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Abstract

The goal of the paper is to study the limiting behavior of the
Weierstrass measures on a smooth curve of genus g > 2 as the
curve approaches a certain nodal stable curve represented by a
point in the Deligne-Mumford compactification Mg of the moduli
Mg, including irreducible ones or those of compact type. As a
consequence, the Weierstrass measures on a stable rational curve
at the boundary of Mg are completely determined. In the process,
the asymptotic behavior of the Bergman measure is also studied.

1. Introduction

1.1 On a compact Riemann surface, an interesting geometric object to
study is the distribution of Weierstrass points associated to the tensor
powers of an ample line bundle. It is observed by Olsen [Ol] that the
asymptotic distribution of such Weierstrass points is dense with respect
to the analytic topology. The situation is clarified by the beautiful result
of Mumford [M1] and Neeman [N] that the asymptotic distribution is
uniformly distributed with respect to the Bergman kernel of the curve.
In other words, the higher Weierstrass points as defined are weakly
equidistributed with respect to the Arakelov measure. The phenomenon
is interesting both from a geometric and an arithmetic point of view,
such as results explained in [B], [D], [M1] and [R].

A natural problem is what happens for the corresponding distribu-
tion on a singular algebraic curve, in particular for stable curves at the
boundary of a moduli space in its Deligne-Mumford compactification.
It has been observed by [BG], [GL], [L1], [FL] that the asymptotic
distribution of the Weierstrass points associated to the power of an am-
ple line bundle is no longer dense with respect to the complex topology
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on a rational nodal curve. The main goal of this paper is to clarify
the situation and give a precise statement about the distribution of the
Weierstrass points on a nodal curve sitting at the boundary of a moduli
space.

Let Mg be the moduli space of compact Riemann surfaces of genus

g > 2. Let Mg be the Deligne-Mumford compactification of Mg. A
point t ∈ Mg represents a Riemann surface Xt of genus g. Consider
now a one-parameter family of Riemann surfaces π : X → S on a curve
S ⊂M so that o ∈M−M and a neighborhood U of o satisfies U−{o} ⊂
M. Our goal is to study the behavior of the limit of the Weierstrass
measure on Xo. Our approach is to study the relation between the
Bergman kernel and the Weierstrass measure for stable curves arising
from degeneration of a family of smooth curve. For this purpose, we have
to study the limiting behavior of the geometry of the period mapping
and extract from it the geometric information needed.

1.2 We refer the reader to Section 2 for various terminology used in the
introduction. For our statement here, the Bergman measure µBX on a

compact Riemann surface X is defined by µBX =
√
−1
∑g

i=1 ωi ∧ωi over
an orthonormal basis {ω1, . . . , ωg} of Γ(X,KX). Our first result is the
estimates on the asymptotic behavior of the Bergman measure.

Theorem 1. (a) Let π : X → S be a local family of stable curves
in the sense of Deligne-Mumford so that Xt = π−1(t) is smooth for

t ∈ S − {o} and Xo has a single node at p ∈ Xo. Let τ : X̂o → Xo be
the normalization of Xo. Then
(i) if the node p on Xo is separating, the Bergman measure µBXt → τ∗µ

B
X̂o

as t→ o.
(ii) if the node p on Xo is non-separating, the Bergman measure µBXt →
τ∗µ

B
X̂o

+ δp as t→ o, where δp is the Dirac Delta at the node p ∈ Xo.

(b) Let Xo be a stable curve for which p1, · · · , pk are non-separating
nodes and pk+1, · · · , pl are separating nodal points. Assume that Xo has

l− k irreducible components. Let X̂o be the normalization of Xo. Then
in terms of the notations above,

µBXt → µBX = τ∗µ
B
X̂

+
k∑
i=1

δpi

as t→ o

In the above, we denote by τ∗µ
B
X̂o

the measure (τ−1)∗|τ−1(Xo−{p})µ
B
X̂o

,

using the fact that τ−1 is a biholomorphism on Xo − {p}.

Here we remark that for a stable curve Xo given by a point at the
boundary of the Deligne-Mumford compactification D := ∂Mg =Mg−
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Mg ofMg studied in this paper, the limit µBXt → τ∗µ
B
X̂o

is independent

of the family of smooth curves taken.

1.3 Let L be an invertible sheaf of positive degree on a stable curve Xo

of genus g > 2. The notion of Weierstrass points of powers of L has
been generalized from smooth curves to stable curves in the literature,
cf. [Wi]. Assume Xo is represented by a point o in the boundary of
the Deligne-Mumford compactification of Mg. Assume that L could
be extended as an invertible sheaf Lt to each curve Xt represented by
a point t in a neighborhood of U of o in Mg. It is at this juncture
that we need to assume that Xo is irreducible or of compact type for
a general line bundle. In general it may be difficult to extend a line
bundle L consistently to a nearby fiber due to the difficulty of defining
limit linear series on stable curves. This is however possible in the case
that Xo is irreducible or of compact type, cf. [AK], [CE], [CP], [GZ].
A typical example is given by tensor power of the (relative) dualizing
sheaf of the family. The second author is grateful to Samuel Grushevsky
for pointing out the subtlety of extension of the line bundle.

From the work of [N] and [M1], if Xt is a smooth curve, the discrete
measure µWmLt associated to the set of Weierstrass points of (LXt)

m →
Xt converges to 1/g ·µBXt as m→∞ where µBXt is the Bergman measure
of Xt.

Theorem 2. Let π : X → S be a local family of stable curves which
are either irreducible or of compact type so that Xt = π−1(t) is smooth

for t ∈ S − {o} and Xo has a single node at p ∈ Xo. Let X̂o be the
normalization of Xo. Then
(a) if the node p on Xo is separating, the measure µWmLo associated to

the Weierstrass points on Xo satisfies µWmLo → 1/g · µB
X̂o

as m→∞.

(b) if the node p on Xo is non-separating, the measure µWmLo associated

to the Weierstrass points on Xo satisfies µWmLo → 1/g · (µB
X̂o

+ δp) as
m→∞.

1.5 The following result is a consequence of Theorems 1, 2 and induc-
tion.

Theorem 3. (a) Let X be a stable curve which is irreducible and

p1, · · · , pk are the non-separating nodes. Let X̂ be the normalization of
X. Then

µX,L := lim
m→∞

µWmLX = 1/g · (
k∑
i=1

δpi + µB
X̂

)

where g is the genus of the curve from which X is obtained by pinching
corresponding cycles.
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(b) Let X be a stable curve of compact type and p1, · · · , pk are the sep-

arating nodes. Let X̂ be the normalization of X. Then

µWX,L = 1/g · µB
X̂

where g is the genus of the curve from which X is obtained by pinching
corresponding cycles.

Note that the theorem shows that the measure is independent of L.

1.6 As an immediate corollary, we have the following result in the case
of a rational nodal curve living on the boundary of the Deligne-Mumford
compactification of the moduli space of curves.

Corollary 1. Let X be a stable irreducible rational nodal curve with
nodes at p1, · · · , pg. Then µX = 1/g · (

∑g
i=1 δpi).

Related to the corollary, we remark that from the earlier work of
[BG], [GL], [L1], and [FL], it is known that µX vanishes on X except
possibly on a finite number of circles and the nodes. The corollary above
shows that the measure µX is solely supported on the nodes. Thereom 3
and Corollary 1 above complete the picture on asymptotic distribution
of Weierstrass points for stable curves.

1.7 In the following we outline the main steps of proof. Theorem 1
follows from a careful study of the Bergman metric with respect to
the degeneration at a single node. Theorem 2 is the main result. It
follows from the following three steps. The first is the convergence of
the Weierstrass measure as one approaches the boundary of the moduli.
The second is to prove uniform convergence of the Weierstrass measure
to the Bergman measure on compacta in the complement of the nodes,
which depends on the results of Neeman [N]. Finally we apply Theorem
1 to deduce that the residual measure is supported at a node. Theorem
3 follows from Theorem 2 and an induction argument.

1.8 Acknowledgement The authors are very grateful to Samuel Gru-
shevsky for making many valuable comments and suggestions on the
paper, to Valery Alexeev for explaining his work on semiabelic pairs.

2. Preliminaries

2.1 Denote byMg the moduli space of Riemann surfaces of genus g > 2.

LetMg be the Deligne-Mumford compactification ofMg. The points on

the boundaryMg−Mg represent stable curves in the sense of Deligne-

Mumford. For simplicity of notation, sometimes we just denoteMg,Mg

by M,M when there is no danger of confusion.
It is well-known that the compactifying divisor D =Mg −Mg has a

decomposition D = D0 ∪ · · ·D[g/2] into irreducible components, where
[x] denotes the integral part of x. The generic point of the stratum
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D0 represents an irreducible complex curve of genus g− 1 with 2 points
identified. We call such a node non-separating. The generic point of the
stratum Di for i > 0 represents the union of two irreducible complex
curves of genus j and g−j, each with a puncture and the two punctures
are identified, named as a separating node on the curve.

The nodes are obtained by contracting a real 1-cycle on a smooth
Riemann surface of genus g, by considering a family of curves Ct of
genus g which is smooth for t 6= 0 and C0 is the stable nodal curve
considered.

A generic point on the intersection of two components Di ∩ Dj for
i 6= j corresponds to a stable curve obtained by contracting two real
cycles to two different nodes.

We refer the readers to [HM] for basic facts about moduli space of
curves.

2.2 Let X be a compact Riemann surface of genus g > 1. The space of
holomorphic one forms Γ(X,KX) has dimension g. There is a natural
L2 metric on Γ(X,KX) defined by (η1, η2) =

√
−1
∫
X η1 ∧ η2. We would

denote by {ω1, . . . , ωg} an orthonormal basis of Γ(X,KX) on X.

Definition 1. The Bergman measure µBX on X is defined by µBX =√
−1
∑g

i=1 ωi∧ωi where {ω1, . . . , ωg} is any orthonormal basis of Γ(X,KX).

It is a standard fact that the Bergman measure is independent of the
orthonormal basis chosen. The Bergman measure µBX is also given by
the pull back of the flat measure on the Jacobian of the Riemann surface
X by the Abel-Jacobian map.

2.3 A symplectic homology basis ofX is a basis {Aj , Bj}16j6g ofH1(X,Z)
satisfying intersection pairings

Ai ·Aj = 0, Bi ·Bj = 0 , and Ai ·Bj = δij for all i and j.

A canonically normalized basis {ω′i}
g
i=1 of Γ(X,KX) with respect to

a symplectic homology basis {Aj , Bj} is a basis satisfying
∫
Aj
ω′k = δjk

for all j and k.
The period matrix of X is the g × g matrix defined by Ωij =

∫
Bi
ω′j .

In the following we recall some standard results on the behavior of
canonically normalized holomorphic one forms with respect to the sym-
plectic bases of a deformation family. We refer the reader to [F], [Y]
and [We] for any unexplained terminology.

Consider a one-parameter family of Riemann surfaces π : X → S with
S−{o} ⊂ M and o ∈M−M. The stable nodal curve Xo is a singular
curve with nodal points as the only singularities, which are also called
punctures of Xo. Xo can be considered as a union of finitely many

compact Riemann surfaces X̂o with some particular points identified

corresponding to the nodal points where X̂o is the normalization of
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Xo. The local defining equation for a neighborhood of a node can be
described by zw = 0 in C2.

We will assume that Xo has only one node. The cases of more than
one node will follow from induction.

We recall the limit of canonically normalized holomorphic one forms
as t→ o. There are two cases according to whether a node is separating
or non-separating.

2.4 In the case of separating node p, Xt degenerates into X1 ∪ X2 as
t→ o, where X1 and X2 are Riemann surfaces of genus g1 = g(X1) > 0
and g2 = g(X2) > 0, and p is represented by x1 ∈ X1 and x2 ∈ X2.
Here g = g1 + g2. Analytic structure of the degeneration is understood
from the following model. For i = 1, 2, let xi ∈ Xi representing p and
Ui be a neighborhood of xi in Xi with coordinates zi : Ui → ∆ centered
at xi. Let S = {(x, y, t) : xy = t, x, y, t ∈ ∆1}. Denote the fiber at
t ∈ ∆ by St. Here ∆r denotes the disk of radius r in C. For |t| < 1,
glue together X1− z−1

1 (∆|t|) and X2− z−1
2 (∆|t|) according to the recipe

z1 7→ (z1,
t

z1
, t), z2 7→ (

t

z2
, z2, t).

The resulting surfaces gives rise to an analytic family X → ∆1 with
smooth fibers Xt for t 6= 0 centered around X0 = Xo. For z ∈ Xi − {p}
and |t| sufficiently small, there is a natural section z(t) of X → ∆1

with z(0) = z. In the notation of [We], we say that z ∈ Xi ∩ Xt if
z(t) ∈ Xi − z−1

i (∆|t|1/2) for all small t.

Let {ω(1)′
i }, {ω

(2)′
j } be normalized bases with respect to some sym-

plectic homology bases on X1 and X2 respectively.

Proposition 1. ([We] page 433, [F] page 38, [Y] page 129) We can
find a normalized basis of Γ(Xt,KXt) for t sufficiently close to o such
that

ω′i(x, t) =

{
ω

(1)′
i (x) +O(t2), for x ∈ X1 − U1,

−tω(1)′
i (x)ω(2)′(x, p) +O(t2), for x ∈ X2 − U2,

ω′j(x, t) =

{
ω

(2)′
j (x) +O(t2), for x ∈ X2 − U2,

−tω(2)′
j (x)ω(1)′(x, p) +O(t2), for x ∈ X1 − U1,

where 1 6 i 6 g1, g1 +1 6 j 6 g1 +g2 = g, and ω(1)′(x, p) and ω(2)′(x, p)
are canonical differentials of second kind on X1 and X2 respectively.

We refer the readers to [F] for standard terminology of canonical

differentials of second kind and just remark for example that ω(1)′(x, p)
is evaluated at p with respect to the local coordinate U1.

2.5 In the case of non-separating node p, Xt degenerates into a sta-
ble curve Xo with node at p, which can be considered as a connected
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Riemann surface X̂o with two points a, b ∈ X̂o identified. Again, there
exists small coordinate neighborhoods Ua, Ub of a and b respectively,

and X̂o is the normalization of Xo. We may regard Ua and Ub as disks
of fixed radius δ in some local coordinates around a and b respectively.
The analytic structure can be given as in 2.4. Let 0 < ρ < 1. Denote
by ρUa and ρUb disks of radius ρδ.

Proposition 2. ([We] page 437, [F] page 51, [Y] page 135) We can
find a normalized basis of Γ(Xt,KXt) for t sufficiently close to o such

that for x ∈ X̂o − ρUa − ρUb,

ω′i(x, t) = ω′i(x)− t[ω′i(b)ω′(x, a) + ω′i(a)ω′(x, b)] +O(t2), (1 6 i 6 g − 1)
ω′g(x, t) = ω′b−a(x)− t[γ1ω

′(x, b) + γ2ω
′(x, a)] +O(t2),

where γi’s are some constants. Moreover, the expression limt→0O(t2)/t2

is a meromorphic form with poles only at a and b, and the coefficients

has uniform convergence on X̂o − ρUa − ρUb.

In the above, ω′b−a(z) = 1
2πi∂z log E(z,b)

E(z,a) and E(z, a) is the prime form

of X̂o. Since E(z−a) in local coordinates is given by z−a, we conclude
that ω′b−a(z) = 1

2πi(
1
z−b −

1
z−a) in local coordinates.

2.6 We recall the definition of generalized Weierstrass points on a pro-
jective algebraic curve as given in [L] and [Og]. A point p ∈ X is called
a Weierstrass point of the holomorphic line bundle L (represented by z
as above) if there is an s ∈ Γ(X,L) whose vanishing order at p is at least
h0(L) := dimCΓ(X,L). As in the case of the usual Weierstrass points,
the Weierstrass points of a line bundle can also be defined in terms of
the Wronskian of a basis of sections of L in [L] and [Og].

Consider the case that X is a smooth curve of genus g > 2. Denote
by Jd the Picard variety of degree d. Denote by Θ the theta divisor
of X in Jg−1. There is a mapping fn : X × Θ → Jg−1+n defined by
fn(x, θ) = nx+ θ. Then it is well-known that
x is a Weierstrass point of the line bundle z if and only if

(1) z = fn(x, θ)

for some θ ∈ Θ, which was taken as definition in [N].
Let p be a Weierstrass point of L over X. Then the weight of p,

denoted wL(p), is defined as follows: Let s1, ..., sm be a basis of Γ(X,L)

with distinct vanishing orders α1 < · · · < αm at p, then

wL(p) := α1 + · · ·+ αm − 0− 1− 2− 3− · · · − (h0(L)− 1)

Notice that non-Weierstrass points have weight 0. Denote by W (L) the
set of all Weierstrass points of L over X.

Let h : X → R be a continuous function on X. Let L be any holo-
morphic line bundle of degree g − 1 +m over X (m > g − 1).
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Define the distribution

(2) µWX,L :=

∑
p∈W (L)wL(p) · δp∑
p∈W (L)wL(p)

where δp is the Dirac Delta at p. In case that there is no danger of
confusion, we would simply denote µWX,L by µWL . Then∫

X
h · µWL =

∑
p∈W (L) h(p) · wL(p)∑

p∈W (L)wL(p)
=

1

gm2
·

∑
p∈X

h(p)wL(p)

 .

2.7 Recall the following result of [N], see also [M1].

Proposition 3. Let X be a Riemann surface of genus g > 2. Let
h : X → R be a continuous function on X. Let L be any line bundle of
degree g − 1 +m over X (m > g − 1). Then∑

p∈W (L) h(p) · wL(p)∑
p∈W (L)wL(p)

=

∫
X
h · µWL

converges to the constant∫
X h · (ω1 ∧ ω1 + · · ·+ ωg ∧ ωg)∫
X (ω1 ∧ ω1 + · · ·+ ωg ∧ ωg)

=
1

g
·
∫
X
h · µBX

as m→∞.

In the above, {ω1, ..., ωg} is an orthonormal basis of Γ(X,KX) and µBX
is the Bergman measure on X.

2.8 Let Pg,d be the variety consisting of pairs [C,L], where C ∈Mg and
L is a line bundle on C of degree d. In general, it is a subtle problem to
have a natural canonical compactification of Pg,d sitting aboveMg. The
difficulty is shown by the non-uniqueness of extension of line bundle in
the following example. Consider a one-parameter family of stable curves
π : C → ∆ with ∆∗ = ∆− {0} ⊂ Mg, where fibers Ct, t ∈ ∆ is smooth
and C0 is nodal consisting of two components C01 and C02 meeting at a
point p. Let L be a line bundle on π−1(∆∗) so that Lt = L|Ct is a line
bundle on Ct for t ∈ ∆∗. Then the extension of L over ∆ is not unique,
since L + OCC01 would give another possible extension apart from a
given extension L over ∆. Here (L + OCC01)|C02 = (L + (p))|C02 has
degree deg(L|C02) + 1 and (L + OCC01)|C01 = (L − (p))|C02 has degree
deg(L|C02)− 1.

For the case of irreducible stable C0, the problem of compactification
of Pg.d is resolved by considering torsion-free coherent sheaves of rank
one as given by [DS], and the above difficulty of uniqueness in exten-
sion does not occur since there is only one irreducible component. In
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particular, a line bundle with a fixed degree on X0 extends to a line
bundle on Ct for t ∈ U , a neighborhood of 0 in Mg.

In the example above with two irreducible components meeting at a
point, the problem of compactification was resolved in [C], in which the
extension is unique by considering line bundles of appropriate bidegree
in Pic(d1,d2)(C0) = Picd1(C01)×Picd2(C02), where the choice of bidegree
is finite. Recall that a nodal curve is of compact type if every node is
separating. In such a case, once we fix a multi-degree corresponding to
a choice in [C], the extension is unique. In particular, a line bundle with
a fixed multi-degree on X0 extends to a line bundle on Ct for t ∈ U , a
neighborhood of 0 in Mg.

In this article we study which are either irreducible or of compact
type and consider line bundles which extends to a neighborhood U of 0
in Mg.

3. Convergence of Bergman measure on a family of curves

3.1 Proof of Theorem 1
Let us first give a short outline of proof of Theorem 1a. It is well-

known that in the setting of Theorem 1(a), a holomorphic one-form on
Xt gives rise to a one form with at most a log pole at the node p. Re-
call that the total residue of a meromorphic one-form on a connected
Riemann surface is trivial. If p is separable so that Xo consists of two
irreducible components X1 and X2 of genus a and g − a respectively,

the residue argument as above applied to the normalization X̂i of each
component Xi, i = 1, 2, implies that a meromorphic one form cannot
have pole at a single point and hence the form is actually holomorphic.
In this case, the sum of the Bergman kernels on X1 and X2 is pre-
cisely the limit of the Bergman kernel on Xt. If p is non-separable, this
corresponds to a meromorphic one form with a single pole at p1, p2 of
opposite residues, where {p1, p2} = τ−1(p). In such case, there is a g−1
dimensional space of holomorphic one-forms and one meromorphic one
form with a log pole at the node on Xo coming from the convergence
of the space of holomorphic one-forms from Xt. One expects that the
Bergman kernel of Xt approaches the Bergman kernel of Xo as t → o.
It is however a bit tedious to describe the convergence of the Bergman
kernel since orthonormality is imposed in the definition of Bergman ker-
nel as given in 2.2 and a log pole is not L2-integrable. We provide some
details below.

3.2 Theorem 1(a)(i)— We are given a family of curves π : X → S with

o ∈ S representing Xo = X1 ∪X2. Let {ω(1)′
1 (x, 0), . . . , ω

(1)′
g1 (x, 0)} and

{ω(2)′
g1+1(x, 0), . . . , ω

(2)′
g1+g2

(x, 0)} be canonically normalized bases with re-
spect to symplectic homology bases on X1 and X2 respectively.
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OnX1, let {ω(1)
1 (x, 0), . . . , ω

(1)
g1 (x, 0)} be an orthonormal basis of Γ(X1,KX1)

with respect to the natural L2 norm as defined in 2.1. Similarly for

{ω(2)
g1+1(x, 0), . . . , ω

(2)
g1+g2

(x, 0)}. Let H1(0), H2(0) be the transformations
so that

ω
(1)
i (x, 0) = H1(0)ij · ω(1)′

j (x, 0) for 1 6 i, j 6 g1

ω
(2)
j (x, 0) = H1(0)ij · ω(1)′

j (x, 0) for g1 + 1 6 i, j 6 g1 + g2

Let H(t) be the transformation (for |t| sufficiently small) such that

ω
(1)
i (x, t) = H(t)ij · ω(1)′

j (x, t) for 1 6 i, j 6 g1

ω
(2)
i (x, t) = H(t)ij · ω(2)′

j (x, t) for g1 + 1 6 i, j 6 g1 + g2

(3)

and H(t)−1 exists. Indeed,

(4) H(t) =

(
H1(t) 0

0 H2(t)

)
where H1 and H2 are square matrices of size g1 and g2 respectively.
Since

µBXt =

g∑
i=1

ωXt,i ∧ ωXt,i =
∑
i,j,k

H(t)ijH(t)ikω
′
j(x, t)ω

′
k(x, t),

taking limit on both sides yields the result.

3.3 Theorem 1(a)(ii)— We consider degeneration of the Weierstrass
points for a stable nodal curve with a node p and degeneration as
given in Proposition 2. Hence we have a family of curves π : X → S

with o ∈ S representing Xo. X̂o is the normalization of Xo. Let
{ω′1(x, 0), . . . , ω′g−1(x, 0)} be a canonically normalized basis with respect

to a symplectic homology basis on X̂o.

On X̂o, we let {ω1(x, 0), . . . , ωg−1(x, 0)} be an orthonormal basis of

Γ(X̂o,KX̂o
) with respect to the natural L2 norm as defined in 2.1. Let

J(0) be the transformation so that

(5) ωi(x, 0) = J(0)ijω
′
j(x, 0) for 1 6 i, j 6 g − 1.

Let {ω′i(x, t)}
g
i=1 be the set of one forms on Xt given by Proposition 2.

There exists an invertible transformation J(t) (for |t| sufficiently small)
satisfying

ωi(x, t) = J(t)ijω
′
j(x, t) for 1 6 i, j 6 g − 1

and {ωi}g−1
i=1 being an orthonormal basis of span(ω′1, . . . , ω

′
g−1) ⊂ Γ(Xt,KXt).

Adding one more one form ωg(x, t) so that {ωi}i=1,...,g gives an orthonor-
mal basis of Γ(Xt,KXt), it follows that we can find a transformation H
containing J as a submatrix so that

(6) ωi(x, t) = H(t)ijω
′
j(x, t) for 1 6 i, j 6 g.
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Indeed,

(7) H(t) =

(
J(t) 0
aT (t) b(t)

)
with aT (t) = (a1(t), · · · , ag−1(t)). It follows that the inverse of H is
given by

(8) H−1 =

(
J−1(t) 0

−1
ba
T · J−1(t) 1/b(t)

)
From (6), we know that

(9) ωg(x, t) =

g−1∑
i=1

ai(t)ω
′
i(x, t) + b(t)ω′g(x, t).

By construction, ai(t) is smooth in t for 1 6 i 6 g − 1. Moreover,
ω′i(x, t) is uniformly bounded on Xo when t = 0 for 1 6 i 6 g − 1, and
the expression varies smoothly with respect to t. Hence the expression∑g−1

i=1 ai(t)ω
′
i(x, t) above is uniformly bounded for small t. It remains

to estimate the term b(t)ω′g(x, t).

Now, since ωg ⊥ span{ω′1, ..., ω′g−1}, we have

0 =

∫
Xt

ωg(x, t) ∧
g−1∑
i=1

ai(t)ω′i(x, t),

plugging (9) into the above gives
(10)

0 =

∫
Xt

(

g−1∑
i=1

ai(t)ω
′
i(x, t))∧

g−1∑
i=1

ai(t)ω′i(x, t)+

g−1∑
i=1

b(t)ai(t)

∫
Xt

ω′g(x, t)∧ω′i(x, t).

We claim that for 1 6 i 6 g − 1, there is the estimate∫
Xt

ω′g(x, t) ∧ ω′i(x, t) = o(t).

This follows from smoothness of π and

(11)

∫
Xo

ω′g(x, 0) ∧ ω′i(x, 0) = 0

where ω′g(x, 0) = ω′b−a(x). The above identity is true because from our
assumption, ω′i(x, 0) for 1 6 i 6 g − 1 is dual to a symplectic basis
{Ai}i=1,...,g−1. Hence

∫
Ai
ω′g(x, 0) = 0 for 1 6 i 6 g − 1 from the

normalization in 2.2 and so the claim is valid.
It follows from the claim and (10) that

(12)

∫
Xt

(

g−1∑
i=1

ai(t)ω
′
i(x, t)) ∧

g−1∑
i=1

ai(t)ω′i(x, t) = o(t)
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Recall that Proposition 2 gives rise to

(13) ω′g(x, t) = ω′b−a(x)− t[γ1ω
′(x, b) + γ2ω

′(x, a)] +O(t2),

for x ∈ X̂o − ρUa − ρUb and the estimates in t[γ1ω
′(x, b) + γ2ω

′(x, a)]
and O(t2) are uniform. Hence for fixed ρ > 0, given any small ε > 0,
we know that

(14) |ω′g(x, t)− ω′b−a(x)| < ε

if t is sufficiently small and 0 < t < ρ. Now

‖ω′b−a‖2X̂o−ρU1−ρU2
:=

∫
X̂o−ρU1−ρU2

ω′b−a ∧ ω′b−a

>
∫

(U1−ρU1)∪(U2−ρU2)
ω′b−a ∧ ω′b−a

> c| log ρ|(15)

for some constant c > 0 from direct integration.
Since ‖ωg(·, t)‖Xt = 1, and

∑g−1
i=1 ai(t)ω

′
i(x, t) is uniformly bounded

for small t, it follows from identity (9) and the estimate (15) that b(t) >
c1| log ρ| for some constant c1 > 0 if t < ρ. Hence the one form ωg(x, t)

converges to 0 on compacta on Xo − {p} ∼= X̂o − {a, b} as t→ 0.

Hence for x ∈ X̂o − {p}, Proposition 2 implies that ωXt,i(x) →
ω
X̂o,i

(x) for 1 6 i 6 g − 1 as t → 0. Since µBXt =
∑g

i=1 ωXt,i ∧ ωXt,i,
it follows from the last paragraph that the limit of ωXt,g ∧ ωXt,g would
concentrate at the node p as t→ 0. Here we note that the total measure∫

Xt

µBXt =

g∑
i=1

‖ωXt,i‖2 = g

and
∑g−1

i=1 ‖ωX̂o,i‖
2 = g − 1. The discrepancy is precisely given by the

delta measure at the point p, since the mass cannot be concentrated
anywhere else according to the discussions above.

3.4 Theorem 1b— This follows from 3.2, 3.3 and induction. Suppose
k = 2. Suppose Xo is a stable curve with two nodes obtained after
contracting two nodes from families of smooth curves, corresponding
to a point at the boundary of the Deligne-Mumford compactification
Di ∩Dj ⊂ D =Mg −Mg for some i 6= j. We may consider a local two
dimensional holomorphic family of curves X(s, t) for (s, t) ∈ ∆×∆, so
that X(s, t) is smooth for s 6= 0 and t 6= 0, X(0, t) ∈ Di and X(s, 0) ∈
Dj , and X(0, 0) = Xo.

We consider first a point X(0, t) at ∂Mg obtained by contracting 1
real cycle giving rise to a node p1(t), which may be assumed to be a
fixed node p1 with respect to a local trivialization of the family. This is
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obtained by letting s → 0 in X(s, t). Let X̂(0, t) be the normalization
of X(0, t). Theorem 1 implies that

lim
s→0

µBX(s,t) = µBX(0,t) = µB
X̂(0,t)

+ δp1 .

Xo is obtained by contracting a real 1-cycle on X(0, t) to a node p2,

which corresponds to contracting a real cycle on X̂(0, t) to a node p̂2,
where p̂2 corresponds exactly to the node p2 on Xo. Now the normal-

ization of X̂(0, 0) is precisely X̂o. Hence Theorem 1a again implies that

lim
t→0

µB
X̂(0,t)

= µB
X̂(0,0)

+ δp2 = µB
X̂o

+ δp2 .

Combining the above two identities, we see that

lim
t→0

lim
s→0

µBX(s,t) = µB
X̂o

+ δp2 + δp1 .

Note that the arguments of [F], [Y] and [We] concerning behavior
of period matrices corresponding to contraction of a real 1-cycle applies
equally well to a family of degenerating curves obtained by contract-
ing two different non-intersecting real 1 cycles as well. The end result
depends only on Xo and is independent of the paths of degeneration
taken.

Hence Theorem 1b is proved for k = 2. The same proof clearly works
for k > 2 as well.

q.e.d.

4. Convergence of Weierstrass measure on a family of curves

4.1 Suppose C is a stable curve with nodal singularities at zi, i =

1, . . . , n. Let π : C̃ → C be the normalization of C so that π−1(zi) =
{ai, bi}. Let U be a small coordinate neighborhood of zi. Then the du-
alising sheaf ωC is generated by holomorphic 1-forms in a neighborhood

of a regular point on C or C̃, and by meromorphic 1-forms η with at
worst simple poles at ai, bi over U , satisfying

Resai(η) + Resbi(η) = 0.

Now let L be an ample line bundle on a stable curve C. Let ψ, τ be
the generators of L and ωC over U respectively. Let n = h0(C,L) and
φ1, . . . , φn be a basis of H0(C,L). Define Fi,j ∈ Γ(U,OC) inductively
by

F1,jψ := φj |U j = 1, . . . , n,

Fi,jτ := dFi−1,j i = 2, . . . , n, j = 1, . . . , n

Define also

ρ = det(Fi,j)ψ
nτ (n−1)n/2.
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It follows easily by checking compatibility on different charts that ρ

defines a section in H0(C,Ln ⊗ ω(n−1)n/2
C ). Then as in [LW], we define

p ∈ C to be a Weierstrass point of Ln ⊗ ω(n−1)n/2
C if and only if

(16) ordpρ > 0.

It follows from [LW] that the number of Weierstrass points counted
with multiplicity is given by n deg(L)+(n−1)n(g−1). Suppose n > g−1,
the Riemann-Roch formula shows that deg(L) = g−1+n and hence the
number of Weierstrass points counted with multiplicity is then given by
n2g.

4.2 Let us consider first in details the situation that X̂o has genus 0, a
case that partly motivates the present paper.

Lemma 1. Let Xo be an irreducible rational nodal curve. For each
m ∈ N, limt→0 µ

W
Xt,mKt

= µWXo,mKo.

Proof We assume that Xo is a rational curve with g double points.
Hence Xo is formed by identifying g pairs of distinct points bi and ci,
i = 1, . . . , g on P 1

C. In this case, the discussions in 5.1 could be realized
concretely as follows (for details, see [M2],[L1]).

The dualizing sheaf of Xo is spanned by

ωi =
dz

z − bi
− dz

z − ci
i = 1, 2, ..., g

Thus the period lattice Λ is generated by the g vectors

{(2π
√
−1, 0, ..., 0), (0, 2π

√
−1, 0, ..., 0), ..., (0, ..., 0, 2π

√
−1)}

Hence the generalized Jacobian is Cg/Λ ∼= (C∗)g. Let Xs
o be the set

of points on Xo with all bi, ci removed, i.e., the set of smooth points.
And we further assume xo = ∞ ∈ Xs

o , this can be done by choosing
appropriate coordinate. Choosing xo as basepoint, we define the Abel
mapping ϕ : Xs

o → J(Xo) ∼= (C∗)g by

ϕ(x) =

(
exp

(∫ x

xo

ω1

)
, · · · , exp

(∫ x

xo

ωg

))

=

(
x− b1
x− c1

, · · · , x− bg
x− cg

)
This induces a map ϕ : (Xs

o)m → (C∗)g given by

ϕ(
∑
k

nkxk) =

(∏
k

(
xk − b1
xk − c1

)nk
, · · · ,

∏
k

(
xk − bg
xk − cg

)nk)
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Let λi = exp(zi) be coordinates on (C∗)g. Define τ on J by

τ(λ1, . . . , λg) = det


1− λ1 · · · 1− λg
b1 − c1λ1 · · · bg − cgλg

...
...

bg−1
1 − cg−1

1 λ1 · · · bg−1
g − cg−1

g λg


Let Xt be a family of smooth curves of genus g degenerating to Xo. It
is a standard fact ([F]) that the period matrices Ωij(t) of Xt satisfy

Im(Ωii(t))→∞ as t→ 0

and
Ωij(t) are continuous for |t| < ε

Let Ωii(t) be the diagonal of Ω(t), we have, upon direct computation,
that, as t→ 0,

θ

(
z − 1

2
Ωii(t),Ω(t)

)
converges to τ up to a constant multiple. ([M2], page 3.253.)

Hence τ defines the Jacobian divisor θo on Xo.

To sum up, consider a family of stable curves Xt with smooth Xt when
t 6= 0 and Xo is a stable curve with double points in the sense of Deligne-
Mumford. In the case that Xo is just a rational curve with double
points, we know that there is a convergence of θt to θo. Hence from
the definition of Weierstrass points earlier, there is a convergence of the
Weierstrass divisors as claimed in the statement of the lemma.

q.e.d.

4.3 In this subsection, we generalize the argument in the previous sub-
section to the case of arbitrary genus.

Consider now the family of stable algebraic curves of genus g, π :
X → S as before so that fibers Xt are smooth except for Xo which
has nodal singularity with a single node at p. We define µWmLt as the
distribution associated to Weierstrass points on Xt as in (2).

Lemma 2. Assume that Xo is stable. Then for each m ∈ N,

lim
t→0

µWXt,mLt = µWXo,mLo .

Proof Since there is only one node, Xo is either irreducible or of compact
type. A Weierstrass point on a stable curve is defined by (16). For the
case of irreducible stable curve, the lemma follows from [L2] Theorem
1. In the case that Xt is stable and of compact type, it follows from
[EN] Theorem 8.4, [ES] Theorem 6. In either case, this follows from the
convergence of the Wronskian in the definition of Weierstrass points.
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An alternative approach closer to the description in (4.2) for irre-
ducible stable rational curve can be given as follows, making use of the
alternative definition of Weierstrass points as given in (1). Denote by
Picd = Jd the Picard variety of degree d on X, parametrizing line bun-
dles of degree d. Picd may not be projective if X is not smooth. In
such case, we may consider compactified Jacobian and theta divisor as
defined in [A1], [A2]. If X is a smooth curve, the theta divisor can be
defined intrinsically as the locus of L ∈ Picg−1(X) with h0(X,L) 6= 0.
This is used as definition for stable curve as well in the following way.

According to [A1], there is a complete moduli of semiabelic pairs de-
fined in [A1], for which the compactified Jacobian and its theta divisor
is such a pair. From the work of Simpson in 1.21 of [S], see also the
explanation in 1.2-1.3 of [A2], there is a family π : J → S of com-
pactified Jacobians of degree g − 1 over the base curve S in which each
fiber is the compactified Jacobian of Xt, for which it follows from [A2]
that we may choose an arbitrary polarization. Let L be the ample line
bundle which gives the polarization. From [A2], π∗L is invertible by co-
homology and base change. Choosing a trivialization of π∗L, this gives
a section s ∈ H0(S, π∗L) whose restriction st to the fiber over t is the
unique section of Lt. This gives a family of theta divisors Θt,∀t ∈ S.

The setting above implies that the theta divisor on Jt for t 6= o
converges to Jo as t→ o, which is a restatement of Mumford in higher
genus case at the central fiber.

Then from the definition of Weierstrass points and weights, it follows
that

lim
t→0

µWXt,mLt = µWXo,mLo .

q.e.d.

We remark that the assumption that Xt is stable irreducible or of
compact type is used in the second approach above. It is well known
that there is isomorphism between Picard varieties of different degrees
for smooth curves, after translation by a based line bundle with degree
the difference of the two. This could also be done for stable irreducible
curves or curves of compact type. The problem is in general subtle for
arbitrary stable curves. We refer the readers to [GZ] for some results
in this direction.

5. Weierstrass measure on stable curves

5.1 Recall that p is the node on Xo, corresponding to a and b on X̂o.
Let U be a small neighborhood of p corresponding to the union of two
disks Ua and Ub around a and b respectively. Let ∆ be a sufficiently
small neighborhood of o in S. We may assume that U can be extended
to U on π−1(∆)∩X so that for Ut = U ∩Xt, Xt−Ut is diffeomorphic to
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Xo − Uo for all t ∈ ∆− {o}. The following lemma follows immediately
from the steps of proof in [N].

Lemma 3.

(17) lim
m→∞

lim
t→o

µWmLt(x) = lim
t→o

lim
m→∞

µWmLt(x)

uniformly for x ∈ (π−1(∆)− U).

Proof We are going to follow the proof of Neeman in Chapter 2 of [N]
on x ∈ (π−1(∆) − U). The reason that the argument goes through is
that we have nice convergence of the Bergman metric and geometry on
(π−1(∆)− U) as t→ o.

As in [N], we consider ft,n : Xt×Θt → Jt,g−1+n given by ft,n(x, θ) =
nx + θ. Let Ft ⊂ Xt × Θt be the union of the singular set of Ct × Θt

and the ramification locus of ft,n. By abuse of language, we denote by
Jt,g−1+n ∩ ((π−1(∆)− U)) the subset of Jt,g−1+n given by the image of
the Jacobian image of Xt∩ ((π−1(∆)−U)). We are actually considering
only the restriction of ft,n to f−1(Jt,g−1+n ∩ (π−1(∆)− U)), namely

ft,n : Ct ×Θt|f−1(Jt,g−1+n∩((π−1(∆)−U)) → Jt,g−1+n ∩ ((π−1(∆)− U)).

Now for a translational invariant vector field Vt on Jt,g−1+n∩((π−1(∆)−
U)), we have f−1

t,n (Vt) = V n
t,1 ⊕ V n

t,2. As in Lemma 2.3 of [N], we have

(18) V n
t,1 =

1

n
V 1
t,1 =

1

n
Vt,1, V n

t,2 = V 1
t,2 = Vt,2.

As in Lemma 2.3 of [N], the operators f−1
t,n (V 1

t ) · · · f−1
t,n (V 1

t ) on com-
pact space Dt ⊂ (Xt × Θt − Ft)|f−1(Jt,g−1+n∩((π−1(∆)−U)) are uniformly

bounded as operators Cr+mDt
→ CrDt as n varies and is uniform in t ∈ ∆.

Let ht : Xt × Θt|f−1(Jt,g−1+n∩((π−1(∆)−U)) → R be a smooth function
with compact support. Define Avnht : Jt,g−1+n → R by

(Avnht)(z) =
1

gn2

∑
x∈Wt(z)

ht(x, z),

where Wt(z) denotes the set of Weierstrass points of z with multiplici-
ties. Again, the argument of Lemma 2.6 of [N] implies that there exists
M ∈ R such that for all n > g − 1 and t ∈ ∆ that

‖V 1
t · · ·V m

t (Avnht)‖∞ 6M.

Similarly, it follows as Lemma 2.7 of [N] that the k-th Fourier coefficient

of Avnht for k = (k1, . . . , k2g) 6= (0, 0, ..., 0), denoted by (Avnht)(̂k),
satisfies

(Avnht)(̂k) 6
M∑2g

i=1 |ki|2g+1
.
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Then Lemma 2.8 of [N] implies that the 0-th Fourier coefficient of

Avnht, denoted by (Avnht)(̂0), satisfies

(Avnht)(̂0) =

∫
Ct×Θt|f−1(Jt,g−1+n∩((π−1(∆)−U))

ht · dBt.

The argument of Lemma 2.9 of [N] then implies that

Avnht −
∫
Ct×Θt|f−1(Jt,g−1+n∩((π−1(∆)−U))

ht · dBt

converges uniformly to 0 as n → ∞ and uniformly in t → o. Now we
may use the argument of Lemma 2.9 of [N] to show that the above
convergence actually holds for arbitrary continuous function ht on Ct×
Θt|f−1(Jt,g−1+n∩((π−1(∆)−U)), uniformly in n → ∞ and in t → o. In par-
ticular, we may interchange the order of limits as given in our statement.

q.e.d.

5.2 Proof of Theorem 2 Let V be a small neighborhood of a node
p ∈ Xo as mentioned at the beginning of 5.1. We extend V smoothly
to a neighborhood V in the total family and use the same notation
to denote V ∩ Xt for t sufficiently small. Note that all of this can be
performed in a local coordinate as discussed in 2.4, 2.5. It follows from
Lemma 2, Lemma 3 and Theorem 1 that for any small neighborhood U
of the node and any x ∈ U ,

lim
m→∞

µmLo = lim
m→∞

lim
t→o

µWmLt(19)

= lim
t→o

lim
m→∞

µWmLt

=
1

g
· lim
t→o

µBXt .

Hence by shrinking V to the node, we conclude that

(20) lim
m→∞

µmLo |Xo−{p} = 1/g · lim
t→o

µBXt |Xo−{p} = 1/g · µBXo |Xo−{p}.

Consider first the case (a) that the nodal point p is separating. In
this case, the sum of genera of the two components of Xo is precisely g.
Hence

(21)
1

g

∫
Xo

µBXo =
1

g

∫
Xo−{p}

µBXo = 1.

On the other hand,

(22) lim
m→∞

µmLo |Xo−{p} = lim
m→∞

lim
t→o

µmLt |Xo−{p}
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and each limm→∞ µmLt is given by 1
g · µ

B
Xt

and hence

(23)

∫
Xo

lim
m→∞

µmLo = 1.

It follows from equations (20), (21) and (23) that there is no mass
trapped in p and hence

(24) lim
m→∞

µmLo |Xo = 1/g · lim
t→o

µBXt |Xo = 1/g · τ∗µBX̂o .

This corresponds to (a).
Consider now (b) for which Xo is obtained from contracting a real

cycle on Xt to a non-separating node on Xo. The Genus of Xt is g for

each t 6= 0 and the genus of X̂o is g − 1. It follows that

lim
m→∞

∫
Xt

µmLt = g for t 6= 0;

lim
m→∞

∫
Xo

µmLo = g − 1.

It follows that the difference in the measure is supported at the node
as t→ 0. Hence

lim
m→∞

µmLo |Xo = 1/g · (lim
t→o

µBXt |Xo + δp) = 1/g · (τ∗µBX̂o + δp).

q.e.d.

5.3 Proof of Theorem 3
Let Xo be a stable curve represented by a point on Mg −Mg. We

may regard Xo = X0 as the degeneration of a family of smooth curves
Xt, t ∈ ∆∗ by contracting a finite number of real 1-cycles γi, i = 1, . . . , l.
Denote by pi the nodes on Xo.

Consider first the case (b) that Xo is irreducible. In such case, the

normalization ν : X̂o = ∪l+1
i=1Yi → Xo has l+1 disconnected components

and there exist q12 ∈ Y1, qi1, qi,2 ∈ Yi for 2 6 i 6 l − 1, and ql,1 ∈ Yl so
that ν(qi+1,1) = ν(qi,2) = pi. It the known that the sum of the genera

satisfies
∑l

i=1 g(Yi) = g. Let V be a neighborhood of the nodes. V
consists of several components if l > 1. In such case, identity (19) still
holds and for x ∈ Xo − V in the notation of proof of Theorem 2,

(25) lim
m→∞

µWmLo =
1

g
· lim
t→o

µBXt .

From Theorem 1, we conclude that limt→o µ
B
Xt

= µB(X̂0) =
∑l

i=1 µ
B(Yi),

since all the nodes are separating. Hence we conclude that

(26) lim
m→∞

µWmLo =
1

g
(
l∑

i=1

µB(Yi))
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on Xo − V. After shrinking V to the points pi, we conclude that the

identity (25) holds everywhere on Xo−{p1, . . . , pl}. Since
∑l

i=1 g(Yi) =
g, we know that∫

Xo−∪li=1{pi}
µWmLo =

1

g

∫
Xo−∪li=1{pi}

l∑
i=1

µB(Yi) = 1,

where we used the fact that Yi are smooth for 1 6 i 6 l and hence
µB(Yi) are smooth measures as well. It follows that no mass is trapped
in pi, i = 1, . . . , l. Hence the identity (26) holds as a measure everywhere
on Xo.

Consider now the case (a). In this case, Xo is of compact type with

k non-separable nodes pi, i = 1, . . . , k. The normalization ν : X̂o → Xo

is smooth and irreducible. There are points qij , j = 1, 2, i = 1, . . . , k

on X̂o such that ν(qij) = pi. The identity (25) still holds in this case.
Hence as in (b),

g lim
m→∞

µWmLo = ν∗µ
B
X̂o

+ µo,

where µo is supported on the nodes {p1, . . . , pl}. From our normaliza-
tion,

∫
Xo
µWmLo = 1 and

∫
Xo
µB
X̂o

= g − l, we conclude
∫
Xo
µo = l. Hence

we may assume that µo =
∑l

i=1 aiδpi with 0 6 ai and
∑l

i=1 ai = l. In
other words,

(27) g lim
m→∞

µWmLo = ν∗µ
B
X̂o

+
l∑

i=1

aiδpi .

We claim that ai 6 1 for 1 6 i 6 l. For simplicity of explanation, we
consider first the case that Xo has exactly two nodal points p1, p2 ∈ Xo

in Mg. In our setting, the line bundle Lo at Xo extends to a neigh-

borhood U of o in Mg. Consider a deformation family of stable curves
Xt centered at Xo so that each Xt has precisely one nodal point p1t for
t 6= 0 and Xo corresponds to t = 0. In other words, p2 on Xo is the
result of contracting a real cycle C2 on Xt. Here we may assume that
t ∈ ∆, a small disk centered at o and that coordinates described as in
4.2, 4.3 are used.

Since X̂t has just a single node at pt1, we know that gµWXt,Lt =

g limm→∞ µ
W
Xt,mLt

= (νXt,pt1)∗µ
B
Xt

+ at1δpt1 with at1 = 1 from Theo-

rem 2, where ν
X̂t,pt1

: X̂t → Xt is the normalization Xt at p1t on Xt.

This holds for all t ∈ ∆∗. In particular, in taking t → 0, and applying
Fatou’s Lemma, we conclude that

a1 = a01 6 lim inf
t→0

at1 6 1.

Similarly, a2 6 1.
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In the general situation of k > 2, we choose a local family of irre-
ducible stable curves Xt centered at Xo such that Xt has only a node
at pt1 and is smooth elsewhere for t ∈ ∆∗. The same argument as above
shows that a1 6 1. Applying the same argument to pti for 1 6 i 6 k,
we conclude that ai 6 1 for all i and hence the claim is proved.

Since
∑l

i=1 ai = l, it follows from the claim that actually ai = 1 for
1 6 i 6 k.

q.e.d.

5.4 Proof of Corollary 1
Let X be a Riemann surface of genus g. After contracting a non-

separating real one cycle which is homologically non-trivial, we obtain
a stable curve X1 with a node. X1 lies in the boundary of the Deligne-

Mumford compactification Mg − Mg. The normalization of X̂1 is a
curve of genus g−1. Repeat the above procedure by contracting a non-

separating real 1-cycle on X̂1. It corresponds to contracting another

non-separating real 1-cycle on X̂1 and we arrive at a stable curveX2 with
two separate nodes. Inductively after g steps, we arrive at a rational
curve Xg with g nodes.

Suppose now Xo is a rational curves with nodal points obtained as
above. Application of Theorem 3 to Xo gives precisely the formula in
Corollary 1.

q.e.d.
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