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Abstract

It was shown by A. Beauville that if the canonical map ϕ|KM | of a complex smooth projective
surface M is generically finite, then deg(ϕ|KM |) ≤ 36. The first example of a surface with
canonical degree 36 was found by the second author. In this article, we show that for any
surface which is a degree four Galois étale cover of a fake projective plane X with the largest
possible automorphism group Aut(X) = C7 : C3 (the unique non-abelian group of order 21), the
base locus of the canonical map is finite, and we verify that 35 of these surfaces have maximal
canonical degree 36. We also classify all smooth degree four Galois étale covers of fake projective
planes, which give possible candidates for surfaces of canonical degree 36. Finally, we also confirm
in this paper the optimal upper bound of the canonical degree of smooth threefolds of general
type with sufficiently large geometric genus, related to earlier work of C. Hacon and J.-X. Cai.

1. Introduction

Let M be a smooth complex projective minimal surface of general type with pg(M) 6= 0.
Assume that the canonical map,

ϕ = ϕ|KM | : M 99KW := ϕ(M) ⊆ Ppg(M)−1

is generically finite onto its image. We are interested in the canonical degree of M , the degree of
ϕ. If ϕ is not generically finite, we simply say that M has canonical degree zero. The following
proposition was proved in [1], cf. [19]. We include the proof here for completeness.

Proposition 1.1. Let M be a minimal surface of general type whose canonical map ϕ =
ϕ|KM | is generically finite. Then degϕ ≤ 36. Moreover, degϕ = 36 if and only if M is a smooth
ball quotient B2

C/Σ with pg(M) = 3, q(M) = 0, and |KM | is base point free.

Proof. Let P be the mobile part of |KM |. Let S →M be a resolution of P and let PS be
the induced base point free linear system defining S →W = ϕ(M). Then

degϕ · (pg − 2) ≤ degϕ · degW = P 2
S ≤ P 2 ≤ K2

M ≤ 9χ(OM ) ≤ 9(1 + pg).

The first inequality is the degree bound for a non-degenerate surface in Pn given in [1], while
the fourth inequality is the Bogomolov-Miyaoka-Yau inequality. Hence as pg ≥ 3, we have

degϕ ≤ 9(
1 + pg
pg − 2

) ≤ 36.

Moreover, degϕ = 36 only when pg(M) = 3, q(M) = 0, and P 2
S = P 2 = K2

M . This is only
possible when |KM | is base point free. In such a case, K2

M = 36 = 9χ(OM ) and hence M
is a smooth ball quotient B2

C/Σ by results of Aubin and Yau, cf. [1] or [3].
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Notation. Throughout this paper, we do not distinguish line bundles with divisors. The
linear equivalence and numerical equivalence of divisors are written respectively as D1 ∼ D2

and D1 ≡ D2. The cyclic group of order n is denoted by Cn. The group C7 : C3 is the unique
non-abelian group of order 21. The projective space of dimension n over C is denoted by Pn.
A finite field of order n is denoted by Fn.

From Proposition 1.1, it is an interesting problem to know the geometric realization of
possible canonical degrees and many surfaces with canonical degree at most 16 have been
constructed, see [15] or [9] for more references. However, the first example of a surface with
maximal canonical degree 36 was constructed only recently by [19] as a suitably chosen C2 ×
C2-Galois cover of a special fake projective plane X. The fake projective plane X in [19] has
Aut(X) = C7 : C3, and by [14] it satisfies h0(X, 2LX) = 0 for every ample generator LX of
NS(X). The choice of the lattice for the ball quotient M is explicitly described in [19] via the
classifying data of [16] and [7].

Here are the main goals of this paper. The first goal is to construct more examples of
surfaces with maximal canonical degree. This is given as Theorem 1.4 below. Then we examine
the corresponding question in complex dimension 3, given as Corollary 1.5 below. A second
goal is to identify all potential examples of surfaces of canonical degree 36 constructed as a
degree four Galois étale cover of a fake projective plane. We prove that for these Galois covers
the canonical maps have at worst discrete base locus whenever the underlying fake projective
plane has the largest possible automorphism group C7 : C3. This is given as Theorem 1.2 and
Proposition 1.3. For the presentation of this paper, we start with Theorem 1.2 hoping that it
would give the reader a more comprehensible overall picture.

We remark that our proof of Theorem 1.4 is essentially independent of Theorem 1.2 and
Proposition 1.3. A reader who is interested only in new surfaces of canonical degree 36 may
briefly go over statements in earlier sections and proceed directly to Section 4 of the paper.

Recall that a fake projective plane is a ball quotient X = B2
C/Π for some lattice Π ⊆ PU(2, 1),

where Π is constructed as a subgroup of a maximal arithmetic lattice Γ. An unramified cover
M of X is given by B2

C/Σ for a normal subgroup Σ C Π of finite index. For the sequence of
Galois covers

M := B2
C/Σ

p→ X = B2
C/Π

q→ B2
C/Γ

corresponding to the normal subgroups Σ C Π C Γ, one has the covering group Gal(M/X) =
Π/Σ and Aut(X) = Γ/Π. We focus on the case when |Gal(M/X)| = 4 and Aut(X) = C7 : C3.
Our first theorem identifies potential examples of surfaces of canonical degree 36.

Theorem 1.2. Let M → X be a degree four Galois étale cover over a fake projective plane
X with Aut(X) = C7 : C3. Then q(M) = 0 and the base locus of the linear system |KM | is
discrete.

A degree four Galois étale cover M → X over a fake projective plane X is determined by
a quotient of H1(X,Z) of order four, to be explained in details in Lemma 2.1 of Section 2.
The degree of this cover is dictated by the possible existence of a surface of maximal canonical
degree, i.e., K2

M/K
2
X = 4. There are many degree four covers of fake projective planes. For

future reference, we classify all such surfaces. In the table below, only lattices of fake projective
planes giving rise to Galois étale covers of degree four are listed, which is the case if there is a
normal subgroup of index four in the lattice Π corresponding to a given fake projective plane
X = B2

C/Π. This list of the fake projective planes follows the conventions in [16] and [7]. In
the following table, we have
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(1) column 1: k is a totally real number field, ` is a totally imaginary extension of k, and
T represents a finite number of places relevant to the classification. These are notations
used to classify fake projective planes defined in [16];

(2) column 2 the corresponding naming of classes of maximal arithmetic lattices containing
fake projective planes in [7] corresponding to Γ in the notation of [16], where a and p
are data from the first column;

(3) column 3: the naming of the individual fake projective planes in each class used in [7];
(4) column 4: Aut(X) is the automorphism group of a fake projective plane X;
(5) column 5: the first homology class of a fake projective plane X;
(6) column 6: N0 is the number of degree 4 coverings of X, which is the number of subgroups

of index four of the lattice Π;
(7) column 7: N1 denotes the number of normal coverings among the degree 4 coverings

above.
All the examples in the last column satisfy H1(M,Q) = 0, which implies q(M) = 0 by Poincaré
Duality.

(k, `, T ) class X Aut(X) H1(X,Z) N0 N1

(Q,Q(
√
−1), {5}) (a = 1, p = 5, ∅) (a = 1, p = 5, ∅, D3) C3 C2 × C4 × C31 4 3

(a = 1, p = 5, {2}) (a = 1, p = 5, {2}, D3) C3 C4 × C31 4 1
(Q,Q(

√
−1), {2, 5}) (a = 1, p = 5, {2I}) (a = 1, p = 5, {2I}) {1} C2 × C3 × C2

4 47 19

(Q,Q(
√
−2), {3}) (a = 2, p = 3, ∅) (a = 2, p = 3, ∅, D3) C3 C2

2 × C13 4 1
(a = 2, p = 3, {2}) (a = 2, p = 3, {2}, D3)) C3 C2

2 × C13 4 1
(Q,Q(

√
−2), {2, 3}) (a = 2, p = 3, {2I}) (a = 2, p = 3, {2I}) {1} C4

2 × C3 83 35

(Q,Q(
√
−7), {2}) (a = 7, p = 2, ∅) (a = 7, p = 2, ∅, D327) C7 : C3 C4

2 91 35
(a = 7, p = 2, ∅, 721) {1} C2

2 × C3 × C7 3 1
(a = 7, p = 2, {7}) (a = 7, p = 2, {7}, D327) C7 : C3 C3

2 7 7
(a = 7, p = 2, {7}, D37′7) C3 C2

2 × C7 2 1
(a = 7, p = 2, {7}, 721) {1} C3

2 × C3 19 7

(Q,Q(
√
−7), {2, 3}) (a = 7, p = 2, {3}) (a = 7, p = 2, {3}, D3) C3 C2 × C4 × C7 4 3

(a = 7, p = 2, {3}, 33) {1} C2
2 × C3 × C4 19 11

(a = 7, p = 2, {3, 7}) (a = 7, p = 2, {3, 7}, D3) C3 C4 × C7 2 1
(a = 7, p = 2, {3, 7}, 33) {1} C2 × C3 × C4 7 3

(Q,Q(
√
−7), {2, 5}) (a = 7, p = 2, {5}) (a = 7, p = 2, {5}) {1} C2

2 × C9 3 1
(Q,Q(

√
−15), {2}) (a = 15, p = 2, ∅) (a = 15, p = 2, ∅, D3) C3 C2

2 × C7 2 1
(a = 15, p = 2, ∅, 33) {1} C3

2 × C9 11 7
(a = 15, p = 2, {3}) (a = 15, p = 2, {3}, 33) C3 C3

2 × C3 19 7
(a = 15, p = 2, {5}) (a = 15, p = 2, {5}, 33) {1} C2

2 × C9 3 1
(a = 15, p = 2, {3, 5}) (a = 15, p = 2, {3, 5}, 33) C3 C2

2 × C3 1 1
(C18, {v3}) (C18, p = 3, ∅) (C18, p = 3, ∅, d3D3) C3 × C3 C2

2 × C13 1 1
(C20, {v2}) (C20, {v2}, ∅) (C20, {v2}, ∅, D327) C7 : C3 C6

2 651 651
(C20, {v2}, {3+}) (C20, {v2}, {3+}, D3) C3 C4 × C7 2 1

(C20, {v2}, {3+}, {3+}3) {1} C2 × C3 × C4 7 3
(C20, {v2}, {3−}) (C20, {v2}, {3−}, D3) C3 C4 × C7 2 1

(C20, {v2}, {3−}, {3−}3) {1} C2 × C3 × C4 7 3

Table 1

Proposition 1.3. There are altogether 835 lattices which give rise to 1670 non-
biholomorphic smooth minimal surfaces as degree four Galois étale covers of fake projective
planes with q(M) = 0.
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From Table 1, there are 35 degree four Galois étale covers of the fake projective plane
(a = 7, p = 2, ∅, D327), which all have Galois group C2 × C2. Generalizing the result of [19],
we show that these étale covers all have canonical degree 36.

Theorem 1.4. The 35 degree four Galois étale covers of the fake projective plane (a =
7, p = 2, ∅, D327), all with Galois group C2 × C2, are minimal surfaces of general type with
canonical degree 36.

Our result has the implication on the optimal canonical degree for smooth threefolds of
general type with large geometric genus. We refer the readers to Section 5 for more details.

Corollary 1.5. There exist many examples of smooth minimal threefolds of general type
Y with the degree of the canonical map deg(Φ|KY |) = 72. In fact, there exist such threefolds
with pg(Y ) = 3g and K3

Y = 72(g − 1) for each g > 2.

The surface studied in [19] has Picard number one, which is a deep result in automorphic
forms from [18], [2], and is used in [19] to simplify the geometric arguments. For a general
degree four étale cover of a fake projective plane, it is not clear whether the Picard number
equals to one. Comparing to the result in [19], one technical improvement in the present article
is to show that any surface as in Theorem 1.2 possesses a generically finite canonical map.
Continuing from this, mobility of the canonical system is proved but in a different argument
from [19]. In fact, we can show that any degree four étale cover of a fake projective plane with
Aut(X) = C7 : C3 has generically finite canonical map and at worst discrete base locus. To get
rid of the finite number of base points, we need more detailed information about the canonical
sections as given in [19], see in particular the corrigendum there. By analyzing carefully the
method used in [19], we come up with new examples of surfaces with maximal canonical degree
by considering new degree four Galois étale covers of the same fake projective plane X used in
[19]. These new étale covers correspond to various C2 × C2 quotient groups of H1(X,Z) = C4

2 .
In such cases, we are able to write down relevant global sections explicitly with the help of
Magma and finish the prove of base point freeness. This last step is where we have to restrict
further the type of lattice Σ associated to M .

To find which étale cover works for our scheme, as a first step we list all normal subgroups of
index four in a lattice associated to a fake projective plane. All fake projective planes supporting
such a subgroup are listed in the third column of Table 1 above. Now for each of the listed
surfaces, we exhaust all possible normal subgroups of index four. The procedure of finding such
a surface as well as verification of necessary conditions stated in Theorem 1.2 and Proposition
1.3 is similar to that in [19]. In [19], the choice of the C2 × C2 Galois étale cover is very specific
and has to come from killing the 2-torsion invariant line bundles under a Sylow 3-subgroup
of the automorphism group C7 : C3. In this paper, we obtain more examples by overcoming
this technical hurdle, namely, we consider all possible C2 × C2 Galois étale covers of the fake
projective plane in [19].

The explicit computation is accomplished by using Magma. The proof of Theorem 1.4
generalizes the argument of [19].

Here is the organization of this paper. We first prepare some preliminary results related to
our construction in Section 2. The proofs of Theorem 1.2 and 1.4 are given in Section 3 and 4
respectively. Finally we study the corresponding problem in dimension three in Section 5.
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2. Preliminary discussions and idea of proofs

Let X = BC/Π be a fake projective plane with π1(X) = Π. It is known from definition that
the first Betti number of X is trivial. According to [16], there is always a nontrivial torsion
element in H1(X,Z). The torsion group H1(X,Z) is available from [7].

Lemma 2.1. A fake projective plane X possesses a degree four Galois étale cover if and
only if there is a quotient group of order four of H1(X,Z).

Proof. We know that H1(X,Z) is a direct sum of finite cyclic abelian groups as the first
Betti number of X is trivial. If Q is a quotient group of order four of H1(X,Z), then there is
a homomorphism

ρ : Π→ Π/[Π,Π] = H1(X,Z)→ Q.

The kernel of ρ gives rise to a normal subgroup Σ of index four in Π, with Q as the deck
transformation group of the covering map M = B2

C/Σ→ X = B2
C/Π.

On the other hand, if there is a normal subgroup Σ of index four in Π, it leads to a
homomorphism σ : Π→ Π/Σ. As a group of order four is always abelian, σ factors through
a homomorphism Π/[Π,Π]→ Π/Σ. We conclude that Π/Σ lives as a quotient group of order
four of Π/[Π,Π] = H1(X,Z).

We consider an étale cover π : M → X corresponding to a subgroup π1(M) ≤ Π of index
four. In particular, the finite group G = Π/π1(M) is either C2 × C2 or C4.

Lemma 2.2. Let M be a smooth projective surface and assume that there is an étale
cover π : M → X of degree four over a fake projective plane X. Suppose that q(M) = 0, then
pg(M) = 3.

Proof. Since π : M → X is étale and pg(X) = q(X) = 0, χ(OM ) = 4χ(OX) = 4. It follows
that pg(M) = 3 if q(M) = 0.

Suppose now a surface M is constructed as in Lemma 2.2. We study the canonical map ϕ =
ϕ|KM | : M 99K P2. We will assume that π : M → X is a Galois cover, i.e., Σ := π1(M) ≤ Π is
normal. Note that then |KM | is invariant under the Galois group G := Gal(M/X) = Π/π1(M).

Let us relate the canonical sections from Lemma 2.2 to divisors on X. It is known from the
Universal Coefficient Theorem that torsions in H1(X.Z) give rise to a torsion line bundle on
X, cf. Lemma 4 of [14]. Denote by Lχ the invertible sheaf on X corresponding to a torsion
line bundle on X given by a character χ. In this case, the trivial character OX is denoted by
L1. The push forward of the structure sheaf of M splits into eigen-sheaves

π∗OM =
⊕

χ:G→C∗

Lχ,

Denote by ωM the dualizing sheaf of a surface M . Then

π∗ωM =
⊕

χ:G→C∗

ωX ⊗ Lχ.

It follows from the degeneration of the Leray spectral sequence that

Hi(M,ωM ) =
⊕

χ:G→C∗

Hi(X,ωX ⊗ Lχ) (2.1)
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for all i. Hence vanishing of q(M) implies that H1(X,ωX ⊗ Lχ) = 0 for all χ : G → C∗. By
Serre Duality, h2(X,ωX ⊗ Lχ) = h0(X,L−1

χ ), which is either 0 or 1 depending on whether
χ is trivial of not. From Riemann-Roch formula and the fact that X is a fake projective
plane, it follows that h0(X,ωX ⊗ Lχ) = 1 for each χ 6= 1, which corresponds to three linearly
independent sections in Lemma 2.2. Denote by D1, D2, D3 the corresponding curves on X. It
follows that H0(M,KM ) is generated by π∗(Di), i = 1, 2, 3, noting that π∗Lχ ∼= OM .

Lemma 2.3. Assume that q(M) = 0 and let D1, D2, D3 be divisors obtained as above.
Assume that D1 ∩D2 ∩D3 = ∅. Then H0(M,KM ) is base point free and the canonical degree
of M is 36.

Proof. Let x be a point in the base point set of |KM |. Since |KM | is invariant under the
Galois group G, π(x) ∈ D1 ∩D2 ∩D3, which is empty. It follows from Proposition 1.1 that the
canonical degree of M is 36.

The last lemma would be utilized in Section 4 to give a proof of Theorem 1.4. The
presentation here is a simplification of the original one, thanks to the suggestion of the referee.

3. General constraints on base point set

The goal of this section is to give a proof of Theorem 1.2, which gives constraints on the
base point set of |KM | without knowledge on an explicit description of fake projective plane
X. Here as ρ(X) = 1, we always denote by LX an ample generator of Pic(X). Also recall that
for a fake projective plane X, we have pg(X) = q(X) = 0 and L2

X = 1 by definition. We begin
with the following simple observations.

Lemma 3.1. Let X be a fake projective plane and let LX be an ample generator of Pic(X).
Then h0(X,L) ≤ 1 for any line bundle L ≡ LX and h0(X,L′) ≤ 2 for any line bundle L′ ≡ 2LX .

Proof. If L′′ is a line bundle with L′′ ≡ 4LX , then by Riemann-Roch formula h0(X,L′′) =
3. But if L ≡ LX and H0(X,L) has two linearly independent sections x and y, then
{x4, x3y, x2y2, xy3, y4} are five linearly independent sections of H0(X,L⊗4), which is absurd.
The second statement is proved similarly.

Lemma 3.2. If C is an irreducible and reduced curve on a fake projective plane X with
C ≡ LX , then C is smooth of genus 3.

Proof. Given an irreducible and reduced curve C, we denote by Cν the normalization of C
and ν : Cν → C the normalization morphism. The OC sheaf δ := ν∗OCν/OC is the cokernel of
the natural map OC → ν∗OCν and satisfies

g(Cν) = pa(Cν) = pa(C)− h0(C, δ).

We first remark that g(Cν) ≥ 2 as X is hyperbolic. The Ahlfors-Schwarz Lemma applied
to the composition map induced by the normalization ν′ : Cν

ν−→ C ↪→ X (cf. [6]) for the
manifolds equipped with Poincaré metrics implies that the Kähler forms satisfy ν′∗ωX ≤ ωCν ,
with equality if and only if it is a holomorphic isometry leading to totally geodesic C. Since
there is no totally geodesic curve on a fake projective plane from the proof of [14, Lemma 6],
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the inequality is strict. Hence for C ≡ kLX with k ≥ 1, integrating over Cν , we get

2k =
2

3
(KX · C) < deg(KCν ) = 2g(Cν)− 2 = k(k + 3)− 2h0(C, δ),

where we used the fact that the Ricci curvature is 3
2 of the holomorphic sectional curvature

for the Poincaré metric on X and the adjunction pa(C) = 1
2C · (KX + C). Hence k = 1 implies

that h0(C, δ) = 0 and C is smooth with g(C) = 3.

Lemma 3.3. Let X be a fake projective plane with a nontrivial automorphism group and
let C be an effective divisor such that C ≡ LX . For any nontrivial subgroup H ≤ Aut(X) with
H ∼= C3 or C7, h∗C 6= C for any h ∈ H − {e}.

Proof. Clearly C must be reduced and irreducible as ρ(X) = 1. From Lemma 3.2, C is
smooth of genus three. Suppose now h∗C = C for all h ∈ H. From [14, Lemma 6], H must act
non-trivially on C. Note that H can only be C3 or C7 from the list of [7].

If H ∼= C7, then there exists an H-fixed point on C, as by the Hurwitz formula there is
no étale cover of degree 7 from a smooth genus three curve. By [14, Lemma 7], for x =
dimCH

1(C,OC)inv we have the equation,

n = 2− 2 · 3 +
2 · 7
7− 1

(3− x) ⇒ 3n+ 7x = 9.

The only solution is (n, x) = (3, 0) and C/C7 ⊆ X/C7 is a smooth rational curve. But then
there is a non-constant lifted map from P1 to the universal cover B2

C of X/C7, this contradicts
to Liouville’s theorem.

If H ∼= C3, then there exists an H-fixed point on C, as by the Hurwitz formula there is no
étale cover of degree 3 from a smooth genus three curve. By the same argument as above, we
see that (n, x) = (5, 0) or (2, 1). In either cases, there is a non-constant lifted map from P1 or
C to B2

C, which again contradicts Liouville’s theorem.

Lemma 3.4. Let X be a fake projective plane with Aut(X) = C7 : C3. Suppose that there
is a Galois étale cover π : M → X of degree four and q(M) = 0, then the canonical map ϕ :
M 99K P2 is generically finite.

Proof. From Lemma 2.2, we know that pg(M) = 3 and hence the canonical map maps
M to P2. Write |KM | = P + F , where P is the mobile part and F is the fixed divisor. By
construction, we have ϕ = ϕ|KM | = ϕP : M 99K P2. We will abuse the notation: P will be the
mobile linear system or a general member in it.

Assume that ϕ(M) = C ⊆ P2 is a curve. We will derive a contradiction.
First of all, we claim that P is not base point free, or equivalently P 2 6= 0. Assume now

P 2 = 0. We consider G = Gal(M/X). Since g∗KM = KM for any g ∈ G, we have that g∗F = F
for each g ∈ G. Indeed, g∗P is a mobile sub-linear system of |KM | and hence g∗F ≥ F as
Weil divisors. Hence as π is Galois, F = π∗FX for an effective divisor FX on X. Moreover, if
NS(X) = 〈LX〉 for an ample divisor LX , then KX ≡ 3LX , FX ≡ lLX for some 0 ≤ l ≤ 3, and
P ≡ π∗(3− l)LX . Now, P 2 = 0 implies that l = 3 and hence P ≡ 0. This is a contradiction as
a non-zero effective divisor cannot be numerically trivial.

Since ϕ : M 99K C ⊆ P2 is not a morphism, we take a composition of finitely many smooth
blow-ups ρ : M̂ →M to resolve P and let ψ : M̂ → C ⊆ P2 be the induced morphism. We have
the following diagram after taking the Stein factorization of ψ : S → C:
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M̂

M C ⊆ P2

C̃

ρ

β

ϕ

α
ψ

If ρ∗P = P̂ + F̂ , where P̂ = ψ∗|OC(1)| is base point free, F̂ ≥ 0 is the fixed divisor, and
ψ = ψP̂ , then F̂ is a non-trivial effective ρ-exceptional divisor with β(F̂ ) = C̃. In particular,

C̃ ∼= P1 as all the irreducible components of F̂ are rational. Since α : C̃ → C is defined by
α∗|OC(1)| ⊆ |OP1(d)| for some d ≥ 1 and hence an element in P̂ is given by β∗H for some
H ∈ |OP1(d)|, we have P̂ ⊇ β∗|OP1(d)|. In particular, we get

P̂ = ψ∗|OC(1)| = β∗α∗|OC(1)| = β∗|OP1(d)|.

As dim P̂ = pg(M) = 3, we get d = 2 and C ⊆ P2 being irreducible and non-degenerate is a
smooth conic in P2.

Let M̂c be a general fibre of M̂ → C̃ and D := ρ∗(M̂c) ≡ P/2 be the corresponding prime
divisor on M . Recall that π : M → X is Galois, KM = π∗KX ≡ π∗(3LX) and P ≡ π∗(lLX)
for some 1 ≤ l ≤ 3 as P 2 6= 0, where NS(X) = 〈LX〉 and L2

X = 1. It follows from the genus
formula,

(KM +D) ·D = 2ga(D)− 2 ∈ 2Z

that l = 2 is the only possibility. Hence P ≡ π∗(2LX), F = π∗FX ≡ π∗LX , and D ≡ π∗LX .
Note that if h0(X, 2LX) = 0 for any ample generator LX on X, then we arrive the required
contradiction as 2FX 6= 0. This is exactly the argument in [19], where the vanishing holds for
X a very special fake projective plane as discussed in the introduction. Below we provide a
more elementary argument.

It is easy to see that G acts on C ∼= P1 holomorphically and induces an action on C̃. We
claim that there is always a fixed point on C̃ = P1. If G acts trivially, then every point is a
fixed point.† Otherwise, G has two fixed points on C̃ from the Lefschetz fixed point formula. In
particular, the fiber M̂c over a fixed point c is G-invariant and descends to an effective divisor
GX ≡ LX on X.‡

Suppose now that Aut(X) = C7 : C3. Note that in this case a non-trivial torsion elements is
always a 2-torsion. In particular for any σ ∈ Aut(X), σ∗GX ∼ GX + Tσ for some 2-torsion Tσ
and

σ∗(2GX) = 2σ∗(GX) ∼ 2GX + 2Tσ = 2GX .

On the other hand, for any non-trivial element σ ∈ Aut(X), GX 6= σ∗GX by Lemma 3.3. The
curves GX and σ∗GX intersect at a unique point Qσ as GX · (σ∗GX) = L2

X = 1. We claim
that there are three linearly independent sections of the form 2σ∗GX in |2GX |, which then
contradicts to Lemma 3.1.

†In fact, this case is absurd. If G acts trivially on C, then G also acts trivially on C̃ ∼= P1. Any fibre of
β : M̂ → C̃ as a section of H0(P1,OP1 (1)) is G-fixed and descends to a G-invariant section D ≡ π∗LX on M ,
which then descends to a section DX ≡ LX on X. For any two such sections D and D′ on M , D ∼ D′ implies
that DX ≡ D′X ≡ LX where π∗DX = D and π∗(D′X) = D′. Since X has only finitely many nontrivial torsion
but H0(P1,OP1 (1)) is infinite, we can find a line bundle L = LX + TX for some torsion line bundle TX on X
with dim |L| ≥ 1. This contradicts Lemma 3.1.
‡Up to here everything works for all fake projective planes with a nontrivial automorphism group.
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We fix one non-trivial σ and consider Q := Qσ. Note that then 2GX intersects with σ∗(2GX)
only at Q with multiplicity four. By the result of [16], the isotropic group at Q cannot be the
whole Aut(X). Hence there exists a nontrivial element τ ∈ Aut(X), τ 6= σ, such that τ∗Q 6= Q.
In particular, τ∗(2GX) only intersects with τ∗σ∗(2GX) at τ∗Q with multiplicity four. Since
elements in the pencil 〈µ · 2GX + λ · 2σ∗GX〉must pass through Q with multiplicity four, one of
τ∗(2GX) and τ∗σ∗(2GX) is not in 〈2GX , 2σ∗GX〉 or otherwise τ∗Q = Q. Hence h0(X, 2GX) > 2
and we have a contradiction to Lemma 3.1.

Hence we conclude that dimϕ(M) 6= 1. Since ϕ(M) ⊆ P2 has to be positive dimensional, we
conclude that ϕ : M 99K P2 must be dominant and hence generically finite.

Lemma 3.5. Let M → X be a Galois étale cover of degree four of a fake projective plane
X with Aut(X) = C7 : C3. If q(M) = 0, then the canonical linear system |KM | is mobile, i.e.,
there is no codimension one base locus.

Proof. We follow the same notation as in the proof of Lemma 3.4: NS(X) = 〈LX〉 for an
ample divisor LX , KX ≡ 3LX , FX ≡ lLX for some 0 ≤ l ≤ 3, and P ≡ π∗(3− l)LX . We claim
that l = 0.

Since dimP = pg(M)− 1 = 2 > 0, P contains a nontrivial effective divisor and hence l 6= 3.
If l = 1, then we consider the action of Aut(X) = C7 : C3 on FX = LX + T , where T is a 2-

torsion. Then the same argument as in the proof of Lemma 3.4 produces a line bundle L ≡ 2LX
with h0(X,L) > 2, but this violates Lemma 3.1.

If l = 2, then we consider the same argument as above on PX ≡ LX .
Here is an alternate argument. In the above setting, if H0(X, 2LX) = 0 for LX any ample

generator of Pic(X), then |KM | = P is mobile. Indeed, the assumption also implies that
H0(X,LX) = 0 for any ample generator of Pic(X). Hence for F = π∗FX with FX ≡ lLX , l = 0
is the only possibility and F = 0. The hypothesis holds for any fake projective plane with an
automorphism group of order 21 by a result of [14].

Proof of Theorem 1.2 First of all, from Magma, all Galois coverings of a fake projective plane
of index 4 can be listed, as is done in the proof of Proposition 1.3 below. Furthermore, Magma
tells us that abelianization of the lattices associated to such coverings are all trivial. Hence
q(M) = 0 for our examples. Theorem 1.2 now follows from Lemma 3.5.

Proof of Proposition 1.3. We simply apply the procedure of construction as in [19] to each
of the fake projective plane listed in column 3 of Table 1. We first need to enumerate all possible
surfaces as degree four Galos étale cover associated to fake projective planes as listed. It turns
out that the number of index four subgroups of the lattice Π to a fake projective plane in the
table is recorded in the column N1 in Table 1. This could be seen by considering subgroups of
order 4 in H1(X,Z) as in Lemma 2.1, or by listing index four subgroups of Π from Magma.

Now we claim that all the different sub-lattices of index 4 of Π in Table 1 give rise to non-
isometric complex hyperbolic forms in terms of the Killing metrics on the locally symmetric
spaces. For this purpose, we assume that Λ1 and Λ2 are two groups obtained from the above
procedure and B2

C/Λ1 is isometric to B2
C/Λ2. From construction, Λ1 and Λ2 are normal

subgroups of index 4 in two lattices Π1 and Π2 corresponding to the fundamental groups
of fake projective planes. Let Γ1 and Γ2 be the corresponding maximal arithmetic groups in
the respective classes. As B2

C/Λ1 and B2
C/Λ2 are isometric, Λ1 is conjugate to Λ2 as discrete

subgroups of the same algebraic group G with G⊗ R ∼= PU(2, 1). Hence the two corresponding
maximal lattices satisfy Γ1

∼= Γ2, and similarly Π1
∼= Π2. It follows that they have to come from

the same row in the Table 1 and hence correspond to the same subgroup of index 4 in the same
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lattice associated to some fake projective plane. Hence there are altogether 835 non-isometric
complex two ball quotients obtained in this way, by summing over the column of N1 in Table
1.

Now for each locally symmetric space M = B2
C/Λ obtained as above, it gives rise to a pair of

complex structures J1 and J2, which are conjugate to each other. These two complex structures
give rise to two non-biholomorphic complex surfaces S1 = (M,J1) and S2 = (M,J2). In fact,
if they are biholomorphic, the corresponding four-fold quotient S1/[Π,Λ] and S2/[Π,Λ] are
biholomorphic and are fake projective space. This contradicts the results in [13], see also the
Addendum of [16], that conjugate complex structures on a fake projective space give rise to
two different complex structures.

In general, let (M1, J1) and (M2, J2) be two complex ball quotients obtained from taking
degree 4 étale covers of some possibly different fake projective planes. If (M1, J1) and (M2, J2)
are biholomorphic, they are isometric with respect to the corresponding Bergman (Killing)
metrics. Hence from the earlier argument, M1 is isometric to M2 and we may regard M1 = M2.
Now the argument of the last paragraph implies that J1 = J2. In conclusion, we conclude that
the 1670 complex surfaces obtained from the pair of conjugate complex structures on the 835
underlying locally symmetric structures give rise to distinct complex surfaces. This concludes
the proof of Proposition 1.3.

4. New examples of surfaces with maximal canonical degree

Our goal in this section is to prove Theorem 1.4. The surface studied in [19] and here
is constructed from the fake projective plane X given in [16, Section 5.9] in the class of
(a = 7, p = 2) and is denoted by (a = 7, p = 2, ∅, D327) in the notation of [7].

Proof of Theorem 1.4. We consider π : M → X a Galois C2 × C2–étale cover of the
fake projective plane X in the class (a = 7, p = 2, ∅, D327). From Magma computation, the
irregularity q(M) = 0, cf. Proposition 1.3. Hence by Lemma 2.3, it suffices for us to prove that
the canonical map of M is base point free. From the discussion in Section 2, there are non-trivial
2-torsions τi ∈ Pic0(X) for i = 1, 2, 3 corresponding to characters of G = Gal(M/X) = C2 × C2

such that H0(X,KX + τi) = 〈ti〉 and H0(M,KM ) = 〈π∗ti| i = 1, 2, 3〉.
For the convenience of the reader, we recall the key steps of the argument in [19]. For

simplicity, we denote by G the automorphism group Aut(X) = C7 : C3. The automorphism
group of X has a presentation G = 〈a, b|a7 = b3 = 1, bab−1 = a2〉. The group G contains a
normal Sylow 7-subgroup G7 = 〈a〉, and seven conjugate Sylow 3-subgroups, one of which is
G3 := 〈b〉. We know from the Riemann-Roch formula that h0(X, 2KX) = 10. In terms of the
explicit basis of H0(X, 2KX) given by [4], the action of G is presented by

a(u0 : u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9)

= (u0 : ζ6
7u1 : ζ5

7u2 : ζ3
7u3 : ζ7u4 : ζ2

7u5 : ζ4
7u6 : ζ7u7 : ζ2

7u8 : ζ4
7u9) (4.1)

b(u0 : u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9)

= (u0 : u2 : u3 : u1 : u5 : u6 : u4 : u8 : u9 : u7) (4.2)

From the Corrigendum of [19], under the action of G7, S := ∪Σ∈C4
2−{1}H

0(X,KX + Σ)

consists of 3 orbits, where we recall that a p-torsion element Σ ∈ H1(X,Z) = C4
2 correspond

to a p-torsion element Σ ∈ Pic0(X) by the universal coefficient theorem (see [14, Lemma 4]).
(i) 〈t̃0〉 = H0(X,KX + Σ0), where Σ0 is G-invariant corresponding to an element in

H1(X/G,Z)× and t̃20 = u0.
(ii) Two disjoint G7 orbits 〈a〉t̃1 and 〈a〉t̃2, where t̃i’s are G3-invariant corresponding to

elements in H1(X/G3,Z)× − {Σ0}.
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Let v0 = u0, v1 = u1 + u2 + u3, v2 = u4 + u5 + u6, and v3 = u7 + u8 + u9. From [19], one finds
that 

t̃20 = v0,

t̃21 = v0 + 1
2 (1 +

√
−7)v1,

t̃22 = v0 + (−5 +
√
−7)v1 + 4(1−

√
−7)v2 − 4(v3)

(4.3)

with the help of elementary command IsDomain in Magma. It is proved that ∩2
i=0Zt2i = ∅,

which was verified in the Corrigendum of [19] by checking that ∩2
i=0Zt2i = ∅ on X modulo

p = 23 from the command HilbertPolynomial in Magma. We remark that the same example
was also studied later in [17], where the author independently verified with more sophisticated
techniques in Magma that the sections obtained from the above procedure do give rise to
sections in H0(M,KM ).

Now under the action of G7, the explicit sections t̃0 and aj t̃i, i = 1, 2 and 0 ≤ j ≤ 6, precisely
give the effective sections of S := ∪Σ∈C4

2−{1}H
0(X,K + Σ). We will prove that ∩2

i=0Zt2i = ∅ by

consider possible choices of {t1, t2, t3} ⊆ S = 〈t̃0〉 ∪ 〈a〉t̃1 ∪ 〈a〉t̃2 and check by Magma whether
these sections have common intersection.

Conjugating by an element in G7, we may assume that t1 belongs to {t̃0, t̃1, t̃2}. Suppose
t1 = t̃0, where t̃0 is invariant as a set under G, then conjugate by an element in G7, we may
assume that t2 = t̃1. But by construction τ3 = τ1 · τ2 is determined by τ1 = σ0 and τ2, which
gives t̃2 ∈ H0(X,KX + τ0 · τ1) = H0(X,KX + τ2). In particular, this case was already checked
in [19] as ∩2

i=0Zt2i = Zv0 ∩ Zt̃21 ∩ Zt̃22 = ∅ and we are done.

Consider now the case that none of ti’s is t̃0. In this scenario, ti belongs to the orbits of t̃1
or t̃2. Again we use the fact that effective divisors Di’s have common intersections if and only
if 2Di’s have common intersections. Hence it suffices for us to prove the following claim.

Lemma 4.1. Let i, j ∈ {1, . . . , 6}. Then
(a) Zt̃1 ∩ Zai t̃1 ∩ Zaj t̃2 = ∅ for 1 ≤ i, j ≤ 6;
(b) Zt̃2 ∩ Zai t̃1 ∩ Zaj t̃2 = ∅ for 1 ≤ i, j ≤ 6;
(c) Zt̃1 ∩ Zai t̃1 ∩ Zaj t̃1 = ∅ for 1 ≤ i < j ≤ 6;
(d) Zt̃2 ∩ Zai t̃2 ∩ Zaj t̃2 = ∅ for 1 ≤ i < j ≤ 6.

Proof. In terms of the basis chosen with action of G7 given in equation (4.1) and the explicit
sections listed in (4.3), statement (a) in Lemma 4.1 holds if there is no the common intersection
for the following sections,

{ u0 +
1

2
(1 +

√
−7)(u1 + u2 + u3),

u0 +
1

2
(1 +

√
−7)(ζ−i7 u1 + ζ−2i

7 u2 + ζ−4i
7 u3),

u0 + (−5 +
√
−7)(ζ−j7 u1 + ζ−2j

7 u2 + ζ−4j
7 u3) + 4(1−

√
−7)(ζj7u4 + ζ2j

7 u5 + ζ4j
7 u6)

−4(ζj7u7 + ζ2j
7 u8 + ζ4j

7 u9)}.

Instead of using the command HilbertPolynomial over the cyclotomic field Q(ζ7) on X, we
specialize it to the finite field F29, where 16 is a primitive 7-th root of unity and 14 serves as√
−7. In this way, computing over the finite field F29, we verify from Magma that the above

three polynomials do not have common intersection on X for all i, j ∈ {1, . . . , 6} in F29. This
implies that the original equations do not have common zero over the algebraic number field
Q(ζ7). Similar arguments applies to (b), (c), and (d) in the Lemma 4.1.
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We remark that Lemma 4.1 actually is stronger than what is sufficient for our purpose. For
example, consider the case of (a). It is enough to check Zt̃1 ∩ Zai t̃1 ∩ Zaj t̃2 = ∅ for one pair
of (i, j) corresponding to the elements G − {1} = {τ1, τ2, τ3}. However, since we are checking
by Magma, the extra computation does not make any essential difference in computer time.
Similar argument applies to the cases (b), (c), (d) as well.

Theorem 1.4 follows immediately from Lemma 4.1.

5. Remark on maximal canonical degree of threefolds

Theorem 1.4 has an implication on the canonical degree bound of threefolds. The purpose
of this section is to explain literatures in this direction and relations to Theorem 1.4. From
this point on, let Y be a Gorenstein minimal complex projective threefold of general type with
locally factorial terminal singularities. Suppose that the linear system |KY | defines a generically
finite map Φ = Φ|KY | : Y 99K Ppg(Y )−1. M. Chen asked in [8] if there is an upper bound of
deg(Φ). A positive answer was provided in [11] with deg(Φ) ≤ 576. Later on, it was improved in
[10] that deg(Φ) ≤ 360 (with equality if and only if pg(Y ) = 4, q(Y ) = 2, χ(ωY ) = 5,K3

Y = 360,
and |KY | is base point free.) In [5], it is shown that deg(Φ) ≤ 72 if the geometric genus satisfies
pg(Y ) > 10541.

As a corollary of Theorem 1.4 and the above discussion, we conclude that the canonical
degree 72 can be achieved as stated in Corollary 1.5.

Proof of Corollary 1.5. Equipped with Theorem 1.4, the corollary follows essentially from
an observation of [5, Section 3].

Take C a smooth hyperelliptic curve of genus g ≥ 2, then the canonical map ϕ|KC | : C →
Pg−1 is the composition of the double cover C → P1 with the (g − 1)-Veronese embedding
P1 ↪→ Pg−1. In particular, deg(ϕ|KC |) = 2, cf. [12]. Take M a surface satisfying the optimal
degree bound deg(ϕ|KM |) = 36 as in Theorem 1.4, then ϕ = ϕ|KM | : M → P2 is a generically
finite morphism of deg(ϕ) = K2

M = 36.
Now let Y = X × C, then Y is a smooth projective threefold of general type with pg(Y ) = 3g

and Φ = Φ|KY | : Y → P3g−1 a morphism. From our construction, it follows that Φ is generically
finite and

deg Φ · degW = K3
Y = 3K2

X ·KC = 3 · 36 · (2g − 2),

where W = Φ(Y ) is the image of the composition maps Y ↪→ P2 × Pg−1 ↪→ P3g−1 defined by
|KY | and OP2×Pg−1(1, 1). Hence degW = 3(g − 1) and deg(Φ) = 72.
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