂|dimH1(Γ, ρ) > i} are the jumping loci of the first
cohomology group of Γ. Here M(Fr,R) is a r×s matrix given by [(q̂)∗Di(Rj)] where
(q̂)∗ is induced from the quotient map q : Fr → Γ and Di is the Fox derivative with
respect to xi. It is known (Cor. 2.4.3 of [H]) that Vi(Γ) = Wi(Γ) for i 6= n and

Vn(Γ) = Wn(Γ)\1̂.
Now we claim that we may assume that Vi(Γ) is non-trivial. Let si, i = 1, . . . , N

be loops around compactifying torus Ti. If none of si is involved in the relations R,
the Abelianization of Γ would have rank greater than N due to the one homology
classes generated by si. Hence we may assume that R involves some si, in the
sense that si appears non-trivially in some Rk. It follows from the definition of Fox
derivative (cf. [H], page 558) that DiRk 6= 0 and hence that Vi(Γ) is non-trivial.

For a projective algebraic manifold,we know that the jumping loci Vi(Γ) corre-
sponds to some torsion points in the torus from a well-known result of Simpson
[Sim], In the situation of quasi-projective manifolds that we are considering, the ar-
gument of Simpson can still be modified to lead to the same conclusion, as is given

in [BW]. Supposed Vi(Γ) intersects Γ̂ in the connected component of the latter,
if we choose positive integer m corresponding to the order of the torsion element

such that α̂m(Ĝm\1̂) ∈ Vi(Γ), the resulting Mαm
would have b1(Mαm

) > b1(M). In

the case that Vi(Γ) intersects Γ̂ at a non-identity component, corresponding to one
of the finite number of torsion elements in H1(M,Z), we may modify the covering
corresponding to the torsion element to get a covering Mαm with b1(Mαm) > b1(M).

Repeating the argument onMαm
and so forth, we can find an unramified covering

M ′ of M with first Betti number larger than a preassigned number.
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(5.2) Remarks 1. By choosing αm such that Vi(Γ)∩ α̂m(Ĝm\1̂) = ∅, it follows im-
mediately that we would have a covering Mαm with b1(Mαm) = b1(M). Repeating
the argument gives an arbitrary infinite tower of unramified coverings with stable
first Betti number.

2. In the case of complex two ball quotients, we have dimH1(M) = dimH1
(2)(M) =

dimH1(M), where the first equality was observed in [Z] as mentioned in the article,
and the second is obtained by considering Taylor expansion of a holomorphic one
form around a point on M −M . �

(5.3) The following lemma is actually not needed for the paper, but the statement
is of independent interest.

Lemma 2. Let M ∼= B2
C/Γ be a cofinite complex two ball quotient. Then given any

positive integer N, there exists a finite unramified covering M1 of M such that the
number of cusps of M is at least N.

Proof Since M is cofinite non-cocompact, there exists at least one cusp on M. The
goal is to show that there exists a normal covering M1 →M such that the number
of cusps on M1 can be chosen to be arbitrarily large as the index of the covering
[M1 : M ] is getting large.

Let Γo > Γ1 > · · · > {1} be a tower of normal subgroups of Γ0 = Γ corresponding
to an infinite sequence of normal coverings of M as mentioned in 5.1. Let Di be a
fundamental domain of Γi. Since we are taking a tower of normal coverings, we may
assume that the fundamental domains Di of Γi are nested in the sense of Di ⊂ Di+1

after translating by Γi/Γi+1 if necessary. As ∩iΓi = 1, Dk = ∪kiDi → B2
C as a set

as k →∞.
Let Ni be the number of cusps on Mi. Given any N > 0, we are going to show

that Ni > N for i sufficiently large through proof by contradiction. Hence assume
that supiNi = N < ∞. Each cusp of Di occurs as the intersection of the closure
of Di with ∂B2

C. Hence if we denote by Si the set of cusps of Di, it is well-known
that Di consists of a finite number of points (cf. [Mok], [SY]), each corresponding
to an end of Mi. Since we have chosen Di to be a nested sequence of fundamental
domains of Γ, we conclude that Si ⊂ Si+1 for i > 0. Hence from our assumption,
there exists S = {p1, . . . , pN} and an integer io such that Si = S for i > io.

We claim that the set ΓS\S 6= ∅. Suppose that this is not the case, we know
that Γ leaves the set S invariant. Since S is a finite set, by going to a subgroup
of Γ is necessary, we may assume that Γ leaves S pointwise fixed. This however
contradicts the fact that Γ is Zariski dense and cannot leave a point at the infinity
fixed.

Hence we can find a γ ∈ Γio such that γ(S) contains a point q 6∈ S. From the
construction, q = γ(pi) for some pi ∈ S. Hence γ(Dio) is another fundamental

domain of Γio on which q ∈ γ(Dio) ∩ ∂B2
C.

Let xo ∈ Dio so that γ(xo) ∈ γ(Dio). Since ∩∞i=0Γi = ∅, the union ∪∞i=1Di = B2
C

by our choice of Di. We know that γ(xo) ∈ Dj for some j = i1 and hence for all
j > i1. Hence Dj ∩ γ(Dio) 6= ∅. As Dj is a tessellation of translations of domains
Dio corresponding to translations given by Γ0/Γj on M, we conclude that we may
assume that γ(Dio) ⊂ Dj , except possibly a measure zero set corresponding to the
boundary of Dio in B2

C. This however implies that

q ∈ γ(Dio) ∩ ∂B2
C ⊂ Dj ∩ ∂B2

C.
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It follows that q is also a cusp of Dj and hence Mj has at least N + 1 cusp points,
contradictory to our assumption. This concludes the proof of the lemma.

�

(5.4) Let now p : M ′ → M be a finite unramified covering between two non-

compact complex two ball quotients. Let M
′

= M ′∪D′ and M∪D be the respective
Toroidal compactification as in [AMRT] for arithmetic lattices and as in [Mok] for
non-arithmetic lattices. We denote by V ∗ the dual of a holomorphic vector bundle
V on M. Then we have the following conclusions.

Proposition 4. (a). The covering map p : M ′ → M extends to a holomorphic

map p : M
′ →M.

(b). (M,D) is rigid in the sense that H1(M, [Ω(logD)]∗) = 0. Similarly for

(M
′
, D′).

(c). p : M
′ →M is rigid.

Proof (a) follows from the description of Toroidal compactification (cf. [AMLT],
[Mu2] or [Mok]). It also follows from the more geometric observation below. The
Bergman metric gM on M has holomorphic sectional curvature bounded from above
by a negative constant, and the Bergman metric gM ′ on M ′ has sectional curvature
bounded from below by a constant. Hence we know from Schwarz Lemma (cf.
[CCL]) that p : M →M ′ satisfies p∗gM ′ 6 gM . Consider a polydisk neighbourhood
U of a point on D in M such that D is given by z = 0 for some coordinate function
z on U, where |z| < 1. Then as given in [Mok], the Bergman metric gM is given
explicitly as

(6) c1

√
−1dz ∧ dz
|z|2(log |z|)2

+ c2
θ

(− log |z|)
,

where θ is a positive (1, 1) form on the tangent space of D, and c1, c2 are smooth
positive functions on U. The same asymptotic growth of metric applies to an end of
M ′ as well. From the conclusion of the above Schwarz Lemma, it follows that p|M
has uniformly bounded derivative on some neighbourhood of a point x′ ∈ D′ ⊂M ′.
It follows from boundedness of p and Riemann Extension Theorem that the map
can be extended to D′. The claim follows.

For (b), we observe that ∈ H1(M, [Ω(logD)]∗) ⊂ H1
(2)(M,Ω∗M ). The follows

by considering local basis of Ω(logD) near D in terms of a(z, w)dzz + b(z, w)dw.
Here (z, w) is a local coordinate at a point on z = 0. The local form near the
compactifying divisor is L2 integrable in view of the asymptotic formula in (1) for
the metric near the compactifying divisor. The vanishing of H1

(2)(M,Ω∗M ) follows

from computations involving Bochner formula as discussed in [CV].
For (c), we observe that the restriction p|M ′ : M ′ →M is unramified. We claim

that p|M ′ is rigid. Otherwise the lift of the mapping to the corresponding cover
leads to deformation ft, |t| < ε of the identity map on M ′. However, from Siu’s
Strong Rigidity Theorem in [Siu], we know that M ′ cannot be deformed and each
ft is just the identity map. Hence p is rigid.

�

6. Integral points on a cofinite complex hyperbolic space form
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(6.1) We are going to apply the results of Faltings, and the geometric results of
the last section to deduce finiteness of integral points for cofinite ball quotients.
Recall that a quasi-projective manifold M = M −D, where D is a normal crossing
divisor, is defined over a number field F if both M and D can be defined over F.
We say that M has a finite unramified cover M ′ defined over F if both M and M ′

as quasi-projective manifolds are defined over F and the mapping M ′ → M is a
finite mapping defined over F and is unramified on M ′.

Here is our main result concerning finiteness of integral points concerning quasi-
projective manifolds.

Theorem 4. Let M be the quotient of the complex two ball by a torsion free cofi-
nite lattice in PU(2, 1). Assume that M , its toroidal compactification M and the
compactifying divisor D = M −M are all defined over a number field F. Then the
number of integral points on M with respect to the compactifying divisor in F is
finite.

Proof We assume for the sake of proof by contradiction that there are infinite
number of integral points on M with respect to the compactifying divisor D in the
number field F.

Proposition 3 implies that after going to a unramified covering M ′ of M of finite
index of sufficiently large index, the dimension of the space of holomorphic one

forms on a toroidal compactificaition M
′

of M ′ is at least 3. M ′ is constructed by
considering a proper normal subgroup Γ of finite index in the lattice Γ associated
to M. Since M ′ is still a complex ball quotient with finite volume, M ′ itself can be
compactified according to Toroidal compactification on each end of M ′.

We know from Proposition 4 that p : (M
′
, D′) → (M,D) is a rigid morphism

between the two projective algebraic varieties. Hence according to Proposition 1,
p can be defined over some number field. Hence we may assume that M ′,M and p
are all defined over a number field K1. Letting K2 be the compositum of K1 and
F. Hence for the sake of proof by contradiction we assume that there are infinite
number of integral points in F on M with respect to D. Then M ′,M and p are all
defined over K. Moreover, according to the result of Chevalley-Weil and Hermite as
stated in §2.2, by considering a finite extension K3 of K2 if necessary, we conclude
that there are infinitely many integral points in K3 on M ′ with respect to D′.

According to Proposition 3, there are at least 3 linearly independent holomorphic

one forms on M
′
, where M ′ ⊂ M

′
as a Zariski open set. Hence the Albanese map

αM ′ gives a morphism of M
′

into an Abelian variety A = α(M
′
). According to the

result of Faltings in [F2], there are only a finite number of rational points on A apart

from a finite number of translates of abelian subvarieties. Clearly α(M
′
) cannot

be an Abelian subvariety of complex dimention 2, as the irregularity of α(M) is at
least 3. Hence apart from a finite number of elliptic curves Ei, i = 1, . . . , N , the
number of rational points is finite. Let C be an irreducible curve on M defined
over K3 such that α(C) is one of those Ei. Since C dominates an elliptic curve, the
genus g(C) of C is at least 1. If g(C) > 2, Mordell Conjecture as proved by Faltings
in [F1] implies that the number of rational points on C is finite. Hence we may
assume that g(C) = 1. From the fact that M is complex ball quotient and hence
hyperbolic, C cannot be contained in M. Hence C must intersect the compactifying
divisor D. If g(C) = 1, it follows from Siegel’s Theorem, or the result of Vojta in
(2.3), that the number of integral points with respect to D′ is finite. Since there
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are only a finite number of Ei and hence of such C, we conclude that the number
of integral points of M ′ with respect to the compactifying divisor D′ is finite. This
contradicts the earlier deduction that there are infinite number of integral points on
M ′ with respect to D′ coming from our assumption. The contradiction concludes
the proof of Theorem 4.

�
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