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Abstract

For numerical schemes to the incompressible Navier-Stokes equations with variable density, it is a criti-
cal property to preserve the bounds of density. A bound-preserving high order accurate scheme can be
constructed by using high order discontinuous Galerkin (DG) methods or finite volume methods with a
bound-preserving limiter for the density evolution equation, with any popular numerical method for the
momentum evolution. In this paper, we consider a combination of a continuous finite element method
for momentum evolution and a bound-preserving DG method for density evolution. Fully explicit and
explicit-implicit strong stability preserving Runge-Kutta methods can be used for the time discretization
for the sake of bound-preserving. Numerical tests on representative examples are shown to demonstrate
the performance of the proposed scheme.

Keywords: Variable density incompressible flows, Naiver-Stokes equations, discontinuous Galerkin
method, bound-preserving scheme, finite element method.

1. Introduction

The Navier-Stokes equations governing incompressible viscous flows with variable density are given as
ρt + u · ∇ρ = 0, (1.1a)

ρ (ut + (u · ∇)u) +∇p−∇ · (µ(ρ)∇u) = f , (1.1b)

∇ · u = 0, (1.1c)

where the unknowns are the density ρ, the velocity field u and the pressure p. The coefficient µ(ρ) models
the dynamic viscosity, and f represents the external force, e.g., gravity. For simplicity, we consider the
following initial and boundary conditions on a two-dimensional bounded domain Ω:{

ρ(x, 0) = ρ0(x), ρ(x, t)|Γ = a(x, t),
u(x, 0) = u0(x), u(x, t)|Γ = 0,

(1.1d)

where Γ = ∂Ω is boundary of Ω. We note that no initial and boundary conditions are needed for the
pressure p which can be viewed as a Lagrange multiplier to enforce the incompressibility condition (1.1c).
We refer to [22] for the mathematical theory on the well-posedness of (1.1).

For Navier-Stokes equations with constant density, the numerical schemes have been well studied, e.g.,
see [8] and [10] and the references therein. However, the Navier-Stokes equations with variable density
(1.1) involves a density equation which is a purely convection equation thus oscillations may occur near the
sharp interface. It is crucial to maintain the physical bound of density to ensure numerical stability. The
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main objective of this paper is to construct a high order bound-preserving scheme for this variable-density
incompressible fluid system.

For solving variable-density incompressible Navier-Stokes equations (1.1), established numerical meth-
ods for incompressible flows can be used. One popular approach is the fractional time-stepping method
or implicit projection method [5, 10], which can effectively handle the difficulties associated with the in-
compressibility constraint. This approach has been developed and used in [2, 3, 11, 12, 21, 25], among
others, for incompressible fluid flows with variable density. In [11] Guermond and Quartapelle gave the
stability analysis for any projection type scheme with variable density. Nonetheless, the variable density
introduces considerable difficulties for the construction and analysis of accurate and stable projection type
schemes. On the other hand, the system (1.1) can also be solved directly by a Runge-Kutta method with
finite element method or a non-variational method such as spectral-collocation method for an equivalent
pressure Poisson equation formulation. In [17] Johnston and Liu presented such a second order finite
difference scheme based on local pressure boundary conditions for time-dependent viscous incompressible
flows with variable density for moderate to large Reynolds number simulations.

For a scalar convection problem, a high order finite volume or a high order DG scheme can be easily
rendered bound-preserving using a simple bound-preserving limiter [32, 33, 34, 35]. Thus density can be
ensured bound-preserving if using a high order bound-preserving DG method for (1.1a). For (1.1b), we can
also use a DG method, which however induces unnecessarily more degree of freedoms than a continuous
finite element method. So we will explore a combination of a bound-preserving discontinuous Galerkin
method solving the density equation and a finite element method solving momentum equation for variable-
density incompressible Navier-Stokes equations. For instance, for using Qk elements on rectangular meshes,
DG can be implemented as a nodal DG scheme [13, 19] and continuous finite element method can be
implemented as a variational finite difference scheme [20], both of which have degree of freedoms defined
on Gauss-Lobatto points of the rectangular cells thus can be easily combined. For the sake of bound-
preserving, a high order strong stability preserving (SSP) time discretization [9] must be used for the
time discretization. If considering moderate to large Reynolds number flows, i.e., convection-dominated
flows, a fully explicit SSP Runge-Kutta method is suitable. For large viscosity flows, fully explicit time
discretization will impose small time steps for the sake of linear stability. In this case, implicit-explicit
(IMEX) SSP Runge-Kutta schemes in [24] can be used to both ensure bound-preserving of density and to
avoid small time steps for low Reynolds number flows.

The rest of the paper is organized as follows. In Section 2, we introduce variable density incompressible
Navier-Stokes equations and equivalent pressure Poisson equation formulations. The numerical scheme is
presented in Section 3. In Section 4, we perform representative numerical tests to explore the performance
of the proposed scheme. Concluding remarks are given in Section 5.

2. Mathematical formulation

One of the challenges for numerically solving the incompressible Navier-Stokes equations is how to
ensure a divergence-free flow field and recover the pressure from the velocity. Following [17], we first take
the divergence of the momentum equation (1.1b), then along with the incompressibility constraint (1.1c)
we get

∇ ·
(

1

ρ
∇p
)

= ∇ ·
(
−(u · ∇)u +

1

ρ
∇ · (µ(ρ)∇u) +

f

ρ

)
. (2.1)

This equation gives the evolution of p provided that we know the evolution of ρ and u. A proper boundary
condition for p is needed for solving (2.1). A natural candidate is given by the normal component of the
momentum equation (1.1b) along Γ:

∂p

∂n

∣∣∣∣
Γ

= [∇ · (µ(ρ)∇(u · n)) + f · n]
∣∣
Γ
. (2.2)

On the other hand, with suitable boundary conditions, the exact solution of (1.1a) satisfies the maxi-
mum principle ρ(x, y, t) ∈ [m,M ], for all (x, y, t), where m = minx,y ρ0(x, y) and M = maxx,y ρ0(x, y). For
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discontinuous solutions or solutions containing sharp gradient regions, it is preferable to solve the following
equivalent conservative form

ρt +∇ · (ρu) = 0, (2.3)

rather than the non-conservative form (1.1a). However, the solution to (2.3) is not necessarily bound-
preserving unless the velocity filed is incompressible, i.e., ∇·u = 0. It is usually much easier to construct a
bound-preserving scheme solving the non-conservative form (1.1a) but the conservation would be difficult
to preserve. For solving the conservative form (2.3) coupled with ∇ · u = 0, a high order accurate DG
scheme with a bound-preserving limiter was developed in [32, 34].

Therefore, we will consider solving an equivalent pressure Poisson equation formulation of (1.1):

ρt +∇ · (ρu) = 0, (2.4a)

ut + (u · ∇)u +
1

ρ
∇p− 1

ρ
∇ · (µ(ρ)∇u) =

1

ρ
f , (2.4b)

∇ ·
(

1

ρ
∇p
)

= ∇ ·
(
−(u · ∇)u +

1

ρ
∇ · (µ(ρ)∇u) +

f

ρ

)
, (2.4c)

∇ · u = 0, (2.4d)

with the following initial and boundary conditions for ρ, u and p:
ρ(x, 0) = ρ0(x), ρ(x, t)|Γ = a(x, t),
u(x, 0) = u0(x), u(x, t)|Γ = 0,
∂p
∂n

∣∣
Γ

= [∇ · (µ(ρ)∇(u · n)) + f · n]
∣∣
Γ
.

(2.4e)

3. Numerical methods

In this section, we describe the numerical methods for the system (2.4). For simplicity, we only consider
a rectangular domain Ω, discretized by Ωh consisting of uniform rectangular cells. Extension to nonuniform
rectangular meshes is straightforward. Consider polynomial approximation spaces on rectangular cells

V kh =
{
v : v|K ∈ Qk(K),∀K ∈ Ωh

}
, W k

h = V kh ∩ C0(Ωh), W k
0,h = {u|u ∈W k

h , u|Γ = 0},

Vk
h = {u = (u, v)|u, v ∈ V kh }, Wk

0,h = {u = (u, v)|u, v ∈W k
0,h},

where Qk refers to the space of tensor products of 1D polynomials of degree k. A bound-preserving
discontinuous Galerkin scheme [32, 35, 34] will be used for the density evolution (2.4a) and a finite element
method [20] will be used for the velocity evolution (2.4b) and pressure (2.4c).

3.1. A high order accurate DG scheme for the density evolution

We first consider a high order accurate DG scheme for the equation (2.4a), following the approach of
constructing bound-preserving high order schemes for passive convection with an incompressible velocity
field in [32, 35, 34]. For given velocity field uh ∈ Vk

h, on a rectangular cell K, the DG solution ρh ∈ V kh
satisfies ∫

K

∂tρhφhdxdy −
∫
K

ρhuh · ∇φhdxdy +
∑
e∈∂K

∫
e

̂ρhuh · nφhds = 0, ∀φh ∈ V kh , (3.1)

where n denotes the unit outward normal vector to ∂K and ̂ρhuh · n is the numerical flux.
To construct a bound-preserving scheme as in [32, 35, 34], it would be convenient to require the velocity

field uh to satisfy two constraints:

1. The incompressibility ∇ · uh = 0 holds everywhere inside the cell K.

2. The normal velocity uh · n is continuous across cell boundaries ∂K.
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These two constraints can be easily satisfied if the stream function ψh is available. Namely, if we

compute the velocity field by uh = 〈uh, vh〉 =
〈
−∂ψh

∂y ,
∂ψh

∂x

〉
from some stream function ψh ∈W k

0,h. Notice

that we have the normal velocity uh · n =
〈
−∂ψh

∂y ,
∂ψh

∂x

〉
· n = ∂ψh

∂τ where τ denote the unit vector tangent

to ∂K, thus uh · n is continuous across any element boundary ∂K since ψh is continuous. For now we
assume ψh ∈W k

0,h is given and we will discuss how to obtain it in Section 3.5.
Assume the rectangular cell K can be denoted as [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
], then we can also refer to

the cell K as (i, j) cell. Let ∆x = xi+ 1
2
− xi− 1

2
and ∆y = yj+ 1

2
− yj− 1

2
. At time level n, in (i, j) cell, let

ρ+
i− 1

2 ,j
(y), ρ−

i+ 1
2 ,j

(y), ρ+
i,j− 1

2

(x), and ρ−
i,j+ 1

2

(x) denote the traces of the DG polynomial ρi,j(x, y) on the left,

right, bottom and top edges, respectively. On the left, right, bottom and top edges, uh · n is ui− 1
2 ,j

(y),

ui+ 1
2 ,j

(y), vi,j− 1
2
(x), and vi,j+ 1

2
(x), respectively. Since the normal velocity is continuous, we can define

the Lax-Friedrichs flux as:

̂ρhuh · n = h
(
ρ−h , ρ

+
h ,uh · n

)
=

1

2

[
uh · n

(
ρ+
h + ρ−h

)
− a

(
ρ+
h − ρ

−
h

)]
, (3.2)

where a can be taken as the maximum of |uh · n| either locally or globally, corresponding to a local Lax-
Friedrichs flux or a global Lax-Friedrichs flux. If we simply take a = |uh · n|, then it is exactly the same
as the upwind flux used in [23, 32].

By setting the test function φh ≡ 1, we obtain the scheme satisfied by the cell average ρK = ρi,j =
1

∆x∆y

∫∫
K
ρ(x, y)dxdy, i.e., the scheme (3.1) with φh ≡ 1 becomes,

d

dt
ρi,j +

1

∆x∆y

∑
e∈∂K

∫
e

̂ρhuh · nds = 0.

With the forward Euler time discretization, the cell average scheme in the DG method is

ρn+1
i,j = ρni,j −

∆t

∆x∆y

∫ y
j+1

2

y
j− 1

2

[
h
(
ρ−
i+ 1

2 ,j
(y), ρ+

i+ 1
2 ,j

(y), ui+ 1
2 ,j

(y)
)
− h

(
ρ−
i− 1

2 ,j
(y), ρ+

i− 1
2 ,j

(y), ui− 1
2 ,j

(y)
)]
dy

− ∆t

∆x∆y

∫ x
i+1

2

x
i− 1

2

[
h
(
ρ−
i,j+ 1

2

(x), ρ+
i,j+ 1

2

(x), vi,j+ 1
2
(x)
)
− h

(
ρ−
i,j− 1

2

(x), ρ+
i,j− 1

2

(x), vi,j− 1
2
(x)
)]
dx.

(3.3)

The integrals in (3.3) can be computed exactly. Since all the integrands are single variable polynomials of
degree at most 2k , the integrals in (3.3) are equal to the L-point Gauss quadrature if L ≥ k+ 1. In a DG

scheme with polynomial basis of degree k, L ≥ k + 1 must be used, see [7]. Let Sxi = {xβi : β = 1, · · · , L}
denote the Gauss quadrature points on [xi− 1

2
, xi+ 1

2
] and Syj = {yβj : β = 1, · · · , L} denote the Gauss

quadrature points on [yj− 1
2
, yj+ 1

2
]. Let wβ denote the corresponding quadrature weights on the interval

[− 1
2 ,

1
2 ] so that

∑L
i=1 wβ = 1. We will use the subscript β to denote the values at the Gauss quadrature

points, for instance, ρ−
i+ 1

2 ,β
= ρ−(xi+ 1

2
, yβj ). Substituting the integrals by the L-point Gauss quadrature

in (3.3), we obtain the mathematically equivalent expression

ρn+1
i,j = ρni,j − λ1

L∑
β=1

wβ

[
h
(
ρ−
i+ 1

2 ,β
, ρ+
i+ 1

2 ,β
, ui+ 1

2 ,β

)
− h

(
ρ−
i− 1

2 ,β
, ρ+
i− 1

2 ,β
, ui− 1

2 ,β

)]

−λ2

L∑
β=1

wβ

[
h
(
ρ−
β,j+ 1

2

, ρ+
β,j+ 1

2

, vβ,j+ 1
2

)
− h

(
ρ−
β,j− 1

2

, ρ+
β,j− 1

2

, vβ,j− 1
2

)]
, (3.4)

where λ1 = ∆t
∆x and λ2 = ∆t

∆y .
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3.2. The bound-preserving property in the high order DG method

In this subsection we focus on the first order forward Euler time discretization. Bound-preserving high
order time discretizations will be discussed in Section 3.6. We show that the cell average ρn+1

i,j in (3.4) is
a monotonically increasing function with respect to some quadrature point values of the DG polynomial
ρi,j(x, y) in K, thus it is possible to obtain a bound-preserving scheme.

For completeness, we include a detailed discussion, which is slightly different from those in [32, 34] but
essentially the same. Let N be the smallest integer such that 2N − 3 ≥ k then the N -point Gauss-Lobatto
quadrature rule is exact for polynomials of degree k. Let Ŝxi = {x̂αi : α = 1, · · · , N} and Ŝyj = {ŷαj : α =

1, · · · , N} denote the Gauss-Lobatto quadrature points on
[
xi− 1

2
, xi+ 1

2

]
and

[
yj− 1

2
, yj+ 1

2

]
respectively.

Let ŵα denote the quadrature weights on the interval [− 1
2 ,

1
2 ] respectively. We will use subscript α to

denote the evaluation at the Gauss-Lobatto quadrature points, for instance, ρα,β = ρ(x̂αi , y
β
j ).

After replacing the integrals by quadrature rules, the cell average ρni,j can be written as

ρni,j =
1

∆x∆y

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

ρi,j(x, y)dxdy =
1

∆x∆y

L∑
β=1

N∑
α=1

wβŵαρi,j

(
xβi , ŷ

α
j

)
∆x∆y

=

L∑
β=1

N∑
α=1

wβŵαρβ,α =

L∑
β=1

N−1∑
α=2

wβŵαρβ,α +

L∑
β=1

wβŵ1ρ
+
β,j− 1

2

+

L∑
β=1

wβŵNρ
−
β,j+ 1

2

,

and similarly we have

ρni,j =

N∑
α=1

L∑
β=1

ŵαwβρα,β =

N−1∑
α=2

L∑
β=1

ŵαwβρα,β +

L∑
β=1

ŵ1wβρ
+
i− 1

2 ,β
+

L∑
β=1

ŵNwβρ
−
i+ 1

2 ,β
.

Let a1 and a2 be the global maximum of |u| and |v| respectively, and let µ1 = a1λ1

a1λ1+a2λ2
and µ2 = a2λ2

a1λ1+a2λ2
,

then µ1 + µ2 = 1. We can decompose the cell average as

ρni,j =µ1

N∑
α=1

L∑
β=1

ŵαwβρα,β + µ2

L∑
β=1

N∑
α=1

wβŵαρβ,α

=µ1

N−1∑
α=2

L∑
β=1

ŵαwβρα,β + µ1

L∑
β=1

ŵ1wβρ
+
i− 1

2 ,β
+ µ1

L∑
β=1

ŵNwβρ
−
i+ 1

2 ,β

+ µ2

L∑
β=1

N−1∑
α=2

wβŵαρβ,α + µ2

L∑
β=1

wβŵ1ρ
+
β,j− 1

2

+ µ2

L∑
β=1

wβŵNρ
−
β,j+ 1

2

. (3.5)

Notice that, for any λ > 0, under the constraint λa ≤ 1, the numerical flux (3.2) satisfies

∂

∂ρ+

[
ρ+ + λh(ρ−, ρ+, |u · n|)

]
= 1+λ

|u · n| − a
2

≥ 0,
∂

∂ρ−
[
ρ+ + λh(ρ−, ρ+, |u · n|)

]
= λ
|u · n|+ a

2
≥ 0,

∂

∂ρ−
[
ρ− − λh(ρ−, ρ+, |u · n|)

]
= 1−λ |u · n|+ a

2
≥ 0,

∂

∂ρ+

[
ρ− − λh(ρ−, ρ+, |u · n|)

]
= λ

a− |u · n|
2

≥ 0.
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Plugging (3.2) and (3.5) into (3.4), we get

ρn+1
i,j =ρni,j − λ1

L∑
β=1

wβ

[
h
(
ρ−
i+ 1

2 ,β
, ρ+
i+ 1

2 ,β
, ui+ 1

2 ,β

)
− h

(
ρ−
i− 1

2 ,β
, ρ+
i− 1

2 ,β
, ui− 1

2 ,β

)]

− λ2

L∑
β=1

wβ

[
h
(
ρ−
β,j+ 1

2

, ρ+
β,j+ 1

2

, vβ,j+ 1
2

)
− h

(
ρ−
β,j− 1

2

, ρ+
β,j− 1

2

, vβ,j− 1
2

)]

=µ1

N−1∑
α=2

L∑
β=1

ŵαwβρα,β + µ2

L∑
β=1

N−1∑
α=2

wβŵαρβ,α

+ µ1

L∑
β=1

wβŵ1

[
ρ+
i− 1

2 ,β
+

λ1

µ1ŵ1
h
(
ρ−
i− 1

2 ,β
, ρ+
i− 1

2 ,β
, ui− 1

2 ,β

)]

+ µ1

L∑
β=1

wβŵN

[
ρ−
i+ 1

2 ,β
− λ1

µ1ŵN
h
(
ρ−
i+ 1

2 ,β
, ρ+
i+ 1

2 ,β
, ui+ 1

2 ,β

)]

+ µ2

L∑
β=1

wβŵ1

[
ρ+
β,j− 1

2

+
λ2

ŵ1µ2
h
(
ρ−
β,j− 1

2

, ρ+
β,j− 1

2

, vβ,j− 1
2

)]

+ µ2

L∑
β=1

wβŵN

[
ρ−
β,j+ 1

2

− λ2

ŵNµ2
h
(
ρ−
β,j+ 1

2

, ρ+
β,j+ 1

2

, vβ,j+ 1
2

)]
, (3.6)

which is a monotonically increasing function with respect to all the point values ρα,β , ρβ,α, ρ±
β,j± 1

2

and

ρ±
i± 1

2 ,β
under the CFL conditions λ1a1

ŵ1µ1
≤ 1 and λ2a2

ŵ1µ2
≤ 1, i.e.,

max |u|∆t
∆x

+ max |v|∆t
∆y
≤ ŵ1 = ŵN =

1

N(N − 1)
. (3.7)

The bound-preserving property in a high order DG method (3.1) can be stated as the following theorem.

Theorem 1. Under the CFL condition (3.7), the cell average ρn+1
i,j computed in the (3.3) is a monotonically

increasing function with respect to the point values ρ(x̂αi , y
β
j ) and ρ(xβi , ŷ

α
j ) for all α = 1, · · · , N and

β = 1, · · · , L and all i, j. Furthermore, if ρ(x̂αi , y
β
j ) ∈ [m,M ] and ρ(xβi , ŷ

α
j ) ∈ [m,M ] for all α = 1, · · · , N

and β = 1, · · · , L and all i, j, then ρn+1
i,j ∈ [m,M ] provided that ∇ · u = 0 holds inside the (i, j) cell.

Proof. We only discuss the lower bound and the upper bound can be similarly discussed. First, by setting
ρ ≡ m in (3.5), we have

m = µ1

N∑
α=1

L∑
β=1

ŵαwβm+ µ2

L∑
β=1

N−1∑
α=2

wβŵαm.

Since ρn+1
i,j computed in the (3.3) is a monotonically increasing function with all the point values, ρn+1

i,j

should be greater than or equal to the right hand side of (3.6) with all point values replaced by m. Thus
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we have

ρn+1
i,j ≥µ1

N−1∑
α=2

L∑
β=1

ŵαwβm+ µ2

L∑
β=1

N−1∑
α=2

wβŵαm

+ µ1

L∑
β=1

wβŵ1

[
m+

λ1

µ1ŵ1
mui− 1

2 ,β

]
+ µ1

L∑
β=1

wβŵN

[
m− λ1

µ1ŵN
mui+ 1

2 ,β

]

+ µ2

L∑
β=1

wβŵ1

[
m+

λ2

ŵ1µ2
mvβ,j− 1

2

]
+ µ2

L∑
β=1

wβŵN

[
m− λ2

ŵNµ2
mvβ,j+ 1

2

]

=m+m

λ1

L∑
β=1

wβui− 1
2 ,β
− λ1

L∑
β=1

wβui+ 1
2 ,β

+ λ2

L∑
β=1

wβvβ,j− 1
2
− λ2

L∑
β=1

wβvβ,j+ 1
2


=m+m

∆t

∆x∆y

∫ y
j+1

2

y
j− 1

2

u(xi− 1
2
, y)dy −

∫ y
j+1

2

y
j− 1

2

u(xi+ 1
2
, y)dy +

∫ x
i+1

2

x
i− 1

2

v(x, yj− 1
2
)dx−

∫ x
i+1

2

x
i− 1

2

v(x, yj+ 1
2
)dx


=m−m ∆t

∆x∆y

∫∫
K

∇ · 〈u, v〉dxdy

=m,

where we have used Gauss quadrature for the line integrals of polynomial integrands and the Divergence
Theorem.

Remark 1. The divergence free constraint ∇·〈u, v〉 = 0 is trivially satisfied on the cell K since we assume

the velocity is computed by 〈uh, vh〉 =
〈
−∂ψh

∂y ,
∂ψh

∂x

〉
for some stream function ψh ∈W k

0,h.

Remark 2. If one is interested in preserving a special lower bound m = 0, i.e., positivity-preserving, then
the result above also holds without the incompressibility constraint ∇ · 〈u, v〉 = 0.

3.3. A simple high order accurate bound-preserving limiter

Let ⊗ denote the tensor product, for instance, Sxi ⊗ S
y
j =

{
(x, y) : x ∈ Sxi , y ∈ S

y
j

}
, Now we define the

set Si,j as

Si,j = (Ŝxi ⊗ S
y
j ) ∪ (Sxi ⊗ Ŝ

y
j ). (3.8)

At time level n, given the DG polynomial ρni,j(x, y) on the (i, j) cell with a bounded cell average ρni,j ∈
[m,M ], by Theorem 1 we need ρni,j(x, y) ∈ [m,M ] for any (x, y) ∈ Si,j to ensure ρn+1

i,j ∈ [m,M ]. The
simple bound-preserving limiter in [32] is to modify ρni,j(x, y) into a new polynomial ρ̃ni,j(x, y):

ρ̃ni,j(x, y) = θ
(
ρni,j(x, y)− ρni,j

)
+ ρni,j , θ = min

{∣∣∣∣ m− ρni,jmi,j − ρni,j

∣∣∣∣ , ∣∣∣∣ M − ρni,jMi,j − ρni,j

∣∣∣∣ , 1} , (3.9)

mi,j = min
(x,y)∈Si,j

ρni,j(x, y), Mi,j = max
(x,y)∈Si,j

ρni,j(x, y). (3.10)

Then ρ̃ni,j(x, y) ∈ [m,M ] for all (x, y) ∈ Si,j and the cell average of ρ̃ni,j(x, y) is still ρni,j . Moreover, this
limiter does not destroy high order accuracy if ρni,j(x, y) is high order approximation to any smooth function
bounded by m and M , see the appendix in [31]. The limiter (3.9) should be used for all (i, j) cells.

3.4. A finite element method for the velocity and pressure evolution

For solving the momentum equation (2.4b) on a rectangular domain, we can use a continuous finite
element method following the method with pressure p treated explicitly in time in the momentum equation.

We focus on the first order forward Euler time discretization. High order time discretizations will be
discussed in Section 3.6. Let ρn, un and pn denote numerical solutions of the flow variables at time tn. We
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rewrite the diffusion term in momentum equation (2.4b) into a divergence form then compute un+1 ∈Wk
0,h

by discretizing the equation with a finite element method as follows〈
un+1−un

∆t ,v
〉

Ωh

+
〈

(un · ∇)un +∇ 1
ρn · (µ(ρn)∇un) + ∇pn−fn

ρn ,v
〉

Ωh

+
〈

1
ρnµ(ρn)∇un,∇v

〉
Ωh

= 0,∀v ∈Wk
0,h,

(3.11)
where 〈u, v〉Ω denotes the L2 inner product of u and v on Ωh.

Notice that ρn or ρn+1 computed by the DG method is not single valued across the cell boundaries.
To map point values of ρ from a DG mesh to a continuous finite element mesh, we can simply define ρ
as average of values from two neighbor cells at edge centers, and as average of values from four neighbour
cells at interior knots.

After ρn+1, un+1 are computed, we can update the pressure pn+1 ∈ W k
h by solving the variable-

coefficient pressure Poisson equation (2.4c) with the Neumann boundary condition by a finite element
method, which is given by〈

1

ρn+1
∇pn+1,∇v

〉
Ωh

=
〈
fp
n+1, v

〉
Ωh

+

〈
1

ρn+1
gn+1, v

〉
Γ

, ∀v ∈W k
h , (3.12)

where gn+1 =
[
∇ · (µ(ρn+1)∇(un+1 · n)) + fn+1 · n

] ∣∣
Γ

is the boundary condition and

fp
n+1 = ∇ ·

(
(un+1 · ∇)un+1 − 1

ρn+1
∇ · (µ(ρn+1)∇un+1)− fn+1

ρn+1

)
.

Here for solving the pressure Poisson equation, we regard fp
n+1 as a given source term and the derivatives

involved in fp
n+1 can be computed by finite difference. Since un+1, ρn+1 are continuous piecewise Qk

polynomials, they can be equivalently represented as point values at a global grid consisting of all Gauss-
Lobatto quadrature points for all cells. Then derivatives of ρn+1,un+1, µ at this global grid can be
approximated by any conventional high order accurate finite difference method.

In practice it is computationally demanding to solve (2.4c) for three reasons. First, since variable
coefficient 1

ρn+1 is different in each time step, it is preferred to have an efficient assembly of stiffness matrix
such as a few compact matrix matrix multiplications in a traditional finite difference scheme. Second,
the purely Neumann boundary condition results in an inconsistent linear system Ax = b for any scheme
discretizing(2.4c). To find the least square solution, one needs to project b onto the column space of A, for
which the left null vector of A is needed. Third, condition number of A will deteriorate when discontinuity
appears in the coefficient ρ, e.g., for computing large density ratio flows. Let 1 denote the constant one
vector, then A1 = 0 since A approximates a differential operator ∇· ( 1

ρ∇). Thus the left null vector of A is

also 1 if A is symmetric. The variational formulation of (3.12) naturally gives a symmetric stiffness matrix,
which is one of main practical advantages in finite element method over conventional finite difference
schemes for purely Neumann boundary condition since the stiffness matrix in traditional finite difference
methods is difficult to symmetrize and the left null vector is expensive to compute. A simple assembly
of stiffness matrix for finite element method on rectangular meshes, as efficient as in a conventional finite
difference scheme, along with a simple and efficient Laplacian based preconditioner for variable coefficient
problem, were discussed in Section 7 of [20]. For the linear system Ax = b from the scheme (3.12), since
1 is the left null vector A, the projection of b onto column space of A is b = b − (b · 1)/(1 · 1)1. Thus
to obtain the least square solution Ax = b, we can use preconditioned conjugate gradient method for the
consistent linear system Ax = b.

3.5. The stream function

Given un, we need to enforce the incompressibility condition ∇·un = 0 inside each element for the sake
of bound-preserving. To this end, we consider the stream function ψ satisfying u = ∇⊥ψ = (−ψy, ψx) for
an incompressible velocity field u. We consider enforcing the boundary conditions u = 0 on the boundary

Γ for which we need both ψ

∣∣∣∣
Γ

= 0 and ∂ψ
∂n

∣∣∣∣
Γ

= 0. Enforcing both Dirichlet and Neumann boundary
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conditions for Poisson equation will result in an overdetermined linear system. Thus we first find a stream
function satisfying a Poisson equation with the Dirichlet boundary condition

∆ψ̃n = ωn, ψ̃n
∣∣∣∣
Γ

= 0, (3.13)

where ωn = ∇ × un = vnx − uny is the vorticity. Then we modify ψ̃n to enforce the Neumann boundary
condition, for which we need the solution to a constrained least square problem,

min
ψn∈Wk

0,h

∑
i,j

∑
(x,y)∈Ŝx

i ⊗Ŝ
y
j

|ψn(x, y)− ψ̃n(x, y)|2, ∂ψn

∂n

∣∣∣∣
Γ

= 0. (3.14)

Due to the fact that ψ̃, ψ ∈ W k
0,h, the least square problem can be decoupled into local least square

problems for each boundary cell. For each boundary rectangular cell K, which is also denoted as (i, j) cell,
a local least square problem is to find ψn ∈ Qk(K) by minimizing the distance∑

(x,y)∈Ŝx
i ⊗Ŝ

y
j

|ψn(x, y)− ψ̃n(x, y)|2, s.t. ψn
∣∣∣∣
∂K

⋂
Γ

=
∂ψn

∂n

∣∣∣∣
∂K

⋂
Γ

= 0. (3.15)

The Qk basis in each cell can be represented as Lagrangian basis at (k+1)×(k+1) Gauss-Lobatto points,

Γ

(a) ψh can be represented as
Lagrangian basis at 9 Gauss-
Lobatto points.

Γ

(b) ∂ψh
∂n

at the top bound-
ary point is determined by two

green points, and ∂ψh
∂n

at the
middle (or bottom) boundary
point is determined by two red
(or black) points.

Γ

(c) For a corner cell, four interior grid
points are coupled for solving (3.15).

Fig. 3.1: An illustration of the local least square problem for a Q2 element ψh ∈Wk
0,h on a boundary cell. All boundary grid

points have fixed value zero due to the boundary condition.

e.g., Figure 3.1 (a). There are two types of boundary cells: corner cells and non-corner boundary cells.
For simplicity, consider Q2 basis as an example, since boundary point values are already fixed as zero,
only four interior points are degree of freedoms in solving (3.15), see Figure 3.1 (c). For ψh ∈ W k

0,h on a

non-corner boundary cell K adjacent to the left boundary, ∂ψh

∂n at a boundary grid point is determined
by point values at grid points on the same horizontal line, thus the local least square problem (3.15) can
be further decoupled and solved in a line by line fashion, see Figure 3.1 (b). Therefore, the global least
square problem can be easily solved without losing global continuity of ψ:

1. First, solve the local least square problems (3.15) for four corner cells.
2. Second, solve the local least square problem (3.15) for non-corner boundary cells in a line by line

fashion, excluding the lines included in four corner cells.
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3.6. High order time discretizations

3.6.1. Explicit SSP Runge-Kutta methods

For preserving bounds of density, any strong stability preserving (SSP) high order time discretizations
[9] can be used instead of the forward Euler time discretization. SSP high order time discretizations are
convex combinations of forward Euler steps. Thus if forward Euler can preserve bounds, then so is a SSP
time discretization due to the convex combination. For example, we can use the following explicit third
order SSP Runge-Kutta method (with the CFL coefficient c = 1) for solving

ut = F (u), (3.16)

where F (u) is a spatial discretization operator,

u(1) = un + ∆tF (un),

u(2) =
3

4
un +

1

4

(
u(1) + ∆tF (u(1))

)
, (3.17)

un+1 =
1

3
un +

2

3

(
u(2) + ∆tF (u(2))

)
.

Here, the CFL coefficient c for a SSP time discretization refers to the fact that, if we assume the forward Eu-
ler time discretization for solving the equation ut = F (u) is stable in a norm or preserves bounds/positivity
under a time step restriction ∆t ≤ ∆t0, then the high order SSP time discretization is also stable in the same
norm or preserves bounds/positivity under the time step restriction ∆t ≤ c∆t0. The bound-preserving
limiter (3.9) should be applied to the DG polynomials for ρ in each time stage of the third order SSP
Runge-Kutta method.

Notice that the CFL condition (3.7) is only sufficient for preserving bounds of the density in the DG
scheme solving (2.4a). Even though (3.7) happens to be sufficient for the linear stability of a DG method
solving a convection equation [32], it is not enough for the linear stability of the full scheme. For the
stability of the numerical method solving (2.4b), we also need to enforce suitable CFL constraints for an
explicit time discretization solving a convection diffusion equation [18]. For example, for forward Euler,
in addition to CFL for preserving bounds for density (3.7), we also need ∆t = O( 1

µ∆x2) to ensure linear
stability for momentum evolution. Thus such a fully explicit time discretization is more suitable for high
Reynolds number flows, i.e., when µ is small.

3.6.2. Implicit-explicit SSP Runge-Kutta methods

An alternative to avoid the constraint ∆t = O( 1
µ∆x2) is to use an implicit-explicit (IMEX) SSP

Runge-Kutta schemes in [24]. For IMEX type time discretizations, stability can be proven under time
step constraints in the form of ∆t = O(

√
µ) which is independent of ∆x, see [27] and also [28, 29, 30].

We emphasize that an IMEX SSP Runge-Kutta method is not a convex combination of first order IMEX
schemes, because such a convex combination is only first order accurate, see [16, 15] and references therein.
Consider solving a problem in the form Ut + F (U) = G(U). An IMEX Runge-Kutta scheme consists of
applying an implicit discretization to G and an explicit one to F :

U (i) = Un −∆t

i−1∑
j=1

ãijF (U (j)) + ∆t

i∑
j=1

aijG(U (j)), (3.18a)

Un+1 = Un −∆t

ν∑
i=1

w̃iF (U (i)) + ∆t

ν∑
i=1

wiG(U (i)), (3.18b)

where the matrices Ã = (ãij), with ãij = 0 for j ≥ i and A = (aij) are ν × ν matrices such that the
resulting scheme is explicit in F and implicit in G. An IMEX Runge-Kutta scheme is characterized by
these two matrices and the coefficient vectors w̃ = (w̃1, · · · , w̃ν)T and w = (w1, · · · , wν)T , thus can be
represented by a double Butcher tableau:

c̃ Ã
w̃T

c A
wT
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where the vectors c̃ = (c̃1, . . . , c̃s)
T , c = (c1, . . . , cs)

T are defined as

c̃i =

i−1∑
j=1

ãij , ci =

i∑
j=1

aij .

If the explicit table coincides with a SSP Runge-Kutta method, then we say the full scheme is an IMEX
SSP Runge-Kutta method. For instance, the double Butcher tableau for a third order accurate IMEX SSP
Runge-Kutta scheme SSP3(4,3,3) given in [24] is:

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0
0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1− α α 0

1/2 β η 1/2− β − η − α α
0 1/6 1/6 2/3

with
α = 0.24169426078821, β = 0.06042356519705, η = 0.12915286960590.

If we use the SSP3(4,3,3) scheme above for solving (2.4a) and (2.4b) with U = (ρ,u)T , G representing
only the diffusion term ∇ · (µ∇u) and F rerepresenting all other spatial and forcing terms in (3.18), then
the time discretization for the variable ρ is equivalent to the third order SSP TVD Runge-Kutta method
(3.17). By doing so, bound-preserving is achieved in a third order time solver, and small time steps due
to linear stability in a fully explicit time solver for low Reynolds number are avoided, since there is no
viscosity term for the density evolution.

Remark 3. When implementing the SSP3(4,3,3) scheme above for solving (2.4a) and (2.4b), the time
discretization for density evolution (2.4a) must be implemented in the form of (3.17) so that the bound-
preserving limiter can be applied to each forward Euler step.

3.7. Summary of the scheme with implementation details

For the readers’ convenience, we summarize below the implementation of the bound-preserving scheme
with forward Euler time discretization. For high order Runge-Kutta time discretizations, the implemen-
tation for each time stage is similar.

Given un ∈ Wk
0,h, pn ∈ W k

h and ρn ∈ V kh with ρ̄n ∈ [m,M ] at time level n, the variables can be
updated as follows.

1. First solve (3.13) then solve local least square problems along boundary cells to find ψn. Obtain
locally divergence free velocity field by setting un = ∇⊥ψn =

(
−ψny , ψnx

)
. The velocity on the DG

method mesh to be used for solving (2.4a) is recovered from un = ∇⊥ψn =
(
−ψny , ψnx

)
. Notice that

un, vn ∈ V kh with the following three desired properties trivially satisfied:

• The boundary condition un
∣∣∣∣
Γ

= 0.

• Discrete incompressibility ∇ · un = 0 holds inside each cell in the mesh for DG method.

• Across any inner cell boundary, the normal velocity un · n is continuous because it is exactly
the tangential derivative of a continuous function ψn(x, y) along cell boundaries.

2. Apply the bound-preserving limiter (3.9) to density variable so that ρn is the desired range [m,M ]
at suitable points. Compute ρn+1 ∈ V kh by (3.1) with forward Euler time discretization with CFL
constraint (3.7). By Theorem 1, bound-preserving of cell averages ρ̄n+1 ∈ [m,M ] is ensured.

3. Update un+1 by (3.11) and update pn+1 by (3.12).

Remark 4. For the sake of bound-preserving in Theorem 1, to enforce local divergence free constraint,
an extra Poisson equation for stream function (3.13) needs be solved in each time stage. The extra
computational cost is marginal though, because inverting Laplacian is much cheaper compared to solving
(3.12), especially for problems with large density ratios. For continuous finite element method with Qk

elements, Laplacian can be efficiently inverted by eigenvector method as explained in Seciton 7.4 in [20].
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4. Numerical examples

In this section, we provide some numerical examples to investigate the performance of the proposed
scheme. In all examples, Q2 polynomials were used on uniform rectangular meshes. For the DG method
solving density, besides the bound-preserving limiter, a total variation bounded (TVB) limiter [6] is also
used for reducing oscillations.

4.1. Accuracy test

We test the accuracy of the numerical scheme by considering a smooth exact solutions in the following
form [17]: 

ρ(x, y, t) = ((3/4) + (1/4) sin t)(2 + cosx cos y),

u(x, y, t) = ((3/4) + (1/4) sin t)(− sin2 x sin y cos y),

v(x, y, t) = ((3/4) + (1/4) sin t)(sinx cosx sin2 y),

p(x, y, t) = ((3/4) + (1/4) sin t)(cosx sin y).

(4.1)

Here we set µ = π
5000 , and to ensure that (4.1) is an exact solution of (2.4), appropriate forcing functions

are applied to the system. The errors on a unit square Ω = [0, π]m× [0, π]m at t = 0.1 are shown in Table
4.1, in which we observe around third order accuracy for the explicit SSP Runge-Kutta method. In this
test, the time step for the explicit SSP Runge-Kutta method is set as ∆t = 0.1∆x2. The time step for the
IMEX SSP Runge-Kutta method is set as ∆t = 0.1∆x, with which the explicit SSP Runge-Kutta method
is not stable. For IMEX SSP Runge-Kutta method, we observe some obvious order reduction, which could
be due to the well known order reduction phenomenon for IMEX Runge-Kutta methods in certain regime
[4, 16, 15]. To the best of our knowledge, only for IMEX BDF methods, uniform accuracy can be proven
[1, 14]. For this particular accuracy test, the order reduction for the IMEX SSP Runge-Kutta method is
more prominent for larger viscosity coefficient µ, and clean third order accuracy can be observed if using
a third order IMEX BDF method.

4.2. Rayleigh-Taylor instability

We consider the development of Rayleigh-Taylor instabilities in the viscous regime as documented by
Tryggvason in [26]. This problem consists of two layers of fluid initially at rest in the gravity field. The
initial perturbed interface between the two fluids is given by η(x) = −0.1d cos(2πx/d). The Atwood
number is defined as

At =
ρM − ρm
ρM + ρm

, (4.2)

and the Reynolds number is given by

Re =
ρmd

3/2g1/2

µ
, (4.3)

where g is the gravitational acceleration. For t > 0 the system evolves under the action of a vertical
downward gravity field of intensity g, so the source term in the momentum equation is downward and
equal to ρg. In the numerical tests, we set Re = 1000, g = −9.80665m/s2 and ρm = 1.0kg/m3, and we
test three different cases with At = 0.5, 0.75 and 0.9. The computational domain is [−0.5, 0.5]m× [−2, 1]m.
The time evolution of the density with At = 0.5 on three different meshes are shown in Figure 4.1, Figure
4.2 and Figure 4.3. The time evolution of the density with At = 0.75 on three different meshes are shown
in Figure 4.4, Figure 4.5 and Figure 4.6. The time evolution of the density with At = 0.9 on three
different meshes are shown in Figure 4.7, Figure 4.8 and Figure 4.9. From the results of these cases, we
can observe the similar structure and the global characteristics of the flow in the early stage. At the same
time, we found that the heavy fluid falls faster when the low Atwood number becomes larger. In order to
verify the performance of the bound-preserving limiter, we show the numerical results obtained from the
proposed scheme with and without the bound-preserving limiter Figure 4.10. We can see that the proposed
scheme with the bound-preserving limiter maintains the numerical results of density in the domain [1, 3]
for At = 0.5, in the domain [1, 7] for At = 0.75, and in the domain [1, 19] for At = 0.9, respectively.
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Fig. 4.1: Numerical solution of Rayleigh-Taylor instability with At = 0.5 at t = 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1.0s, 1.2s and 1.4s
(from left to right, from top to bottom). Mesh: 20× 50.
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Fig. 4.2: Numerical solution of Rayleigh-Taylor instability with At = 0.5 at t = 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1.0s, 1.2s and 1.4s
(from left to right, from top to bottom). Mesh: 40× 100.

14



−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5 2 2.5

Fig. 4.3: Numerical solution of Rayleigh-Taylor instability with At = 0.5 at t = 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1.0s, 1.2s and 1.4s
(from left to right, from top to bottom). Mesh: 80× 200.

15



−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

2 3 4 5 6

Fig. 4.4: Numerical solution of Rayleigh-Taylor instability with At = 0.75 at t = 0s, 0.2s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s and 0.9s
(from left to right, from top to bottom). Mesh: 20× 50.
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Fig. 4.5: Numerical solution of Rayleigh-Taylor instability with At = 0.75 at t = 0s, 0.2s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s and
0.9s (from left to right, from top to bottom). Mesh: 40× 100.
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Fig. 4.6: Numerical solution of Rayleigh-Taylor instability with At = 0.75 at t = 0s, 0.2s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s and
0.9s (from left to right, from top to bottom). Mesh: 80× 200.
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Fig. 4.7: Numerical solution of Rayleigh-Taylor instability with At = 0.9 at t = 0s, 0.1s, 0.2s, 0.3s, 0.4s, 0.5s, 0.55s and 0.6s
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Fig. 4.8: Numerical solution of Rayleigh-Taylor instability with At = 0.9 at t = 0s, 0.1s, 0.2s, 0.3s, 0.4s, 0.5s, 0.55s and 0.6s
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Fig. 4.9: Numerical solution of Rayleigh-Taylor instability with At = 0.9 at t = 0s, 0.1s, 0.2s, 0.3s, 0.4s, 0.5s, 0.55s and 0.6s
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Table 4.1: Errors at time t = 0.1 for the scheme using Q2 polynomials with Nx × Ny cells with third order Runge-Kutta
methods.

Explicit SSP Runge-Kutta IMEX SSP Runge-Kutta
Nx ×Ny L∞ error Order L1 error Order L∞ error Order L1 error Order
10× 10 5.84e-4 — 4.32e-4 — 6.08e-4 — 4.41e-4 —
20× 20 7.39e-5 2.98 5.38e-5 3.01 8.20e-5 2.89 5.88e-5 2.91

ρ 30× 30 2.20e-5 2.99 1.68e-5 2.87 2.52e-5 2.91 1.94e-5 2.73
40× 40 9.27e-6 3.00 7.41e-6 2.85 1.34e-5 2.21 8.96e-6 2.69
50× 50 4.76e-6 2.99 3.86e-6 2.92 8.16e-6 2.20 4.89e-6 2.71
60× 60 2.84e-6 2.83 2.24e-6 2.98 5.40e-6 2.27 2.97e-6 2.75
70× 70 1.87e-6 2.71 1.40e-6 3.05 3.77e-6 2.33 1.94e-6 2.77
10× 10 2.15e-4 — 2.71e-4 — 1.77e-4 — 2.08e-4 —
20× 20 2.79e-5 2.95 3.41e-5 2.99 2.52e-5 2.81 3.28e-5 2.66

u 30× 30 8.40e-6 2.96 1.01e-5 3.00 7.60e-6 2.95 9.85e-6 2.97
40× 40 3.56e-6 2.98 4.28e-6 2.98 3.12e-6 3.10 4.01e-6 3.12
50× 50 1.85e-6 2.93 2.19e-6 3.00 1.54e-6 3.16 1.94e-6 3.25
60× 60 1.08e-6 2.95 1.27e-6 2.99 8.58e-7 3.22 1.05e-6 3.36
70× 70 6.86e-7 2.94 8.01e-7 2.99 5.15e-7 3.31 6.22e-7 3.42
10× 10 4.75e-5 — 5.98e-5 — 1.77e-4 — 2.12e-4 —
20× 20 6.89e-6 2.79 7.06e-6 3.08 2.63e-5 2.75 3.36e-5 2.66

v 30× 30 2.22e-6 2.79 2.21e-6 2.86 8.14e-6 2.89 1.08e-5 2.80
40× 40 9.71e-7 2.87 9.68e-7 2.87 3.61e-6 2.82 4.84e-6 2.79
50× 50 5.04e-7 2.94 5.07e-7 2.90 1.98e-6 2.70 2.63e-6 2.73
60× 60 2.99e-7 2.86 2.99e-7 2.90 1.22e-6 2.63 1.62e-6 2.66
70× 70 1.94e-7 2.81 1.91e-7 2.91 8.23e-7 2.57 1.08e-6 2.59

4.3. Falling bubble test

In this subsection, we investigate the capability of our method to work with larger density variations,
and consider the falling bubble problem [21]. In this problem, a heavy droplet falls through a light fluid and
impacts into the plane surface of the heavy fluid in a cavity. The computational domain is Ω = [0, d]×[0, 2d],
where d = 2m and the initial density interface takes the form

ρ(x, y, 0) =

{
100kg/m3, if 0m ≤ y ≤ 1m or 0m ≤ r ≤ 0.2m,
1kg/m3, if 1m < y ≤ 2m and r ≥ 0.2m,

where r =
√

(x− 0.5)2 + (y − 1.75)2. In the test, the gravity term is f = (0, ρg)> with g = −1m/s2,
the viscosity of the fluid is assumed be constant in the whole domain and we have Re = 1000. The
computational domain is divided into 50× 100 cells.

The results are displayed in Figure 4.11. The snapshots show that the droplet travels up through a
light fluid and merges with a light fluid below. As the droplet falls, its shape changes a little due to the
absence of the surface tension. As the droplet hits the interface, it merges with the heavy fluid below and
creates waves on the surface.

4.4. Rising bubble test

In this subsection, we test our numerical scheme by simulating an air bubble rising in water. Since
the air and water have different viscosities. The air bubble with radius 0.0025m is initially at rest and
located at (0, 0.0075). The gravity term is f = (0, ρg)> with g = −9.80665m/s2. The initial condition for
the velocity is set to be zero. We computed the problem in a rectangle of size [−0.01, 0.01]m× [0, 0.03]m.
We use the true physical parameters in Table 4.2. For numerical density taking intermediate values, the
viscosity is defined as a linear interpolation.

The time evolution of the density field of the air bubble at nine different times 0s, 0.2s, 0.4s, 0.6s, 0.8s
and 1.0s is displayed in Figure 4.12. These results are very close to the results reported in the literature
[17, 25].
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Fig. 4.11: Numerical solution of air bubble rising in water at t = 0s, 0.5s, 1.1s, 1.3s, 1.5s and 20s (from left to right, from top
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Fig. 4.12: Numerical solution of air bubble rising in water at t = 0s, 0.02s, 0.04s, 0.06s, 0.08s and 0.1s (from left to right,
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Table 4.2: Physical parameters for an air bubble rising in water.

Physical parameters Air Water Units (MKS)
Density (ρ) 1.161 995.65 kg/m3

Viscosity (µ) 0.0000186 0.0007977 kg/ms

5. Conclusions

We constructed in this paper a high order accurate numerical method for solving variable density
incompressible Navier-Stokes equations in its pressure Poisson equation formulation. The bound-preserving
discontinuous Galerkin scheme is used for the density evolution and a continuous finite element method is
used for the momentum evolution. Numerical results indicate that the scheme is strictly bound-preserving
and well suited for numerical simulation of incompressible flows with variable density.
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