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Abstract

For problems defined in a two-dimensional domain Ω with boundary conditions
specified on a curve Γ, we consider discontinuous Galerkin (DG) schemes with
high order polynomial basis functions on a geometry fitting triangular mesh. It
is well known that directly imposing the given boundary conditions on a piece-
wise segment approximation boundary Γh will render any finite element method
to be at most second order accurate. Unless the boundary conditions can be ac-
curately transferred from Γ to Γh, in general curvilinear element method should
be used to obtain high order accuracy. We discuss a simple boundary treatment
which can be implemented as a modified DG scheme defined on triangles adja-
cent to Γh. Even though integration along the curve is still necessary, integrals
over any curved element are avoided. If the domain Ω is convex, or if Ω is non-
convex and the true solutions can be smoothly extended to the exterior of Ω, the
modified DG scheme is high order accurate. In these cases, numerical tests on
first order and second order partial differential equations including hyperbolic
systems and the scalar wave equation suggest that it is as accurate as the full
curvilinear DG scheme.

Keywords: discontinuous Galerkin, curved boundary, local discontinuous
Galerkin method, high order accuracy, conservation laws, wave equations

1. Introduction

Consider solving a two-dimensional time dependent problem defined on a
curved domain Ω with boundary conditions specified on a curve Γ ⊆ ∂Ω.
Assume a geometry fitting triangular mesh is given, we focus on discontinu-
ous Galerkin (DG) method with high order polynomial basis functions. For
high order schemes defined on such a triangular mesh as illustrated in Figure 1,
boundary conditions on Γh as an approximation to Γ must be carefully treated
to obtain optimal convergence rate. For instance, given homogeneous Dirichlet
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(a) The domain Ω. (b) Γ consists of two red circles, approxi-
mated by piecewise segments Γh in the tri-
angular mesh.

Figure 1: An illustration of a geometry fitting triangular mesh on a curved domain.

boundary conditions on Γ, any finite element method will be at most second or-
der accurate with Dirichlet boundary conditions imposed on Γh [1, 2]. Towards
optimal convergence rate, a curved element near Γ can be used [3].

Even though the curvilinear element method via an isoparametric parametric
approximation to Γ [4] is rather convenient to use for DG schemes [5, 6, 7, 8],
the computational and memory costs in curved elements will be increased due
to integration on curved elements, especially when the boundary geometry is
represented by very high order polynomials in high dimensions. Thus there is a
strong motivation in studying more efficient alternatives to the full curvilinear
DG methods.

One popular simple treatment to reduce computational cost of DG method
on curved elements is to include the Jacobian determinant of the map from
each curved element to a straight-sided reference element either in solution
space or in test function space, e.g., [9, 10]. Even though it may work well for
a lot of problems in practice, such a nonpolynomial approximation is not well
understood in analysis. A low-storage curvilinear DG method was proposed and
analyzed in [11, 12], where the geometric factors were included in both solution
and test function spaces with a provable convergence under a mild condition on
the mesh. For tensor-product type elements, the mass matrix is lumpable on
the curved elements, see [8].

For specific schemes and problems, it is possible to accurately transfer the
boundary conditions from Γ to Γh so that high order accuracy can be obtained
for DG on triangular meshes without curved elements. In [13], a simple ap-
proximation to curved solid wall boundary conditions for steady gas dynamics
equations was discussed. An implicit transfer of boundary conditions was pre-
sented in [14, 15] for the hybridizable DG method solving steady convection
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diffusion equations and the mesh does not need to be strictly geometry fitting
in this method. For time dependent gas dynamics equations, an explicit transfer
through an inverse Lax-Wendroff procedure was discussed for finite difference
schemes in [16, 17, 18, 19] yet the performance of this method applied to DG
schemes is unclear.

Recently a simple curved interface treatment for DG scheme on triangles
solving acoustic wave equations was presented in [20]. In this paper, we will
extend the approach in [20] to treating curved boundaries. We derive a modifi-
cation to the DG scheme defined on a boundary triangle. Even though the line
integration along the curve Γ is still necessary, integrals over curved elements
are avoided. By local truncation error analysis, such a modified DG scheme is
high order accurate in convex domains. For nonconvex domains, it is also high
order accurate if the equation and its smooth exact solution can be smoothly
extended to the exterior of the domain. When the solution cannot be smoothly
extended on nonconvex domains, the modified DG scheme is at most second
order accurate however produces smaller errors than the DG scheme defined on
triangles. On the other hand, a simple spectrum analysis suggest that this kind
of modified DG scheme is unstable for arbitrary misfit between the boundary of
a triangular mesh and the true curved boundary. Nonetheless, numerical tests
suggest that such a scheme is stable on a reasonably coarse triangular mesh and
finer ones.

The paper is organized as follows: we first discuss the main idea in Section 2
for first order equations. The same idea can be applied to other time dependent
problems. As a demonstration, we discuss the second order wave equation in
Section 3. For hyperbolic conservation laws, the local conservation is an impor-
tant property. We discuss an additional step to enforce the local conservation
in Section 4. Numerical tests are shown in Section 5. Section 6 consists of
concluding remarks.

2. Time-Dependent Conservation Laws

2.1. Preliminaries

Consider solving the following initial-boundary value problem on a two-
dimensional curved domain Ω with Γ ⊆ ∂Ω:





ut + ∇ · F(u) = 0, x ∈ Ω,
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = b(x, t), x ∈ Γ.

(1)

Suppose a triangular mesh Th of the domain Ω fitting the boundary ∂Ω
is given. For simplicity, we assume that the mesh fits the geometry in a way
that Γ does not intersect any edge in Th at more than two points. We also
assume Γ does not pass more than two vertices of any triangle in Th. These two
assumptions are not essential for remaining discussion in this paper. Then for
any boundary triangleK adjacent to the curve Γ, there are only two possibilities
for the intersection between Γ and K. If Γ intersects K at only two vertices of
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K, we call it a convex case. Otherwise, Γ also intersects K at its interior, then
we call it a concave case. Let ei

K (i = 1, 2, 3) be the three edges of the triangle
K and e1k be the one adjacent to the curve Γ. Let ẽ1K be an isoparametric
approximated representation of Γ, i.e., a high order polynomial interpolant of
the curve Γ. We use K̃ denote the curvilinear element bounded by e2K , e3K and

ẽ1K . Let C denote the difference between K and K̃. See Figure 2.
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Figure 2: An illustration of a boundary triangle K and the curvilinear element eK bounded
by the isoparametric curve ee1

K
and two edges e2

K
and e3

K
. The area bounded by ee1

K
and the

edge e1

K
is denoted by C.

The following integration by parts formula will be used for a vector field F
and a scalar function v,

∫∫

eK

F · ∇v dx +

∫∫

eK

∇ ·Fv dx =

∫

∂ eK

F · n(K̃)v,

where n(K̃) is the outward unit normal vector to the boundary ∂K̃. Without

further specification, n always denotes n(K̃) in the rest of this paper.

We recall the derivation of DG scheme on a curved element K̃. Multiplying
equation in (1) by a smooth test function v on the element K̃ and taking an
integral, after integration by parts, we obtain

∫∫

eK

utv dx −

∫∫

eK

F(u) · ∇v dx +

∫

∂ eK

F(u) · nv ds = 0.

In the weak formulation of a semi-discrete DG scheme, the solution uh de-
fined on K̃ satisfies the following equation for any polynomial test function vh:

∫∫

eK

∂

∂t
uhvh dx −

∫∫

eK

F(uh) · ∇vh dx +

∫

∂ eK

F̂ · nvh ds = 0, (2)

where F̂ · n is a consistent numerical flux. Applying integration by parts on (2),
we obtain the equivalent strong formulation:

∫∫

eK

(
∂

∂t
uh + ∇ ·F(uh)

)
vh dx +

∫

∂ eK

(
F̂ · n − F(uh) · n

)
vh ds = 0, (3)

4



ẽ
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Figure 3: An illustration of neighbour cells.

There are quite a few popular numerical fluxes for nonlinear conservation
laws (1), e.g., Godunov flux, Lax-Friedrichs flux, Roe flux and HLLE flux.
Even though numerical performance of different fluxes may differ for specific
problems, the choice of numerical fluxes does not affect the discussion in this
paper. For simplicity, here we use the simplest Lax-Friedrichs flux with a global
wave speed, which will be defined below. Let Ki (i = 2, 3) be the triangle or the

curved element which is adjacent to K̃ and contains the edge ei
K , see Figure 3.

Let ui
h be the DG solution on Ki (i = 2, 3). Let α be the maximum wave speed

for the equation in (1), then the global Lax-Friedrichs flux in (2) is given by

F̂ · n
∣∣∣
ei

K

=
1

2

[
F(uh) · n|ei

K
+ F(ui

h) · n|ei
K
− α(ui

h − uh)
]
, i = 2, 3,

and

F̂ · n
∣∣∣
ee1

K

=
1

2

[
F(uh) · n|ee1

K
+ F(b) · n|ee1

K
− α(b − uh)

]
,

where b(x, y, t) is the boundary condition in (1).

2.2. A Modified DG Scheme in the Convex Case

We first discuss the convex case as shown in Figure 2 (a), where K̃ = K∪C.
By separating integrals over K and C, the weak formulation of curved element
DG scheme (2) is equivalent to

∫∫

K

∂

∂t
uhvh dx−

∫∫

K

F(uh)·∇vh dx+

∫

∂ eK

F̂ · nvh ds =

∫∫

C

(
−
∂

∂t
uhvh + F(uh) · ∇vh

)
dx.

(4)
When uh is the exact smooth solution, it satisfies the equation in (1) thus

∂

∂t
uh = −∇ · F(uh). (5)
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Plugging (5) in, after integration by parts, the right hand side of (4) becomes

∫∫

C

(
−
∂

∂t
uhvh + F(uh) · ∇vh

)
dx

=

∫∫

C

(∇ · F(uh)vh + F(uh) · ∇vh) dx =

∫

∂C

F(uh) · n(C)vh ds. (6)

where n(C) denotes the outward unit normal vector to the boundary ∂C. Re-
placing the right hand side in (4) by (6), we obtain a modified DG scheme
in the convex case for a boundary triangle K:

∫∫

K

∂

∂t
uhvh dx−

∫∫

K

F(uh) ·∇vh dx+

∫

∂ eK

F̂ · nvh ds =

∫

∂C

F(uh) ·n(C)vh ds.

(7)
Applying integration by parts to (7) and using the relation n(C)|ee1

K
= n|ee1

K
, after

the cancellation of the line integral along the edge e1K , the strong formulation
of the modified DG scheme can be written as

∫∫

K

(
∂

∂t
uh + ∇ ·F(uh)

)
vh dx +

∫

∂ eK

(
F̂ · n − F(uh) · n

)
vh ds = 0. (8)

Remark 1. A more straightforward way to derive (8) is to rewrite (3) as

∫∫

K

(
∂

∂t
uh + ∇ ·F(uh)

)
vh dx +

∫

∂ eK

(
F̂ · n − F(uh) · n

)
vh ds

= −

∫∫

C

(
∂

∂t
uh + ∇ ·F(uh)

)
vh dx.

Then plug (5) into the right hand side.

Remark 2 (Local Truncation Error). The only difference between (3) and
(8) is

∫∫
C

(
∂
∂t
uh + ∇ · F(uh)

)
vh dx, which is equal to zero if uh is equal to an

exact smooth solution u. If we define the local truncation error of a semi-discrete
scheme as the residue after substituting uh by the exact solution in the scheme,
then the local truncation error of the modified scheme (7) and (8) is the same
as the curvilinear DG method (2) and (3).

Remark 3 (Stability). A simple spectrum analysis in Appendix B suggests
that the distance between the mesh boundary and the true boundary must be
small enough for the sake of stability. This means that the modified DG scheme
is not stable on a very coarse triangular mesh. On the other hand, the stability
of such a modified scheme is highly nontrivial to establish even if assuming the
area C is very small with respect to K in Figure 2. See Appendix A for a
discussion of a one-dimensional modified scheme. Nonetheless, numerical tests
suggest the modified DG scheme is stable on reasonably coarse meshes and their
refined meshes in examples considered in Section 5.
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2.3. The Concave Case

For the concave case as shown in Figure 2 (b), we have K = K̃ ∪C. Adding
integrals on C to both sides, (2) is equivalent to

∫∫

K

∂

∂t
uhvh dx−

∫∫

K

F(uh)·∇vh dx+

∫

∂ eK

F̂ · nvh ds =

∫∫

C

(
∂

∂t
uhvh − F(uh) · ∇vh

)
dx.

(9)
If the partial differential equation and its solution can be smoothly extended

to C, assume uh is equal to this smooth extension, then (5) is satisfied on C.
Plugging (5) in, after integration by parts, the right hand side of (9) becomes

∫∫

C

(
∂

∂t
uhvh − F(uh) · ∇vh

)
dx

= −

∫∫

C

(∇ · F(uh)vh + F(uh) · ∇vh) dx = −

∫

∂C

F(uh) · n(C)vh ds.(10)

where n(C) denotes the outward unit normal vector to the boundary ∂C. Re-
placing the right hand side in (9) by (10), we obtain a modified DG scheme
in the concave case for a boundary triangle K:

∫∫

K

∂

∂t
uhvh dx−

∫∫

K

F(uh)·∇vh dx+

∫

∂ eK

F̂ · nvh ds = −

∫

∂C

F(uh)·n(C)vh ds,

(11)
Applying integration by parts to (11) and using the relation n(C)|ee1

K
= −n|ee1

K
,

the strong formulation of the modified DG scheme in the concave
case is exactly the same as in the convex case (8).

Remark 4 (Local Truncation Error). If the partial differential equation and
its solution can be smoothly extended to C, then discussion of the local trun-
cation error in the concave case is the same as in Remark 2, i.e., the local
truncation error of the modified DG scheme is as small as the curvilinear DG
scheme. Otherwise, the modified DG scheme cannot be high order accurate.
Let u be a function defined on K denoting the extension of the exact solution.
Assume there is a singularity in u along Γ, then it is impossible to approximate
the function u to the optimal order in the triangle K by polynomials. Thus any
integral term over K will destroy high order accuracy in DG scheme with high
order polynomial basis functions.

2.4. A Simple Implementation

Compared to the curved element method (3), we can see that integrals over

K̃ are avoided in the modified DG scheme (8), even though integration along

∂K̃ is still needed. The modified DG scheme can be implemented as a simple
modification to the DG scheme defined on the triangle K.
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The strong formulation of the modified DG scheme can be written as

∫∫

K

(
∂

∂t
uh + ∇ · F(uh)

)
vh dx +

3∑

i=2

∫

ei
K

(
F̂ · n − F(uh) · n

)
vh ds

+

∫

ee1
K

(
F̂ · n − F(uh) · n

)
vh ds = 0.

Since K and K̃ share two edges, the strong formulation of DG scheme defined
on the triangle K is

∫∫

K

(
∂

∂t
uh + ∇ · F(uh)

)
vh dx +

3∑

i=2

∫

ei
K

(
F̂ · n − F(uh) · n

)
vh ds

+

∫

e1
K

(
̂F · n(K) − F(uh) · n(K)

)
vh ds = 0. (12)

where n(K) denotes the outward unit normal vector to the boundary of the
triangle K.

Therefore, the modified scheme (8) can be implemented as a simple modi-
fication to DG scheme defined on triangles (12) as follows: on each triangle K
adjacent to the curve Γ as shown in Figure 2, in (12),

REPLACE

∫

e1
K

(
̂F · n(K) − F(uh) · n(K)

)
vh ds BY

∫

ee1
K

(
F̂ · n− F(uh) · n

)
vh ds,

(13)
where in the convex case, for uh defined on K, the extension of uh to ẽ1K is
simply the evaluation of the DG polynomial on K at ẽ1K .

Remark 5. As discussed in Remark 4, the modification (13) does not improve
the order of convergence for the DG scheme on triangles (12) for a problem
on a nonconvex domain with no smooth extensions of the exact solution. For
example, the extension of the exact solution is not smooth across the solid
wall boundary in modeling flow passing a cylinder. However, the modification
(13) does reduce errors in the last line integral in (12). For example, consider
imposing homogeneous Dirichlet boundary condition on Γ, i.e., b(x, y, t) ≡ 0

in (1). Suppose Γ is an inflow boundary and we use upwind flux ̂F · n(K) =
F(0) ·n(K) on e1K in (12). Then the Dirichlet boundary condition is enforced on
e1K and

∫
e1

K

(F(0) · n(K) − F(uh) · n(K)) vh ds induces at least a second order

error. On the other hand, if uh = u with u being the exact smooth solution, then∫
ee1

K

(F(0) · n − F(uh) · n) vh ds is a high order error term in the local truncation
error.

Remark 6. The modified DG scheme can also be applied to a curved material
interface problem [20]. Consider a triangle of the concave case as shown in
Figure 2 (b) where the red curve denotes the interface for the curved interface
problem, the exact solution is not smooth across the curve thus the modified
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DG scheme is not high order accurate. Nonetheless, the modified DG scheme
does produce smaller errors than the DG scheme defined on triangles, see an
accuracy test in [20].

3. The Second Order Wave Equation

In the previous section, we have derived a modified DG scheme (8) for first
order equations by using the partial differential equation (5), i.e., replacing the
time derivative by the spatial derivatives. As mentioned in Remark (1), it is
also equivalent to removing the volume integral over C illustrated in Figure
2 in the standard DG scheme. This simple idea can be easily applied to DG
schemes solving equations with higher order derivatives such as convection dif-
fusion equations. As a demonstration, we discuss the local DG (LDG) method
[21, 22] solving the scalar wave equation:






utt −∇ · (c(x)2∇u) = 0, x ∈ Ω,
u(x, 0) = u0(x), x ∈ Ω,
ut(x, 0) = v0(x), x ∈ Ω,
u(x, t) = b(x, t), x ∈ Γ.

(14)

All notations for meshes are the same as in the previous section.

3.1. The LDG Method

Let q = (q1, q2) denote an auxiliary variable. Let F = (u, 0) and G = (0, u).
Then the wave equation can be written as a first order system,





utt = ∇ · (cq)
q1 = c∇ · F
q2 = c∇ · G

. (15)

Multiplying (15) by test functions ψ, φ and ϕ on the element K̃ and taking
an integral, after integration by parts, we obtain

∫∫

eK

uttψ dx = −

∫∫

eK

cq · ∇ψ dx +

∫

∂ eK

cq · nψ ds,

∫∫

eK

q1φdx = −

∫∫

eK

F · ∇(cφ) dx +

∫

∂ eK

cF · nφds,

∫∫

eK

q2ϕdx = −

∫∫

eK

G · ∇(cϕ) dx +

∫

∂ eK

cG · nϕds.

The LDG method for (15) on a curved element K̃ is formulated as follows:
∫∫

eK

∂2

∂t2
uhψh dx = −

∫∫

eK

cqh · ∇ψh dx +

∫

∂ eK

ĉq · nψh ds,

∫∫

eK

q1hφh dx = −

∫∫

eK

F(uh) · ∇(cφh) dx +

∫

∂ eK

ĉF · nφh ds,

∫∫

eK

q2hϕh dx = −

∫∫

eK

G(uh) · ∇(cϕh) dx +

∫

∂ eK

ĉG · nϕh ds,
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where uh and qh are solutions and ψh, φh and ϕh are test functions.
After integration by parts, we obtain the equivalent strong formulation of

the LDG scheme,
∫∫

eK

∂2

∂t2
uhψh dx =

∫∫

eK

∇ · (cqh)ψh dx +

∫

∂ eK

(
ĉq · n − cqh · n

)
ψh ds,

∫∫

eK

q1hφh dx =

∫∫

eK

c∇ · F(uh)φh dx +

∫

∂ eK

(
ĉF · n − cF(uh) · n

)
φh ds,

∫∫

eK

q2hϕh dx =

∫∫

eK

c∇ · G(uh)ϕh dx +

∫

∂ eK

(
ĉG · n− cG(uh) · n

)
ϕh ds.

The numerical fluxes can be taken in an alternating fashion, see [22].

3.2. The Modified LDG Scheme

Following Remark 1, we can rewrite the strong formulation of LDG scheme
as

∫∫

K

((uh)tt −∇ · (cqh))ψh dx −

∫

∂ eK

(
ĉq · n− cqh · n

)
ψh ds =

∫∫

C

((uh)tt −∇ · (cqh))ψh dx,

∫∫

K

(
q1h − c∇ ·F(uh)

)
φh dx −

∫

∂ eK

(
ĉF · n − cF(uh) · n

)
φh ds =

∫∫

C

(
q1h − c∇ ·F(uh)

)
φh dx,

∫∫

K

(
q2h − c∇ · G(uh)

)
ϕh dx −

∫

∂ eK

(
ĉG · n− cG(uh) · n

)
ϕh ds =

∫∫

C

(
q2h − c∇ ·G(uh)

)
ϕh dx.

Set the right hand side as zero, then we obtain the strong formulation of modified
LDG scheme,
∫∫

K

∂2

∂t2
uhψh dx =

∫∫

K

∇ · (cqh)ψh dx +

∫

∂ eK

(
ĉq · n − cqh · n

)
ψh ds,

∫∫

K

q1hφh dx =

∫∫

K

c∇ · F(uh)φh dx +

∫

∂ eK

(
ĉF · n − cF(uh) · n

)
φh ds,

∫∫

K

q2hϕh dx =

∫∫

K

c∇ · G(uh)ϕh dx +

∫

∂ eK

(
ĉG · n− cG(uh) · n

)
ϕh ds.

The modified scheme above can be easily implemented as a simple modification
to LDG scheme defined on a triangle K.

4. Local Conservation for Conservation Laws

Integrating ut +∇ ·F(u) = 0 on any cell T in a triangulation, we obtain the
integral form of conservation laws,

d

dt

∫∫

T

u dx = −

∫

∂T

F · n ds. (16)

The semi-discrete analog of (16) takes the form

d

dt

∫∫

T

uh dx = −

∫

∂T

F̂ · n ds, (17)
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where uh is the numerical solution and F̂ · n is the numerical flux. Conservative
schemes are those satisfying (17). For nonlinear conservation laws, conservative
schemes are preferred for several reasons. First, local conservation implies global
conservation, which is a crucial property for stability. Second, Lax-Wendroff
theorem states that the limit of solutions of conservative schemes will be a weak
solution to the conservation law as mesh refines. Third, the location of shock
waves computed by nonconservative schemes is usually wrong.

By taking the test function vh ≡ 1 in (2), we can see that the curvilinear
DG scheme satisfies the local conservation,

d

dt

∫∫

eK

uh dx = −

∫

∂ eK

F̂ · n ds. (18)

For the modified scheme, taking vh ≡ 1 in (7), we obtain,

d

dt

∫∫

K

uh dx −

∫

∂C

F(uh) · n(C) ds = −

∫

∂ eK

F̂ · n ds. (19)

Obviously the modified scheme is not conservative any more. On the other
hand, assuming (5) holds, by the divergence theorem, we have

−

∫

∂C

F(uh) · n(C) ds = −

∫∫

C

∇ · F(uh) dx =
d

dt

∫∫

C

uh dx.

Thus the modified DG scheme satisfies the local conservation (18) up to the
error ∫∫

C

(
∂

∂t
uh + ∇ · F(uh)

)
dx,

which might be arbitrarily large for nonsmooth problems.
In this section, we discuss an additional step to enforce the local conservation

in the modified scheme. For simplicity, we first discuss the Euler forward time
discretization. Let n denote the time step index and |K̃| denote the area of the

cell K̃, the desired property of local conservation (18) with Euler forward is

1

|K̃|

∫∫

eK

un+1
h dx =

1

|K̃|

∫∫

eK

un
h dx −

∆t

|K̃|

∫

∂ eK

F̂ · n ds, (20)

which means that the change of cell average of uh in time is only up to the
numerical flux on the boundary of K̃. Let un

h = 1

| eK|

∫∫
eK
un

h dx. After the DG

polynomials un+1
h are computed from the modified scheme, we need to adjust

its cell average so that un+1
h satisfies (20).

To enforce (20), three quantities must be computed, i.e., un
h, un+1

h and∫
∂ eK

F̂ · n ds. Notice that the numerical flux
∫

∂ eK
F̂ · n ds is included in the

modified scheme (7). Even though un
h is only a degree of freedom of the DG

polynomial, it is not explicitly available in the proposed modified scheme (7)
because the motivation of introducing the modified scheme is to avoid integrals
over K̃. Let x̄i and w̄i (i = 1, · · · , Nc) be the quadrature points and weights
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on K̃ which are exact for computing
∫∫

eK
un

h dx. Such a quadrature rule can be

obtained by considering a map from K̃ to a reference triangle and sufficiently
many quadrature points on the reference triangle, e.g, see [7].

Suppose un
h(x) is a bivariate polynomial of degreeN onK. Let un

h denote the

column vector consisting of nodal values on (N+1)(N+2)
2 nodes of the triangle

K such that un
h(x) is uniquely determined by un

h . In nodal DG method [7],
un

h will be used in computation explicitly on each cell. To compute un
h(x̄i)

based on un
h, one can first convert the nodal representation of a polynomial to

modal representation then evaluate the basis polynomials at x̄i, see [7]. Such a
process is a linear map from the vector un

h to un
h(x̄i). Let AK(x̄i) be the matrix

representation of this linear map, i.e., un
h(x̄i) = AK(x̄i)u

n
h. Notice that AK(x̄i)

is actually a row vector and it depends only on the triangle K and x̄i for fixed
N . Let AK denote the matrix [AK(x1)

T , · · · , AK(xNc
)T ]T where AT means

the transpose of the matrix A. Let W denote the row vector [w̄1, w̄2, · · · , w̄Nc
].

Then we have

∫∫

eK

un
h dx =

Nc∑

i=1

un
h(x̄i)w̄i = WAKun

h = A eK
un

h , (21)

where A eK
= WAK is a vector of the same size as un

h and it depends only on

polynomial degree N and the cells K and K̃. In other words, the cell average un
h

over K̃ can be easily computed by a dot product of two vectors if we compute
A eK

offline and store it.
We summarize the conservation correction step for Euler forward above as

follows:

1. Given the DG polynomial un
h(x) on time step n, evolve to next time step

by the modified scheme (8) with Euler forward and store
∫

∂ eK
F̂ · n ds.

Obtain the DG polynomial un+1
h (x).

2. Compute two cell averages un
h and un+1

h by two vector dot products as in
(21) with precomputed vector A eK

.

3. The corrected DG polynomial is given by a simple translation

ũn+1
h (x) = un+1

h (x) − un+1
h + un

h −
∆t

|K̃|

∫

∂ eK

F̂ · n ds.

It is straightforward to see that the corrected DG polynomial satisfies (20). For
higher order time discretizations, the correction step above can be used for each
time stage in Runge-Kutta methods or each time step in multi-step methods to
enforce the conservation.

Remark 7. Compared to the modified scheme (8), the additional computa-
tional cost of the conservation correction step is marginal, which is due to the

fact that the correct numerical flux integral
∫

∂ eK
F̂ · n ds is used in the modified

scheme (8). On the other hand, the storage cost is doubled since A eK
must be

stored for each triangle adjacent to curved boundaries.
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Remark 8. For nonlinear conservation laws, linear high order schemes such as
DG method is not stable when shocks emerge. Nonlinear limiters must be used
to stabilize the DG scheme in practice, e.g., the minmod type TVB limiter [23],
WENO type limiter [24, 25] and positivity-preserving limiter [26, 27, 28]. Such
limiters are all defined for conservative schemes thus they do not apply to the
nonconservative modified DG scheme (8). With the conservation correction,
it is straightforward to extend these limiters to the modified DG scheme for
solving nonlinear conservation laws.

5. Numerical Tests

In this section, we test the performance of the modified DG scheme in sev-
eral examples. For the time discretization, we use the fourth-order low storage
Runge-Kutta for conservation laws (1) and a fourth-order symplectic time in-
tegrator for the second order wave equation (14). See [7] and [22] for more
implementation details. We use the upwind flux for linear equations and the
Lax-Friedrichs flux with a global maximum of wave speed for nonlinear equations
for their simplicity. Other types of fluxes may result in much better performance
in specific context, e.g., Roe flux was used for nonlinear gas dynamics equations
with solid wall boundary conditions in [13].

5.1. Homogeneous Dirichlet Boundary Conditions

Example 1.

Consider solving the two-dimensional Maxwell’s equations in transverse mag-
netic form in a unit radius cylindrical cavity,

∂Hx

∂t
= −

∂Ez

∂y
,

∂Hy

∂t
=

∂Ez

∂x
,

∂Ez

∂t
=

∂Hy

∂x
−
∂Hx

∂y
. (22)

The computational domain is a unit disk with the boundary circle being perfect
electrical conductor (PEC). Thus the boundary condition is Ez = 0. An ex-
act solution in polar coordinates (r, θ) is given by Hx(x, y, 0) = 0, Hy(x, y, 0) =
0, Ez(x, y, t) = J6(α6r) cos 6θ cosα6t, where α6 = 13.589290170541217 and J6(z)
is the sixth Bessel function of the first kind. See [7].

We test three schemes in Section 2: DG on triangles, modified DG scheme
and the curvilinear DG scheme for solving (1) at the final time T = 0.5. See
Table 1 for the errors in the electric filed on two meshes shown in Figure 4, where
L∞ error is defined by the maximum of point-wise error over α-optimized nodes
[7] for all elements. The DG scheme on triangles is only second order accurate
due to the homogeneous Dirichlet boundary condition imposed on the polygon
boundary of the triangulation. Only the convex case as in shown in Figure 2 is
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involved thus we expect the modified DG scheme (7) and (8) to be high order
accurate. We can see the modified DG scheme is indeed as accurate as the full
curvilinear DG scheme.

Table 1: Example 1. L∞ error in DG schemes with polynomials of degree N solving the
TM-form Maxwell’s equations on a unit disk.

DG on triangles modified DG curvilinear DG
N Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order
2 4.93E-2 9.59E-3 2.36 3.90E-2 7.77E-3 2.33 4.01E-2 8.01E-3 2.32
3 1.85E-2 3.03E-3 2.61 1.20E-2 8.12E-4 3.90 1.31E-2 8.04E-4 4.03
4 1.14E-2 2.89E-3 1.98 1.66E-3 7.42E-5 4.49 1.68E-3 7.72E-5 4.44
5 1.11E-2 2.66E-3 2.06 3.06E-4 4.68E-6 6.03 3.20E-4 4.70E-6 6.09

(a) Mesh 1 (b) Mesh 2

Figure 4: Two triangular meshes for a unit disk.

Example 2.

Consider two concentric PEC cylinders with an electromagnetic wave trapped
between the walls in [29, 30]. We solve (22) in the domain between two con-
centric circles with radii 1

6 and 1
2 . The boundary condition is Ez = 0 along the

boundary. The exact solution in polar coordinates (r, θ) is given by,

Ez = cos(ωt+ θ)[J1(ωr) + aY1(ωr)],

Hx = −
1

2
sin(ωt+ θ) sin θ[J0(ωr) − J2(ωr) + a(Y0(ωr) − Y2(ωr))] −

cos θ

ωr
Ez,

Hy =
1

2
sin(ωt+ θ) cos θ[J0(ωr) − J2(ωr) + a(Y0(ωr) − Y2(ωr))] −

sin θ

ωr
Ez,

where and Jn and Yn denote the n-th order Bessel functions of the first and
second kind, respectively. The constants are given by ω = 9.813695999428405
and a = 1.76368380110927.
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(a) Mesh 1 (b) Mesh 2

Figure 5: Two triangular meshes between two concentric circles with radii 1

6
and 1

2
.

We test three DG schemes for solving (1) at the final time T = 0.5. See
Table 2 for the errors in the electric filed on two meshes shown in Figure 5.
Notice that the concave case is present in the modified DG scheme and the
exact solution can be smoothly extended to exterior of the domain. We can see
the modified DG scheme is still as accurate as the full curvilinear DG scheme.

Table 2: Example 2. L∞ error in DG schemes with polynomials of degree N solving the
TM-form Maxwell’s equations between two concentric circles.

DG on triangles modified DG curvilinear DG
N Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order
2 4.58E-2 1.00E-2 2.19 2.53E-2 4.01E-3 2.65 3.09E-2 4.47E-3 2.79
3 3.73E-2 8.87E-3 2.07 3.37E-3 3.20E-4 3.39 3.41E-3 2.77E-4 3.62
4 3.78E-2 8.89E-3 2.09 3.53E-4 1.20E-5 4.88 4.05E-4 1.35E-5 4.90
5 3.79E-2 8.92E-3 2.09 2.45E-5 6.92E-7 5.15 3.15E-5 6.74E-7 5.54

5.2. LDG for the Second Order Wave Equation

Example 3.

By setting u = Ez and ∇u = (Hy,−Hx), the wave equation (14) with c ≡ 1
is equivalent to the system (22). Consider solving the wave equation (14) with
c ≡ 1 on the unit disk with homogeneous Dirichlet boundary condition u = 0
using the same initial condition as in Example 1. Then the exact solution is the
same as in Example 1.

We test the modified LDG scheme and the curvilinear LDG scheme in Section
3 for solving (14) at the final time T = 0.5. See Table 3 for the errors, where
Mesh 1 and Mesh 2 are the same as in Figure 4, and Mesh 3 is a natural
refinement of Mesh 2. We can see the modified LDG scheme is indeed as accurate
as the full curvilinear LDG scheme.
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Example 4.

Consider solving the wave equation (14) with c ≡ 1 on the same domain as
in Example 2 with homogeneous Dirichlet boundary condition u = 0 using the
same initial condition as in Example 2. Then the exact solution is the same
as in Example 2. We test the modified LDG scheme and the curvilinear LDG
scheme in Section 3 for solving (14) at the final time T = 0.5. See Table 3 for
the errors, where Mesh 1 and Mesh 2 are the same as in Figure 5, and Mesh
3 is a natural refinement of Mesh 2. We can see the modified LDG scheme is
indeed as accurate as the full curvilinear LDG scheme.

Table 3: Example 3. L∞ error in LDG schemes with polynomials of degree N solving the
scalar wave equation on a unit disk.

modified LDG curvilinear LDG
N Mesh 1 Mesh 2 order Mesh 3 order Mesh 1 Mesh 2 order Mesh 3 order
2 3.12E-2 3.61E-3 3.11 5.15E-4 2.81 3.12E-2 3.61E-3 3.11 5.15E-4 2.81
3 9.53E-3 8.58E-4 3.47 5.77E-5 3.90 8.40E-3 8.60E-4 3.29 5.77E-5 3.90
4 2.12E-3 8.40E-5 4.68 2.71E-6 4.95 2.15E-3 8.40E-5 4.68 2.71E-6 4.95
5 3.58E-4 7.93E-6 5.50 1.22E-7 6.03 3.62E-4 7.97E-6 5.50 1.22E-7 6.03

Table 4: Example 4. L∞ error in LDG schemes with polynomials of degree N solving the
scalar wave equation between two concentric circles.

modified LDG curvilinear LDG
N Mesh 1 Mesh 2 order Mesh 3 order Mesh 1 Mesh 2 order Mesh 3 order
2 2.30E-3 2.90E-3 2.99 3.96E-5 2.87 2.31E-3 2.90E-4 2.99 3.96E-5 2.87
3 6.27E-4 4.35E-5 3.85 3.14E-6 3.79 5.62E-4 4.36E-5 3.69 3.14E-6 3.79
4 1.10E-4 2.94E-6 5.22 9.18E-8 5.00 9.19E-5 2.94E-6 4.97 9.31E-8 4.98
5 1.68E-5 2.16E-7 6.28 4.22E-9 5.68 1.07E-5 2.15E-7 5.64 4.22E-9 5.67

5.3. Scalar Conservation Laws

Example 5.

Consider an exact solution u(x, y, t) = sin(π(x+ y− 2t)) for the linear equation
ut +ux+uy = 0. We construct an initial-boundary value problem on a unit disk
by first setting the initial condition as u0(x, y) = sin(π(x + y)). Since the flow
direction is (1, 1), the inflow boundary is Γ = {(x, y) : x2 + y2 = 1, x+ y ≤ 0}.
The exact solution u(x, y, t) = sin(π(x+ y− 2t)) on Γ is given as the boundary
condition.

We test the modified DG, modified DG with the conservation correction
and curvilinear DG schemes till T = 1 on the two meshes in Figure 4. Since a
fourth order Runge-Kutta is used for time discretization, the time step is taken

as ∆t = O(h
N+1

4 ) if polynomial degree N is larger than 3, where h is the mesh

16



size. See Table 5 for the errors. The simple conservation correction step is used
for each time stage in the low-storage fourth order Runge-Kutta. The error of
modified DG with this conservation correction is a bit larger than modified DG
without the correction.

Table 5: Example 5. L∞ error in DG schemes with polynomials of degree N solving 2D linear
equation on a unit disk.

modified DG with modified DG curvilinear DG
conservation correction

N Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order
2 2.15E-2 3.19E-3 2.75 1.95E-2 2.75E-3 2.83 2.11E-2 2.96E-3 2.83
3 1.90E-3 1.04E-4 4.19 1.90E-3 9.97E-5 4.25 1.47E-3 1.03E-4 3.83
4 1.03E-4 3.52E-6 4.88 1.03E-4 3.27E-6 4.98 9.67E-5 3.54E-6 4.77
5 5.96E-6 7.10E-8 6.39 5.94E-6 7.00E-8 6.41 3.86E-6 7.03E-8 5.78

Example 6.

Let u(x, y, t) be the exact solution to 2D Burgers’ equation ut + uux + uuy = 0
with the initial condition u0(x, y) = 1 + 1

2 sin(π(x + y − 2t)). Then the flow
direction of this solution is (1, 1) before shock waves emerge.

We construct an initial-boundary value problem on a unit disk by using
u(x, y, 0) as the initial condition and using u(x, y, t) as boundary condition on
the inflow boundary Γ = {(x, y) : x2 + y2 = 1, x+ y ≤ 0}.

We test the modified DG, modified DG with the conservation correction and
curvilinear DG schemes till T = 0.05 on the two meshes in Figure 4. The time

step is taken as ∆t = O(h
N+1

4 ) if polynomial degree N is larger than 3, where
h is the mesh size. See Table 6 for the errors.

Table 6: Example 6. L∞ error in DG schemes with polynomials of degree N solving 2D
Burgers’ equation on a unit disk.

modified DG with modified DG curvilinear DG
conservation correction

N Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order
2 1.38E-2 2.48E-3 2.48 1.38E-2 2.49E-3 2.47 1.38E-2 2.53E-3 2.46
3 2.77E-3 1.80E-4 3.94 2.78E-3 1.79E-4 3.95 2.84E-3 1.79E-4 3.98
4 2.83E-4 1.53E-5 4.21 2.83E-4 1.53E-5 4.21 3.87E-4 1.53E-5 4.66
5 6.23E-5 1.01E-6 5.95 6.27E-5 1.00E-6 5.96 6.13E-5 1.00E-6 5.93

5.4. Compressible Euler Equations

Consider the two-dimensional Euler equations for the ideal gas

∂

∂t




ρ

ρu

ρv

E


 +

∂

∂x




ρu

ρu2 + p

ρuv

(E + p)u


 +

∂

∂y




ρv

ρuv

ρv2 + p

(E + p)v


 = 0,
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p = (γ − 1)(E −
1

2
ρu2 −

1

2
ρv2),

where γ = 1.4.

Example 7.

An exact solution with constant entropy is given by ρ = 1+ 1
2 sin(2π(x+y−2t))

and u = v = p ≡ 1. Let w(x, y, t) denote this exact solution. We construct an
initial-boundary value problem on a unit disk by using w(x, y, 0) as the initial
condition and using w(x, y, t) as boundary condition on the inflow boundary
Γ = {(x, y) : x2 + y2 = 1, x+ y ≤ 0}.

We test the modified DG, modified DG with the conservation correction and
curvilinear DG schemes till T = 0.2 on the two meshes in Figure 4. The time

step is taken as ∆t = O(h
N+1

4 ) if polynomial degree N is larger than 3, where
h is the mesh size. See Table 7 for the errors.

Table 7: Example 7. L∞ error for density in DG schemes with polynomials of degree N

solving 2D Euler’s equations on a unit disk.

modified DG with modified DG curvilinear DG
conservation fix

N Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order
2 6.20E-2 8.74E-3 2.83 6.20E-2 9.76E-3 2.67 6.21E-2 8.96E-3 2.84
3 1.13E-2 5.83E-4 4.28 1.13E-2 5.82E-4 4.28 1.13E-2 5.95E-4 4.25
4 1.24E-3 4.22E-5 4.88 1.24E-3 4.22E-5 4.88 1.15E-3 4.19E-5 4.77
5 1.32E-4 1.51E-6 6.45 1.31E-4 1.51E-6 6.45 1.65E-4 1.86E-6 6.47

Example 8.

(a) Mesh 1 (b) Mesh 2

Figure 6: Two triangular meshes for the Couette Flow problem.
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Consider the Couette Flow test problem in [7] for the flow between two
concentric cylinders spinning at different velocities. The exact solution in polar
coordinates (r, θ) is given by

ρ = 1,

ρu = −
sin θ

75

(
−r +

16

r

)
,

ρv =
cos θ

75

(
−r +

16

r

)
,

p = 1 +
1

752

(
r2

2
− 32 ln r −

128

r2

)
.

The computational domain is the area between two concentric circles with radii
r = 1 and r = 4. The exact solution is used as the initial condition and boundary
conditions on two circles. We test the modified DG and curvilinear DG schemes
till T = 0.2 on the two meshes in Figure 6. Since the exact solution can be
smoothly extended, we expect the modified DG to be high order accurate. It is
indeed high order accurate as shown in Table 8, where L1 error is defined as the
arithmetic average of point-wise error over α-optimized nodes for all elements.

Table 8: Example 8. L1 error for density in DG schemes with polynomials of degree N for
Couette Flow.

modified DG with modified DG curvilinear DG
conservation fix

N Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order Mesh 1 Mesh 2 order
2 1.73E-4 1.89E-5 3.20 1.74E-4 1.89E-5 3.20 1.53E-4 1.71E-5 3.16
3 2.01E-5 1.11E-6 4.23 2.08E-5 1.11E-6 4.23 1.76E-5 1.04E-6 4.08
4 1.38E-6 5.89E-8 4.55 1.38E-6 5.90E-8 4.55 1.36E-6 5.95E-8 4.52
5 2.82E-7 5.93E-9 5.57 2.82E-7 5.94E-9 5.57 2.11E-7 5.66E-9 5.22

Example 9.

One important desired property for numerical methods on curved grids is
free-stream preservation, i.e., the ability to exactly preserve a constant-state
solution. Assume uh ≡ c is a constant, then the consistency of the numerical flux

implies F̂ · n ≡ F(c) ·n. Thus after plugging uh ≡ c, we obtain
∫∫

eK
∂
∂t
uhvh dx =

0 in (3) and
∫∫

K
∂
∂t
uhvh dx = 0 (8). Therefore free-stream preservation is a

trivial property satisfied by both curvilinear DG scheme (3) and the modified
scheme (8). Moreover, the conservation correction step discussed in Section 4
does not destroy the free-stream preservation property because such a correction
will be zero when uh ≡ c.

We test the free stream preservation property of the modified DG scheme
solving a constant solution of compressible Euler equations on the two meshes
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in Figure 6. The exact solution has constant unit density and pressure. A free-
stream of Mach number 0.5 in x-direction is imposed. The y-direction velocity
v is zero. The error for the y-direction velocity v at terminal time T = 10 is
listed in Table 9. In all three schemes, the numerical solution for v is close to
machine zero.

Table 9: Example 9. Free-stream preservation test. L∞ error for v in DG schemes with
polynomials of degree N .

modified DG with modified DG curvilinear DG
conservation fix

N Mesh 1 Mesh 2 Mesh 1 Mesh 2 Mesh 1 Mesh 2
2 2.39E-14 3.08E-14 2.02E-15 1.84E-15 2.25E-15 3.09E-15
3 2.29E-14 3.33E-14 2.98E-15 3.80E-15 3.87E-15 4.53E-15
4 1.82E-14 4.20E-14 7.26E-15 1.05E-14 8.08E-15 8.66E-15
5 2.06E-14 5.10E-14 7.06E-15 2.62E-14 1.01E-14 2.70E-14

5.5. Reflective Boundary Conditions

Example 10.

Consider the following acoustic wave equations:

ρ(x)
∂v

∂t
+ ∇p = 0,

1

κ(x)

∂p

∂t
+ ∇ · v = 0,

(23)

where ρ is density and κ is bulk modulus. To test three DG schemes in Section
2 on wall boundary conditions, the Problem 2 in Category 1 of the Second CAA
Workshop on Benchmark Problems [31] is studied, see also [8, 32]. The domain
is a square [−10, 10]× [−10, 10] minus a disk of raidus 0.5 centered at the origin.
The initial condition is

v = 0, p = exp

[
− ln 2

(x− 4)2 + y2

0.22

]
.

The linear system (23) with ρ = κ ≡ 1 is solved with reflective boundary
conditions enforced on the circle, modeling the scattering of a Gaussian pressure
pulse by a cylinder. Here reflective boundary conditions mean that the boundary
condition of the normal velocity should be given as the opposite one in numerical
solution at the boundary while the tangential velocity and pressure should be
given as the same of those in numerical solution at the boundary.

See Figure 7 (a) and (b) for the time history of pressure monitored at the
point (0, 5) for three DG schemes with cubic polynomials on the mesh shown
in Figure 7 (c). The maximum of the reference solution in Figure 7 at T = 8.2
corresponds to the scattered wave field. In the zoomed Figure 7 (b), we can
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observe that the polygonal approximation to the circle in the DG scheme on tri-
angles results in an obvious phase error. The concave case in Figure 2 is present
in the modified DG scheme but the exact solution cannot be smoothly extended
due to the reflective boundary condition. Thus the modified DG scheme is not
high order accurate for this problem. We can observe that the modified DG
scheme is less accurate than the curvilinear DG scheme, however, the modified
DG scheme does produce a smaller phase error than the DG scheme on triangles.

6. Concluding Remarks

We have discussed a modified DG scheme defined on a geometry fitting
triangulation for solving time dependent problems on a two-dimensional curved
domain. It can be easily implemented as a DG scheme defined on triangles
with a modification or correction, which is simple in the sense that integrals
over curved elements are avoided. The modified scheme is high order accurate
on a triangle of convex case, and on a triangle of concave case if the equations
and the exact smooth solution can be smoothly extended to the whole triangle.
When such a smooth extension does not exist in a concave case, e.g., imposing
reflective boundary conditions for flow passing a cylinder, the modified DG
scheme produces smaller error than the DG scheme on triangles, even though it
does not have a better convergence rate. However, such a modified scheme is not
stable on a very coarse mesh. Rigorous stability result is difficult to establish
on a fine enough mesh. Nonetheless, numerical tests suggest that the modified
DG scheme is stable on a reasonably coarse mesh and finer ones.

Appendix A.

We discuss a one-dimensional analog of the modified DG scheme for the
linear problem 




ut + ux = 0, x ∈ [0, 1],
u(x, 0) = u0(x), x ∈ [0, 1],
u(x, t) = 0, x = 0.

(A.1)

Consider a mesh which may not fit the domain [0, 1] exactly, as illustrated in
Figure A.8. Let a = x 1

2
< x 3

2
< · · · < xj− 1

2
< xj+ 1

2
< · · · < xN+1

2

= 1 for the

interval [a, 1] where a ≥ 0.

Let uj(x, t) and vj(x) denote the solution polynomial and test function poly-
nomial on the interval Ij = [xj− 1

2
, xj+ 1

2
]. Let v−

j+ 1
2

denote vj(xj+ 1
2
) and v+

j− 1
2

denote vj(xj− 1
2
). Then the strong formulation of DG scheme on Ij is given by

∫

Ij

(
∂

∂t
uj +

∂

∂x
uj

)
vj dx+(ûj+ 1

2
−u−

j+ 1
2

)v−
j+ 1

2

−(ûj− 1
2
−u+

j− 1
2

)v+
j− 1

2

= 0, (A.2)

where ûj+ 1
2

is the numerical flux approximating u at xj+ 1
2
. For instance, we can

use the upwind flux ûj+ 1
2

= u−
j+ 1

2

for j ≥ 1. The boundary condition should be
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Figure 7: Acoustic Scattering by a Cylinder. DG with P 3 basis.
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Figure A.8: An illustration of the mesh in one dimension.

also included in the scheme. If the mesh boundary exactly fits the true boundary,
i.e., a = 0 in Figure A.8, then one can take û 1

2
= u(0, t) = 0 in the classical DG

scheme. Plugging in the numerical flux and setting vj = uj in the DG scheme
(A.2) for j > 1, with the triangle inequality u−

j− 1
2

u+
j− 1

2

≤ 1
2 (u−

j− 1
2

)2 + 1
2 (u+

j− 1
2

)2,

we obtain
∫

Ij

1

2

∂

∂t
u2

j dx = −

∫

Ij

1

2

∂

∂x
u2

j dx+ (u−
j− 1

2

− u+
j− 1

2

)u+
j− 1

2

=
1

2
(u+

j− 1
2

)2 −
1

2
(u−

j+ 1
2

)2 + (u−
j− 1

2

− u+
j− 1

2

)u+
j− 1

2

= −
1

2
(u+

j− 1
2

)2 −
1

2
(u−

j+ 1
2

)2 + u−
j− 1

2

u+
j− 1

2

≤
1

2
(u−

j− 1
2

)2 −
1

2
(u−

j+ 1
2

)2. (A.3)

At the boundary cell I1, plugging in the numerical flux û 1
2

= 0 and setting
v1 = u1, we get

∫

I1

1

2

∂

∂t
u2

1 dx = −

∫

I1

1

2

∂

∂x
u2

1 dx+ (−u+
1
2

)u+
1
2

= −
1

2
(u+

1
2

)2 −
1

2
(u−3

2

)2. (A.4)

Summing (A.4) and (A.3) for j = 2, · · · , N , we obtain the L2-stability of the

classical DG scheme ∂
∂t

∫ 1

0 u
2
h(x, t) dx ≤ −(u+

1
2

)2 − (u−
N+ 1

2

)2 ≤ 0, where uh de-

notes the DG solution.
Now consider the case when the mesh boundary does not fit the true bound-

ary, i.e., a > 0. For cells Ij with j > 1 which are not adjacent to the boundary
x = 0, the DG scheme is still defined as in (A.2) and the inequality (A.3) still
holds. For the boundary cell I1, since the boundary condition is not given for the
computational domain, a one-dimensional modified DG scheme can be defined
as

∫

I1

(
∂

∂t
u1 +

∂

∂x
u1

)
v1 dx+ (û 3

2
− u−3

2

)v−3
2

− (û0 − u+
0 )v+

0 = 0, (A.5)

where u+
0 and v+

0 are the point values of u1(x, t) and v1(x) at x = 0. For
the numerical flux and boundary condition, we can take û0 = u(0, t) = 0 and
û 3

2
= u−3

2

. Setting v1 = u1 in (A.5), we get

∫

I1

1

2

∂

∂t
u2

1 dx = −

∫

I1

1

2

∂

∂x
u2

1 dx− (u+
0 )2 =

1

2
(u+

1
2

)2 −
1

2
(u−3

2

)2 − (u+
0 )2. (A.6)
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Summing (A.6) and (A.3) for j = 2, · · · , N , the L2-norm of the solution in
the modified DG scheme (A.5) satisfies

∂

∂t

∫ 1

0

u2
h(x, t) dx ≤ (u+

1
2

)2 − 2(u+
0 )2 − (u−

N+ 1
2

)2. (A.7)

We can see that the L2 norm of the solution in the modified DG scheme will
blow up if x 1

2
= a is far away from x = 0. Since (A.6) is an equality, the

L2 estimate above is sharp. Even if assuming a is very close to 0, it is highly
nontrivial to prove an energy stability due to the positive term in the right hand
side of (A.7).

Appendix B.

For linear equations, the modified DG scheme is linear. Any linear semi-
discrete scheme for first order time-dependent problems can be represented as
d
dt

uh = Lhuh where uh denotes all degree freedoms in the numerical solution
and Lh is a linear operator denoting spatial discretization. We adopt a standard
spectrum analysis of Lh to provide necessary but not sufficient conditions on
stability of the modified DG scheme. If any of the eigenvalues of Lh has positive
real part, then the scheme is not stable in the sense that it admits a solution
with exponential growth in time.

We first discuss a simplified one-dimensional case. We only consider the
modified DG scheme defined on a mesh consisting of only one interval I = [0, 1]
for solving the initial-boundary value problem






ut + ux = 0, x ∈ [−a, 1],
u(x, 0) = u0(x), x ∈ [−a, 1],
u(x, t) = 0, x = −a,

(B.1)

where 0 ≤ a ≤ 1. We are interested in what values of a may result in positive
real parts in the eigenvalues of spatial discretization operator Lh in the modified
scheme. Let maxRe(eig(Lh)) denote the largest real parts in the eigenvalues
of Lh. See Figure B.9 for maxRe(eig(Lh)) for the modified DG scheme with
P 5 and P 8 polynomials, which suggests that the modified DG scheme is not
stable for large misfit between mesh boundary and true boundary. We can see
that the maxRe(eig(Lh)) is monotonically increasing with respect to a when
maxRe(eig(Lh)) ≤ 0. Figure B.10 is a graph of the largest a ∈ [0, 1] such that
maxRe(eig(Lh)) ≤ 0 for the modified DG scheme using PN polynomial.

Next we discuss a simplified two-dimensional case. Consider a domain Ω as
illustrated in Figure B.11, where the origin is denoted by O and θ ∈ [0, π

2 ] is
the angle between AO and BO. Let AC and BC be two segments parallel to
two coordinates axes respectively and AB be the arc lying on the unit circle.
Then the coordinates of A, B and C are (− cos(π

4 −
θ
2 ),− sin(π

4 −
θ
2 )), (− sin(π

4 −
θ
2 ),− cos(π

4 − θ
2 )) and (− sin(π

4 − θ
2 ),− sin(π

4 − θ
2 )). Consider the modified DG
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Figure B.9: The maximum of real parts in the eigenvalues of spatial discretization operator Lh

in the 1D modified DG scheme, defined on a mesh consisting of one interval [0, 1] for solving
(B.1).
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scheme defined on the triangle ABC solving the linear problem





ut + ux + uy = 0, x ∈ Ω,
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, x ∈ Γ,

(B.2)

where the inflow boundary Γ is the arc AB as illustrated in Figure B.11. The
smaller θ is, the closer the segment AB is to the unit circle. Thus the value of θ
here is used as a quantification of misfit between the mesh boundary and the true
boundary. See Figure B.12 for largest real parts of the eigenvalues for the modi-
fied DG scheme with polynomials of degree 5. We observe that maxRe(eig(Lh))
is monotonically increasing with respect to θ when max Re(eig(Lh)) ≤ 0. The
largest angles θ such that maxRe(eig(Lh)) ≤ 0 are listed in Table B.10.

Table B.10: The largest angles θ such that max Re(eig(Lh)) ≤ 0 in 2D modified DG scheme
with polynomials of degree N defined on the triangle ABC in Figure B.11.

N 2 3 4 5 6 7 8 9
θ 90◦ 90◦ 90◦ 81.97◦ 25.39◦ 12.05◦ 6.86◦ 4.38◦

O

CA

B

θ

Figure B.11: The domain Ω is bounded by the arc AB and two segments AC and BC. The
inflow boundary Γ is the arc AB.
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