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Abstract

In this paper, we construct a positivity-preserving high order accurate finite volume

hybrid Hermite Weighted Essentially Non-oscillatory (HWENO) scheme for compressible

Navier-Stokes equations, by incorporating a nonlinear flux and a positivity-preserving lim-

iter. HWENO schemes have more compact stencils than WENO schemes but with higher

computational cost due to the auxiliary variables. The hybrid HWENO schemes use lin-

ear reconstructions in smooth region thus are more efficient than conventional HWENO

schemes. However, the hybrid HWENO is not robust for many demanding problems. The

positivity-preserving hybrid HWENO scheme in this paper is not only more efficient but also

much more robust than the conventional HWENO method for both compressible Euler and

compressible Navier-Stokes equations, especially for solving gas dynamics equations in low

density and low pressure regime. Numerical tests on low density and low pressure problems

are performed to demonstrate the robustness and the efficiency of the positivity-preserving

hybrid HWENO scheme.
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1 Introduction

The compressible Euler equations and Navier-Stokes equations are the most popular con-

tinuum equations in the modeling and analysis of gas dynamics problems. The positivity of

density and pressure are crucial to robustness of numerical simulations, in many applications

such as aerospace, meteorology, oceanography, hydraulic engineering, chemical engineering,

etc. It is often necessary to preserve the positivity of density and pressure for constructing

robust high order numerical schemes solving demanding gas dynamics problems, especially

for problems involving both shocks and low density and low pressure.

In the past decade, quite a few successful positivity-preserving high-order schemes for

solving compressible Euler equations have been constructed, including positivity-preserving

discontinuous Galerkin (DG) scheme proposed by Zhang and Shu in [28, 29], the positivity-

preserving finite difference Weighted Essential Non-oscillatory (WENO) schemes in [8,25,30],

as well as positivity-preserving finite volume WENO schemes in [7,8]. On the other hand, the

positivity-preserving property in these high order methods for compressible Euler equations

does not hold for the additional diffusion term in the compressible Navier-Stokes equa-

tions. Even though many popular high order accurate schemes can be rendered positivity-

preserving for a pure convection problem such as compressible Euler equations, it is challeng-

ing to extend these methods to a convection diffusion problem. For popular linear schemes

including conventional finite volume methods and most DG schemes for solving scalar diffu-

sion equations, positivity-preserving or bound-preserving can be enforced in the same fashion

as in positivity-preserving high order schemes for compressible Euler equations, up to at most

second order accuracy [26,31]. Though there are a few bound-preserving linear higher order

accurate schemes for scalar diffusion equations [4, 5, 10, 27], it is quite difficult to extend

these methods to the complicated compressible Navier-Stokes system. In general, for solving

compressible Navier-Stokes equations, it is nontrivial to adopt the bound-preserving dis-

cretization of scalar diffusion operators or positivity-preserving techniques for compressible

Euler system. In [26], Zhang first constructed a uniformly high order accurate positivity-

preserving DG scheme for solving compressible Navier-Stokes equations, which can be easily

and efficiently implemented in multiple dimensions. The key ingredients include a nonlinear

diffusion flux and a positivity-preserving limiter, which also applies to finite volume schemes.
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The finite volume (FV) Hermite WENO (HWENO) schemes were first proposed by Qiu

and Shu in [18] and initially used as a limiter for stabilizing Runge-Kutta DG methods. Since

then, many HWENO schemes have been developed to solve hyperbolic conservation laws and

related problems, including FV HWENO schemes in [2,3,22,23,37] and FD HWENO schemes

in [11,12] for hyperbolic conservation law, as a limiter for DG methods in [15–17,19,38,42],

applications for the Hamilton-Jacobi equation in [20,24,34–36,39–41], Vlasov equations in [1],

KdV equation in [14], etc. Compared to WENO schemes, the major advantages of HWENO

schemes include more compact stencil thus easier treatment of the boundary conditions, and

higher resolution in numerical solutions for schemes of the same order. However, in practice

HWENO schemes are less robust than WENO schemes, with higher computational cost due

to the additional derivative equation. To improve robustness and computational efficiency,

Zhao and Qiu proposed a high order FV hybrid HWENO schemes in [32, 33], in which the

Hermite type reconstruction is based on zeroth-order moment, i.e., the cell averages, and

first-order moment reconstruction. Here hybrid refers to the hybridization of nonlinear and

linear reconstructions, i.e., the nonlinear HWENO reconstruction is only used on troubled

cells defined by some discontinuity detector and linear reconstruction is used on the other

cells. Such hybrid schemes can save computational cost since linear reconstructions are

more efficient than nonlinear ones. In [32, 33], an additional limiter suppressing oscillations

is applied on the first-order moment, coupled with the HWENO reconstruction, thus such

a hybrid HWENO scheme is also more robust than the original HWENO scheme, but it is

still unstable for many low density and low pressure problems.

In this paper, we design a positivity-preserving high order FV hybrid HWENO scheme,

based on the work in [26, 32], to solve compressible Navier-Stokes equations. When the

Reynolds number is infinity and the viscous term disappears, it also reduces a positivity-

preserving high order scheme for compressible Euler equations. The positivity-preserving

finite volume HWENO scheme for solving compressible Euler equations in [2] was based on

the reconstruction of the function cell averages and derivative cell averages, where two sets

of stencil are used to approximate the function point values and derivative point values for

spatial reconstruction. The positivity-preserving high order FV hybrid HWENO scheme in

this paper is based on zeroth-order moment and first-order moment reconstruction, with only
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one set of stencil for spatial reconstruction. Compared with the reconstruction in [2], the

hybrid HWENO scheme in this paper has less computational cost due to the hybridization

techniques using only linear reconstruction for smooth regions.

The rest of the paper is organized as follows. In Section 2, we briefly describe the

hybrid HWENO schemes for solving compressible Navier-Stokes equations. In Section 3, we

introduce the positivity-preserving finite volume hybrid HWENO scheme for one-dimensional

and two-dimensional compressible Navier-Stokes equations. Numerical tests are given in

Section 4. Concluding remarks are given by Section 5.

2 Finite volume hybrid Hermite WENO schemes

The dimensionless compressible Navier-Stokes equations for ideal gases in [26] in conser-

vative form can be written as

Ut +∇ · F(U,S) = 0, (2.1)

where U = (ρ, ρu, E)T are conservative variables with the velocity u = (u, v, w), ρ is

the density, E is the total energy and the superscript T denotes transpose of a vector. Let

S = ∇U denote the derivative. The flux function F(U,S) = Fa − Fd consists of the

advection and the diffusion fluxes:

Fa =

 ρu
ρu⊗ u + pI

(E + p)u

 ,Fd =

 0
τ

u · τ − q

 , (2.2)

where p is pressure, I is the unit tensor, the dimensionless stress tensor is given by τ =

1
Re

(
∇u + (∇u)T − 2

3
(∇ · u)I

)
with the Reynolds number Re, and q = −κ∇T denotes the

heat diffusion flux with the thermal conductivity coefficient κ proportional to 1
Re

in molecular

theory. Assuming the specific heat at constant pressure cp is a constant, the dimensionless

quantity Prandtl number Pr = cp
κRe

is a constant. For the ideal gas, the total energy E =

1
2
ρ||u||2 +ρe where e denotes the internal energy, p = (γ−1)ρe and T = e

cv
where the specific

heat capacity cv and ratio of specific heats γ = cp
cv

are constants. We will use γ = 1.4 and

Pr = 0.72 for air.

After multiplying (2.1) by the test function φ(x) and integration by part on a rectangular
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cell K, we can obtain the following integral form

d

dt

∫
K

U(x, t)φ(x)dx = −
∫
∂K

(F · n)φ(x)ds+

∫
K

(F · ∇φ)dx, (2.3)

where n represents the outward unit vector normal to the boundary of the cell ∂K. In the one

dimensional case, the cell K is an interval [xi− 1
2
, xi+ 1

2
] and the test function φ(x) is taken as

1
∆x

and
x−xj
(∆x)2

. In the two dimensional case, the cell K is a rectangle [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]

and the test function φ(x) is taken as 1
∆x∆y

, x−xi
(∆x)2∆y

and
y−yj

∆x(∆y)2
. The line integral in (2.3)

can be approximated by a L-points Gauss quadrature on each edge of ∂K =
S⋃
s=1

∂Ks

∫
∂K

(F · n)φ(x)ds ≈
S∑
s=1

|∂Ks|
L∑
`=1

ω`[F(U(Gs`, t),S(Us`, t)) · n]φ(Gs`) (2.4)

where Gs` and ω` are Gauss quadrature points on the edge ∂Kis and normalized weights

respectively. The flux F(U(Gs`, t),S(Us`, t)) · n at Gauss quadrature points should be re-

placed by a numerical flux which will be discussed in the next section. Both the Hermite

interpolation approximation of the function U and its derivative S are needed in the finite

volume scheme. The procedures of FV hybrid Hermite WENO reconstruction of U±(Gs`, t)

can be found in [32] and the reconstructions of its derivatives S are given in Appendix

A. Let UK =
∫
K

U(x, t)φ(x)dx and L(U,S)K = −
∫
∂K

(F · n)φ(x)ds +
∫
K

(F · ∇φ)dx, the

semi-discrete HWENO scheme (2.3) can be written as:

d

dt
UK = L(U,S)K , (2.5)

The ODE (2.5) is discretized in time by the third order strong stability preserving (SSP)

Runge-Kutta method: 
U (1)

K = UnK + ∆tL(UnK)

U (2)

K =
3

4
UnK +

1

4
(U (1)

K + ∆tL(U (1)

K ))

Un+1

K =
1

3
UnK +

2

3
(U (2)

K + ∆tL(U (2)

K ))

(2.6)
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3 A positivity-preserving high order finite volume hy-

brid HWENO scheme

In this section, we construct a positivity-preserving high order finite volume hybrid

HWENO scheme for solving compressible Navier-Stokes equations by combing the hybrid

Hermite WENO schemes in [32] with the positivity-preserving high order method in [26].

3.1 One-dimensional case

Consider the one-dimensional dimensionless compressible Navier-Stokes equation in con-

servative form

Ut + F(U,S)x = 0. (3.1)

where U = (ρ,m,E)T are the conservative variables and the superscript T denotes transpose

of a vector. The flux function F(U,S) = Fa−Fd with S = Ux, and advection and diffusion

fluxes are given respectively as Fa = (ρu, ρu2 + p, (E + p)u)
T
, Fd = (0, τ, uτ − q)T , where

τ = η
Re
ux is the shear stress tensor and q = − γ

Pr·Re
ex denotes the heat diffusion flux with

e = E/ρ− u2/2, p = (γ − 1)ρe, where ρ is the density, m = ρu is the momentum, u denotes

the velocity, E is the total energy, e denotes the internal energy, p is the pressure, Re, γ and

Pr are positive constants and η = 4/3.

The test function φ(x) is taken 1
∆x

and x−xi
(∆x)2

and the cell K is the interval Ii = [xi− 1
2
, xi+ 1

2
]

in (2.3) in one-dimensional case, then the semi-discrete hybrid HWENO scheme (2.5) can

be written as
dUi(t)

dt
= − 1

∆x

[
F (U,S) |x

i+1
2
,t −F (U,S) |x

i− 1
2
,t

]
,

dVi(t)

dt
= − 1

2∆x

[
F (U,S) |x

i+1
2
,t +F (U,S) |x

i− 1
2
,t

]
+

1

(∆x)2

∫
Ii

F(U,S)dx,

(3.2)

where the zeroth-order moment Ui(t) = 1
∆x

∫
Ii

U(x, t)dx and the first order moment Vi(t) =

1
∆x

∫
Ii

x−xi
∆x

U(x, t)dx in Ii. After replacing the flux function at the interface of cell Ii by

the numerical flux, and using the Gauss-Lobatto quadrature to approximate the integral∫
Ii

F(U,S)dx, we can obtain the first order Euler forward time discretization finite volume
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hybrid HWENO scheme
U
n+1

i = U
n

i −
∆t

∆x
(F̂i+ 1

2
− F̂i− 1

2
),

V
n+1

i = V
n

i −
∆t

2∆x
(F̂i+ 1

2
+ F̂i− 1

2
) +

∆t

∆x
Fi.

(3.3)

where F̂i+ 1
2

is the numerical flux to approximate the value of the flux F(U,S) at the interface

point xi+ 1
2
. We use the positivity-preserving numerical flux in [26] defined by

F̂i+ 1
2

=F̂
(
U−
i+ 1

2

,S−
i+ 1

2

,U+
i+ 1

2

,S+
i+ 1

2

)
=

1

2

[
F
(
U−
i+ 1

2

,S−
i+ 1

2

)
+ F

(
U+
i+ 1

2

,S+
i+ 1

2

)
− βi+ 1

2

(
U+
i+ 1

2

−U−
i+ 1

2

)] (3.4)

βi+ 1
2
> max

U±
i+1

2

,S±
i+1

2

[
|u|+ 1

2ρ2e
(
√
ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|)

]
(3.5)

and Fi is approximated by a four-point Gauss-Lobatto quadrature formula

Fi =
1

∆x

∫
Ii

F(U,S))dx ≈
4∑

α=1

ω̂αF(U(x̂αi , t),S(x̂αi , t)), (3.6)

where the weights are ω̂1 = ω̂4 = 1
12

and ω̂2 = ω̂3 = 5
12

, and the Gauss-Lobatto quadrature

points on the cell Ii are x̂1
i = xi− 1

2
, x̂2

i = x
i−
√
5

10

, x̂3
i = x

i+
√
5

10

, x̂4
i = xi+ 1

2
with xi+a = xi + a∆x.

Our goal is to design the conservative schemes that are positivity-preserving of density

and internal energy or pressure. Here we consider the positivity of internal energy instead of

pressure. For ideal gas, the equation of state is p = (γ − 1)ρe which satisfies p > 0⇔ e > 0

under the density ρ > 0. So if the density ρ > 0, positivity of pressure is equivalent to

positivity of internal energy, which is also mentioned in [26]. However, the others equation

of state does not have this conclusion such as Jones-Wilkins-Lee (JWL) equation of state for

explosive products in [6]. Define the set of admissible states by

G =

U =

 ρ
m
E

 : ρ > 0, ρe(U) = (γ − 1)(E − 1

2

m2

ρ
) > 0

 . (3.7)

It is straightforward to check that ρe is a concave function of U if ρ > 0. Thus it satisfies

the Jensen’s inequality: ∀U1,U2 ∈ G, ∀λ1, λ2 ≥ 0, λ1 + λ2 = 1,

ρe(λ1U1 + λ2U2) ≥ λ1ρe(U1) + λ2ρe(U2). (3.8)
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Therefore, G is a convex set. Let N = d(k + 3)/2e, namely, N is smallest integer satis-

fying 2N − 3 ≥ k and k the degree of reconstruction polynomial. So a N-point Legendre

Gauss-Lobatto quadrature formula on the interval Ii =
[
xi− 1

2
, xi+ 1

2

]
is exact for integrals

of polynomials of degree up to 2N − 3. Denote these quadrature points as {x̂αi : α =

1, 2, ..., N} = {xi− 1
2

= x̂1
i , x̂

2
i , · · · , x̂N−1

i , x̂Ni = xi+ 1
2
} and let ω̂α be the normalized quadrature

weights on the interval [−1
2
, 1

2
] such that

∑N
µ=1 ω̂α = 1. Let Pi(x) = (ρi(x),mi(x), Ei(x))T

be the reconstruction polynomials of degree k in the scheme (3.3) on the interval Ii with cell

average U
n

i and nodal values U−
i+ 1

2

and U+
i− 1

2

at two endpoints of the cell Ii, then

U
n

i =
1

∆x

∫
Ii

Pi(x)dx =
N∑
α=1

ω̂αPi (x̂
α
i ) =

N−1∑
α=2

ω̂αPi (x̂
α
i ) + ω̂1U

+
i− 1

2

+ ω̂NU−
i+ 1

2

. (3.9)

By the mean value theorem for (3.9), there exist some points x1
i , x

2
i , x

3
i , in cell Ii such that

(
ρi(x

1
i ),mi(x

2
i ), Ei(x

3
i )
)T

=
N−1∑
α=2

ω̂α
1− ω̂1 − ω̂N

Pi (x̂
α
i ) =

U
n

i − ω̂1U
+
i− 1

2

− ω̂NU−
i+ 1

2

1− ω̂1 − ω̂N
. (3.10)

Then we have the following sufficient condition for positivity of cell averages, which can

be easily enforced to preserve positivity of density and pressure without constructing the

polynomials Pi(x).

Theorem 1 A sufficient condition for U
n+1

i ∈ G in the scheme (3.3) with reconstruction

polynomials Pi(x) = (ρi(x),mi(x), Ei(x))T of degree k is

U±
i± 1

2

∈ G,
U
n

i − ω̂1U
+
i− 1

2

− ω̂NU−
i+ 1

2

1− ω̂1 − ω̂N
∈ G, ∀i (3.11)

under the CFL condition

∆t

∆x
max
i
βi+ 1

2
≤ ω̂ =

1

N(N − 1)
, N = d(k + 3)/2e (3.12)

where ω̂ denote the smallest weight in ω̂α, i.e., ω̂ = ω̂1 = ω̂N .

Proof: By plugging (3.4),(3.9) and (3.10) into the first equation of scheme (3.3), we
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obtain

U
n+1

i =

(
ω̂1 −

1

2

∆t

∆x
βi− 1

2

)[
U+
i− 1

2

+
1

2

∆t

∆x

(
ω̂1 −

1

2

∆t

∆x
βi− 1

2

)−1

F
(
U+
i− 1

2

,S+
i− 1

2

)]

+

(
ω̂N −

1

2

∆t

∆x
βi+ 1

2

)[
U−
i+ 1

2

− 1

2

∆t

∆x

(
ω̂N −

1

2

∆t

∆x
βi+ 1

2

)−1

F
(
U−
i+ 1

2

,S−
i+ 1

2

)]
+

1

2

∆t

∆x
βi− 1

2

[
U−
i− 1

2

+ β−1
i− 1

2

F
(
U−
i− 1

2

,S−
i− 1

2

)]
+

1

2

∆t

∆x
βi+ 1

2

[
U+
i+ 1

2

− β−1
i+ 1

2

F
(
U+
i+ 1

2

,S+
i+ 1

2

)]
+ (1− ω̂1 − ω̂N)

U
n

i − ω̂1U
+
i− 1

2

− ω̂NU−
i+ 1

2

1− ω̂1 − ω̂N
.

(3.13)

First we set

βi+ 1
2
> max

U−
i+1

2

,S−
i+1

2

,U+

i+1
2

S+

i+1
2

[
|u|+ 1

2ρ2e

(√
ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|

)]
.

Then under the CFL condition ∆t
∆x

maxi βi+ 1
2
≤ ω̂, we have 1

2
∆t
∆x

(
ω̂ − 1

2
∆t
∆x
βi+ 1

2

)−1

≤ β−1
i+ 1

2

.

By the Lemma 6 in [26], we have

U−
i− 1

2

∈ G⇒ U−
i− 1

2

+ β−1
i− 1

2

F
(
U−
i− 1

2

,S−
i− 1

2

)
∈ G,

U+
i+ 1

2

∈ G⇒ U+
i+ 1

2

− β−1
i+ 1

2

F
(
U+
i+ 1

2

,S+
i+ 1

2

)
∈ G,

U+
i− 1

2

∈ G⇒ U+
i− 1

2

+ 1
2

∆t
∆x

(
ω̂1 − 1

2
∆t
∆x
βi− 1

2

)−1

F
(
U+
i− 1

2

,S+
i− 1

2

)
∈ G,

U−
i+ 1

2

∈ G⇒ U−
i+ 1

2

− 1
2

∆t
∆x

(
ω̂N − 1

2
∆t
∆x
βi+ 1

2

)−1

F
(
U−
i+ 1

2

,S−
i+ 1

2

)
∈ G.

Moreover, (3.13) is a convex combination under the same CFL condition (3.12). Thus we

get U
n+1

i ∈ G for the scheme (3.3). Q.E.D.

To enforce the condition (3.12) in Theorem 1, we use the simplified scaling limiter

for HWENO schemes in [29]. For convenience, assume there is a vector of reconstructed

polynomials Pi(x) = (ρi(x),mi(x), Ei(x))T on the interval Ii with the cell average Pi =(
ρi,mi, Ei

)T
. Define ρei = ρe(Pi) = Ei − 1

2
m2
i /ρi. Assume Pi has positive density and

energy, i.e.,ρi > 0 ,Ei > 0. We seek polynomials P̃i(x) with the same cell averages so that

P̃i(x̂
1
i ), P̃i(x̂

N
i ),

∑N−1
α=2

ω̂α
1−2ω̂

P̃i(x̂
α
i ) ∈ G. The following procedure can be applied to enforce

the sufficient condition (3.11) for each cell Ii :

1. To keep the positivity of density, we modify firstly density by

ρ̂i(x) = θρ (ρi(x)− ρ̄i) + ρ̄i, θρ = min

{
1,

ρ̄i − ε
ρ̄i − ρmin

}
(3.14)
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where ε is a small positive number as the desired lower bound for density, e.g., ε = 10−13,

ρmin = min{ρi(x̂1
i ), ρi(x̂

N
i ), ρi(x̂

∗
i )} with ρi(x̂

∗
i ) = 1

1−2ω̂
(ρ̄i − ω̂1ρi(x̂

1
i ) − ω̂Nρi(x̂Ni )) and θρ ∈

[0, 1]. Since ρ̄i = ω̂ρi(x̂
1
i )+ ω̂ρi(x̂

1
i )+(1−2ω)ρi(x

∗
i ), we have ρ̄i ≥ min{ρi(x̂1

i ), ρi(x̂
N
i ), ρi(x̂

∗
i )},

thus θρ ∈ [0, 1]. Moreover, it’s straightforward to check that ρi(x̂
1
i ) > 0, ρi(x̂

N
i ) > 0 and

ρ̂i(x
∗
i ) ≥ 0. Then ρ̂−

i+ 1
2

= θρ

(
ρ−
i+ 1

2

− ρ̄i
)

+ ρ̄i , ρ̂+
i− 1

2

= θρ

(
ρ+
i− 1

2

− ρ̄i
)

+ ρ̄i.

Let P̂i(x) = (ρ̂i(x),mi(x), Ei(x))T . The convex combination
∑N−1

α=2
1

1−2ω̂
P̂i(x̂

α
i ) is equal

to (ρ̂i(x
∗,1
i ), m̂i(x

∗,2
i ), Êi(x

∗,3
i ))T by the mean value theorem, where x∗1i , x∗2i , x∗3i are three

different points on the cell Ii. We abuse the notation by using P̂i(x
∗∗
i ) to denote the vector

(ρ̂i(x
∗,1
i ), m̂i(x

∗,2
i ), Êi(x

∗,3
i ))T , then P̂i(x

∗∗
i ) = 1

1−2ω̂
(Pi − ω̂1P̂i(x̂

1
i )− ω̂NP̂i(x̂

N
i )).

2. For enforcing the positivity of internal energy, we perform the following procedure

P̃i(x) = θe

(
P̂i(x)−Pi

)
+ Pi, θe = min

{
1,

ρei − ε
ρei − ρemin

}
, (3.15)

where ε is a small positive number as the desired lower bound for internal energy, e.g.,

ε = 10−13, ρemin = min
{
ρe(P̂i(x̂

1
i )), ρe(P̂i(x̂

N
i ))ρe(P̂i(x̂

∗∗
i ))
}

and θe ∈ [0, 1]. Since the cell

average of P̂i(x) is still Pi, we have the convex combination Pi = ω̂1P̂i(x̂
1
i ) + ω̂NP̂i(x̂

N
i ) +

(1− 2ω̂)P̂i(x
∗∗
i ), so ρe(Pi) ≥ ω̂1ρe

(
P̂i(x̂

1
i )
)

+ ω̂Nρe
(
P̂i(x̂

N
i )
)

+ (1− 2ω̂)ρe
(
P̂i(x

∗∗
i )
)

by the

Jensen’s inequality, thus θe ∈ [0, 1]. It’s straightforward to check P̃i(x̂
1
i ), P̃i(x̂

N
i ) ∈ G and

P̃i(x
∗∗
i ) ∈ G. Therefore, we get the polynomial P̃i(x) satisfying the condition (3.11).

In fact,we only need to obtain the point values Ũ±
i∓ 1

2

= P̃i(xj∓ 1
2
) in a finite volume scheme.

For simplicity, denote q̂1
i = P̂−

i+ 1
2

= (ρ̂−
i+ 1

2

,m−
i+ 1

2

, E−
i+ 1

2

)T , q̂2
i = P̂+

i− 1
2

= (ρ̂+
i− 1

2

,m+
i− 1

2

, E+
i− 1

2

)T

and q̂3
i =

P̄i−ω̂P̂+

i− 1
2

−ω̂P̂−
i+1

2

1−2ω̂
. For k = 1, 2, 3, if ρe(q̂k) < ε, then set tkε = ρe(q̂k)−ε

ρe(P̄i)−ρe(q̂k)
; if

ρe(q̂k) ≥ ε, then set tkε = 1. Take θe = min{t1ε, t2ε, t3ε}, then

Ũ+
i− 1

2

= P̃i(xi− 1
2
) = θe

(
P̂+
i− 1

2

−Pi

)
+ Pi,

Ũ−
i+ 1

2

= P̃i(xi+ 1
2
) = θe

(
P̂−
i+ 1

2

−Pi

)
+ Pi.

Finally, use Ũ+
i− 1

2

, Ũ−
i+ 1

2

instead of U+
i− 1

2

,U−
i+ 1

2

in the scheme (3.3).

Remark 3.1 It is needed to emphasize that we mainly introduce the design and implemen-

tation of positivity-preserving property of one-dimensional FV hybrid HWENO scheme. U
n

i

and V
n

i in (3.2) are applied to HWENO interpolation for the approximation of the function

10



U and its derivative S in Gauss-Labotto points, and the detailed procedures of FV hybrid

HWENO interpolation in one dimensional case are given in the appendix A.

Remark 3.2 To obtain processed point value Ũ±
i∓ 1

2

, we only need cell average Ui and point

values U±
i∓ 1

2

,U±
i∓ 1

2

in the limiter (3.14) and (3.15). The reconstruction polynomials Pi(x)

are not needed in implementation. It is a high order accurate and conservative limiter [26].

3.2 Two-dimensional case

Consider the two-dimensional dimensionless compressible Navier-Stokes equation in con-

servative form

Ut +∇ · F(U,S) = 0 (3.16)

where U = (ρ, ρu, E)T are the conservative variables with the velocity u = (u, v),S = ∇U

and the flux function F(U,S) = Fa − Fd with advection and diffusion fluxes as

Fa =

 ρU
ρU⊗U + pI

(E + p)U

 , Fd =

 0
τ

u · τ − q

 , (3.17)

where ρ is the density, m and n are the momentas given by m = ρu and n = ρv, u and v

denotes the velocity, E is the total energy, e denotes the internal energy, p is the pressure

and I is the unit tensor. The shear stress tensor and heat diffusion flux are

τ =
1

Re

(
τxx τxy
τyx τyy

)
, q =

1

Re

γ

Pr
(ex, ey)

T (3.18)

with

e =
E

ρ
− 1

2
(u2 + v2), p = (γ − 1)ρe (3.19)

and

τxx =
4

3
ux −

2

3
vy, τxy = τyx = uy + vx, τyy =

4

3
vy −

2

3
ux.

The equation (3.16) can be written as

Ut + F(U,S)x + G(U,S)y = 0 (3.20)
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with

F(U,S) =


ρu

ρu2 + p− τxx
Re

ρuv − τyx
Re

(E + p)u− 1
Re

(τxxu+ τyxv + γ
Pr
ex)

 ,

G(U,S) =


ρv

ρuv − τxy
Re

ρv2 + p− τyy
Re

(E + p)v − 1
Re

(τxyu+ τyyv + γ
Pr
ey)

 .

The test function φ(x, y) is taken as 1
∆x∆y

, x−xi
(∆x)2∆y

and
y−yj

∆x(∆y)2
and cell K is a rectangular

[xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] in (2.3) in two-dimensional case. Then the semi-discrete hybrid

HWENO scheme (2.5) can be written as

dUij(t)

dt
=− 1

∆x∆y

∫ y
j+1

2

y
j− 1

2

[
F(U,S) |x

i+1
2
,y −F(U,S) |x

i− 1
2
,y

]
dy

− 1

∆x∆y

∫ x
i+1

2

x
i− 1

2

[
G(U,S) |x,y

j+1
2

−G(U,S) |x,y
j− 1

2

]
dx,

dVij(t)

dt
=− 1

2∆x∆y

∫ y
j+1

2

y
j− 1

2

[
F(U,S) |x

i− 1
2
,y +F(U,S) |x

i+1
2
,y

]
dy

− 1

∆x∆y

∫ x
i+1

2

x
i− 1

2

x− xi
∆x

[
G(U,S) |x,y

j+1
2

−G(U,S) |x,y
j− 1

2

]
dx

+
1

(∆x)2∆y

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

F(U,S)dxdy,

dWij(t)

dt
=− 1

∆x∆y

∫ y
j+1

2

y
j− 1

2

y − yj
∆y

[F(U,S) |x
i+1

2
,y −F(U,S) |x

i− 1
2
,y]dy

− 1

2∆x∆y

∫ x
i+1

2

x
i− 1

2

[
G(U,S) |x,y

j− 1
2

+G(U,S) |x,y
j+1

2

]
dx

+
1

∆x(∆y)2

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

G(U,S)dxdy,

(3.21)

where

Uij(t) =
1

∆x∆y

∫
K

U(x, y, t)dxdy,

Vij(t) =
1

∆x∆y

∫
K

U(x, y, t)
x− xi

∆x
dxdy,

Wij(t) =
1

∆x∆y

∫
K

U(x, y, t)
y − yj

∆y
dxdy.

The integral in (3.21) can be approximated by quadrature with sufficient accuracy. As-

sume {xβi , β = 1, ..., L} and {yβj , β = 1, ..., L} denote the Gauss quadrature points on the
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interval [xi− 1
2
, xi+ 1

2
] and [yj− 1

2
, yj+ 1

2
] respectively, ωβ are the corresponding weights of the

Gauss quadrature on interval [−1
2
, 1

2
] satisfing

∑L
β=1 ωβ = 1. For example, (xi− 1

2
, yβj ) are the

Gauss quadrature points on the left edge of the cell Iij, where the subscript β denotes the

values at the Gauss quadrature points, for instance, u+
i− 1

2
,β

= u+
i− 1

2
,j

(yβj ). Denote λ1 = ∆t
∆x

and λ2 = ∆t
∆y

. Using the numerical flux to approximate the value of the flux at the interface

of the cell (i, j) and Gauss quadrature to approximate the integral terms in (3.21), then we

can obtain the first order Euler forward time discretization finite volume hybrid HWENO

scheme

U
n+1
ij = U

n
ij − λ1

L∑
β=1

ωβ(F̂i+ 1
2
,β − F̂i− 1

2
,β)− λ2

L∑
β=1

ωβ(Ĝβ,j+ 1
2
− Ĝβ,j− 1

2
)

V
n+1
ij = V

n
ij −

λ1

2

L∑
β=1

ωβ(F̂i+ 1
2
,β + F̂i− 1

2
,β) + λ1

L∑
β=1

L∑
γ=1

ωkωlF
(
U(xβi , y

γ
j ),S(xβi , y

γ
j )
)

− λ2

L∑
β=1

ωβ
xβ − xi

∆x
(Ĝβ,j+ 1

2
− Ĝβ,j− 1

2
)

W
n+1
ij = W

n
ij − λ1

L∑
α=1

ωβ
yβ − yj

∆y
(F̂i+ 1

2
,β − F̂i− 1

2
,β)− λ2

2

L∑
β=1

ωβ(Ĝβ,j+ 1
2

+ Ĝβ,j− 1
2
)

+ λ2

L∑
β=1

L∑
γ=1

ωβωγG
(
U(xβi , y

γ
j ),S(xβi , y

γ
j )
)
.

(3.22)

where F̂i+ 1
2
,β and Ĝβ,j+ 1

2
are the numerical flux to approximate the value of the flux F(U,S) and

G(U,S) at the point (xi+ 1
2
, yβj ) and (xβi , yj+ 1

2
) respectively, defined by

F̂i+ 1
2
,β =F̂

(
U−
i+ 1

2
,β
,S−

i+ 1
2
,β
,U+

i+ 1
2
,β
,S+

i+ 1
2
,β

)
=

1

2

[
F

(
U−
i+ 1

2
,β
,S−

i+ 1
2
,β

)
+ F

(
U+
i+ 1

2
,β
,S+

i+ 1
2
,β

)
− βi+ 1

2

(
U+
i+ 1

2
,β
−U−

i+ 1
2
,β

)]
,

βi+ 1
2
> max

U±
i+1

2 ,β
,S±
i+1

2 ,β

[
|u · ni|+

1

2ρ2e
(

√
ρ2 |q · ni|2 + 2ρ2e

∥∥τ · ni − pnTi ∥∥2
+ ρ |q · ni|)

]
,

(3.23)

Ĝβ,j+ 1
2

=Ĝ

(
U−
β,j+ 1

2

,S−
β,j+ 1

2

,U+
β,j+ 1

2

,S+
β,j+ 1

2

)
=

1

2

[
G

(
U−
β,j+ 1

2

,S−
β,j+ 1

2

)
+ G

(
U+
β,j+ 1

2

,S+
β,j+ 1

2

)
− βj+ 1

2

(
U+
β,j+ 1

2

−U−
β,j− 1

2

)]
βj+ 1

2
> max

U±
β,j+1

2

,S±
β,j+1

2

[
|u · nj |+

1

2ρ2e
(

√
ρ2 |q · nj |2 + 2ρ2e

∥∥∥τ · nj − pnTj ∥∥∥2
+ ρ |q · nj |)

] (3.24)
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with ni = (1, 0) and nj = (0, 1).

Our goal is to design the conservative schemes that are positivity-preserving of density and

internal energy. Here we still consider the positivity of internal energy instead of pressure. Define

the set of admissible states by

G =


U =



ρ

m

n

E


: ρ > 0, ρe(U) = E − 1

2

m2 + n2

ρ
> 0


, (3.25)

We will use Gauss-Lobatto quadrature rule on (i, j) cell, denote {x̂αi , α = 1, ..., N} as the

Gauss-Lobatto points on the interval [xi− 1
2
, xi+ 1

2
] and {ŷαj , α = 1, ..., N} as the Gauss-Lobatto

points on the interval [yj− 1
2
, yj+ 1

2
]. For simplicity, assume that we have a vector of approximation

polynomials of degree k at time t, Hij(x, y) = (ρij(x, y),mij(x, y), nij(x, y),Eij(x, y))T with the cell

average U
n
ij = (ρij ,mij , nij , Eij)

T . Consider the quadrature rule for Uij(x, y) on the rectangle Iij =

[xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] with approximation polynomials Hij(x, y). Denote µ1 = λ1

λ1+λ2
, µ2 =

λ2
λ1+λ2

, then

U
n
ij =

µ1

∆x∆y

∫
Iij

Hij(x, y)dxdy +
µ2

∆x∆y

∫
Iij

Hij(x, y)dxdy

= µ1

L∑
β=1

N∑
α=1

ωβω̂αHij(x̂αi , y
β
j ) + µ2

L∑
β=1

N∑
α=1

ωβω̂αHij(xβi , ŷ
α
j )

=
L∑
β=1

N−1∑
α=2

ωβω̂α

(
µ1Hij(x̂αi , y

β
j ) + µ2Hij(xβi , ŷ

α
j )
)

+

L∑
β=1

ωβω̂1

[
µ1(U+

i− 1
2
,β

+ U−
i+ 1

2
,β

) + µ2(U+
β,j− 1

2

+ U−
β,j+ 1

2

)

]
.

(3.26)

By the mean value theorem for (3.26), there exist some points (x1∗
i , y

1∗
j ),(x2∗

i , y
2∗
j ),(x3∗

i , y
3∗
j ), (x4∗

i , y
4∗
j )

in cell (i, j) such that

(
ρij(x

1∗
i , y

1∗
j ),mij(x

2∗
i , y

2∗
j ), nij(x

3∗
i , y

3∗
j ), Eij(x

4∗
i , y

4∗
j )
)T

=

L∑
β=1

N−1∑
α=2

ωβ
ω̂α

1− ω̂1 − ω̂N

(
µ1Hij(x̂αi , y

β
j ) + µ2Hij(xβi , ŷ

α
j )
)
.

(3.27)
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Substituting (3.23), (3.24), (3.26) and (3.27) into the first equation of scheme (3.22), we have

U
n+1
ij = (1− ω̂1 − ω̂N )

(
ρij(x

1∗
i , y

1∗
j ),mij(x

2∗
i , y

2∗
j ), nij(x

3∗
i , y

3∗
j ), Eij(x

4∗
i , y

4∗
j )
)T

+

L∑
β=1

ωβλ1

2

[
βi+ 1

2
U+
i+ 1

2
,β
− F(U+

i+ 1
2
,β
,S+

i+ 1
2
,β

) + βi− 1
2
U−
i− 1

2
,β

+ F(U−
i− 1

2
,β
,S−

i− 1
2
,β

)

]

+

L∑
β=1

ωβµ1

[
(ω̂N −

λ1

2µ1
βi+ 1

2
)

(
U−
i+ 1

2
,β
− λ1

2µ1
(ω̂1 −

λ1

2µ1
βi+ 1

2
)−1F(U−

i+ 1
2
,β
,S−

i+ 1
2
,β

)

)]

+
L∑
β=1

ωβµ1

[
(ω̂1 −

λ1

2µ1
βi− 1

2
)

(
U+
i− 1

2
,β

+
λ1

2µ1
(ω̂1 −

λ1

2µ1
βi− 1

2
)−1F(U+

i− 1
2
,β
,S+

i− 1
2
,β

)

)]

+
L∑
β=1

ωβλ2

2

[
βj+ 1

2
U+
β,j+ 1

2

− F(U+
β,j+ 1

2

,S+
β,j+ 1

2

) + βj− 1
2
U−
β,j− 1

2

+ F(U−
β,j− 1

2

,S−
β,j− 1

2

)

]

+

L∑
β=1

ωβµ2

[
(ω̂N −

λ2

2µ2
βj+ 1

2
)

(
U−
β,j+ 1

2

− λ2

2µ2
(ω̂1 −

λ2

2µ2
βj+ 1

2
)−1F(U−

β,j+ 1
2

,S−
β,j+ 1

2

)

)]

+
L∑
β=1

ωβµ2

[
(ω̂1 −

λ2

2µ2
βj− 1

2
)

(
U+
j− 1

2
,β

+
λ2

2µ2
(ω̂1 −

λ2

2µ2
βj− 1

2
)−1F(U+

β,j− 1
2

,S+
β,j− 1

2

)

)]
.

(3.28)

Starting from (3.22) to (3.28) and following the same line as in the proof of Theorem 1, we can

easily prove the following result.

Theorem 2 For the finite volume HWENO scheme (3.22) with approximation polynomialsHij(x, y) =

(ρij(x, y),mij(x, y), nij(x, y), Eij(x, y))T . Assume U
n
ij ∈ G for all i, j, if

(
ρij(x

1∗
i , y

1∗
j ),mij(x

2∗
i , y

2∗
j ), nij(x

3∗
i , y

3∗
j ), Eij(x

4∗
i , y

4∗
j )
)T ∈ G,

U±β,y
j± 1

2

,U±x
i± 1

2
,β,U

±
β,y

j∓ 1
2

,U±x
i∓ 1

2
,β ∈ G,

(3.29)

then U
n+1
ij ∈ G under the CFL condition

∆t

(
1

∆x
+

1

∆y

)
max
i,j
{βi+ 1

2
, βj+ 1

2
} < ω̂ =

1

N(N − 1)
. (3.30)

To enforce the condition (3.29) in Theorem 2, the following limiter can be used for each cell

(i, j).

1. We first modify density by

ρ̂ij(x) = θρ (ρij(x)− ρ̄ij) + ρ̄ij , θρ = min

{
1,

ρ̄ij − ε
ρ̄ij − ρmin

}
, (3.31)
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where θρ ∈ [0, 1], ρmin = min

{
ρ±
β,j± 1

2

, ρ±
i± 1

2
,β
, ρ±
β,j∓ 1

2

, ρ±
i∓ 1

2
,β
, ρij(x

1
i , y

1
j )

}
and ε = 10−13, Then the

modified density is given by

ρ̂+
β,j− 1

2

= θρ

(
ρ+
β,j− 1

2

− ρ̄nij
)

+ ρ̄nij , ρ̂−
β,j+ 1

2

= θρ

(
ρ−
β,j+ 1

2

− ρ̄nij
)

+ ρ̄nij ,

ρ̂+
i− 1

2
,β

= θρ

(
ρ+
i− 1

2
,β
− ρ̄nij

)
+ ρ̄nij , ρ̂−

i+ 1
2
,β

= θρ

(
ρ−
i+ 1

2
,β
− ρ̄nij

)
+ ρ̄nij .

Let Ĥij(x, y) = (ρ̂ij(x, y),mij(x, y), nij(x, y), Eij(x, y))T . Denote

q̂1
ij = Ĥ

i+ 1
2
,j+
√
3
6

, q̂2
ij = Ĥ

i+ 1
2
,j−
√
3

6

, q̂3
ij = Ĥ

i+
√
3
6
,j− 1

2

, q̂4
ij = Ĥ

i−
√

3
6
,j− 1

2

,

q̂5
ij = Ĥ

i− 1
2
,j−
√
3
6

, q̂6
ij = Ĥ

i− 1
2
,j+
√
3

6

, q̂7
ij = Ĥ

i−
√
3
6
,j+ 1

2

, q̂8
ij = Ĥ

i+
√

3
6
,j+ 1

2

.

and

q̂9
ij =

(
ρ̂ij(x

1∗
i , y

1∗
j ),mij(x

2∗
i , y

2∗
j ), nij(x

3∗
i , y

3∗
j ), Eij(x

4∗
i , y

4∗
j )
)T

=

U
n
ij −

∑L
k=1 ωkω̂1

[
λ1
µ (Ĥ−

i+ 1
2
,k

+ Ĥ+
i− 1

2
,k

) + λ2
µ (Ĥ−

k,j+ 1
2

+ Ĥ+
k,j− 1

2

)

]
1− 2ω̂1

.

Define ρeij = Eij − 1
2

m2
ij

ρij
− 1

2

n2
ij

ρij
and let ρ̂e(Uij(x, y)) = Eij(x, y)− 1

2
mij(x,y)2

ρ̂ij(x,y) −
1
2
nij(x,y)2

ρ̂ij(x,y) .

2. To enforce the positivity of internal energy, we modify the internal energy by

H̃ij(x, y) = θe

(
Ĥij(x, y)−Uij

)
+ Uij , θe = min

1,
ρeij − ε

ρeij − min
l=1,···,9

{
ρ̂e(q̂lij)

}
 , (3.32)

where θe ∈ [0, 1] and ρ̂emin = min
l=1,···,9

{
ρ̂e(q̂lij)

}
. Actually we only need to obtain the point

value Ũ±
i∓ 1

2
,β

= H̃±
i∓ 1

2
,β
, Ũ±

β,j∓ 1
2

= H̃±
β,j∓ 1

2

. we define the internal energy function as Ψ(U) =

E− 1
2
m2

ρ −
1
2
n2

ρ . For l = 1, ···, 9, if Ψ
(
ρ̂e(q̂lij)

)
< ε, then set tlε =

Ψ(Uij)−ε
Ψ(Uij)−Ψ(ρ̂e(q̂lij))

; if Ψ
(
ρ̂e(q̂lij)

)
≥ ε,

then set tlε = 1. Take θe = min{t1ε, · · ·, t9ε}, then

Ũ−
i+ 1

2
,β

= H̃−
i+ 1

2
,β

= θe

(
Ĥ−
i+ 1

2
,β
−Uij

)
+ Uij ,

Ũ+
i− 1

2
,β

= H̃+
i− 1

2
,β

= θe

(
Ĥ+
j− 1

2
,β
−Uij

)
+ Uij ,

Ũ−
β,j+ 1

2

= H̃−
β,j+ 1

2

= θe

(
Ĥ−
β,j+ 1

2

−Uij

)
+ Uij ,

Ũ+
β,j− 1

2

= H̃+
β,j− 1

2

= θe

(
Ĥ+
β,j− 1

2

−Uij

)
+ Uij .

Finally, use Ũ±
i∓ 1

2
,β
, Ũ±

β,j∓ 1
2

instead of U±
i∓ 1

2
,β
,U±

β,j∓ 1
2

in the scheme (3.22).
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Remark 3.3 Notice that we mainly introduce the design and implementation of positivity-preserving

property of two-dimensional FV hybrid HWENO scheme. U
n
ij ,V

n
ij and W

n
ij in (3.21) are applied

to HWENO interpolation for the approximation of the function U and its partial derivative S in

Gauss-Labotto points, and the detailed procedures of FV hybrid HWENO interpolation in two

dimensional case are given in the appendix A.

Remark 3.4 Similar to the one-dimensional case, the approximation polynomials are not needed

for implementing the limiter (3.31) and (3.32). And it is a high order accurate and conservative

limiter, see [26].

3.3 Implementation of CFL constraints

In this paper, we use (2.6) for high order time discretization. Since strong stability preserving

(SSP) Runge-Kutta time discretization is a convex combination of forward Euler steps and G is

convex, Theorem 1 and Theorem 2 still hold for (2.6) if the CFL is one third of (3.12) and (3.30).

However, the CFL constraints (3.12) and (3.30) should be not be used directly for at least two

reasons. First, since |u|+ 1
2ρ2e

(
√
ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|) = O(1) for a smooth solution, the CFL

constraints (3.12) and (3.30) give ∆t = O(∆x) which do not necessarily satisfy the linear stability

constraints ∆t = O(Re∆x2) for any explicit time discretizations. In other words, the time step

should also satisfy ∆t = O(Re∆x2) besides (3.12) and (3.30). Second, the time step constraints

(3.12) and (3.30) is a sufficient condition but may not be a necessary condition for Un+1
K ∈ G, thus

in practice it should not be used directly for the sake of efficiency.

To this end, we can use the same simple time marching strategy in [26]. The positivity preserving

limiter should be used for each stage in (2.6) and we can implement the positivity-preserving

high order finite volume hybrid HWENO scheme with the third order SSP Runge-Kutta (2.6) for

equation (2.1) as follows:

Step1. At time level n, for the given UnK ∈ G. Compute the wave speed αi = |ui|+
√

γpi
ρi

. Let

α? = maxi |αi| taken over all edges, ∆x = minK
|K|
|eK | and eK is the longest edge in cell K set the
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time step

∆t = min

{
a

1

α?
∆x, bRe∆x2

}
, (3.33)

where the two parameters are set as a = 1
12 and b = 0.001 for compressible Navies-Stokes equations.

For compressible Euler equations, it is replaced by ∆t = 1
12α?∆x since Re =∞.

Step2. Compute the first stage, denoted by U (1)
K . If the cell average U (1)

K ∈ G, then proceed to

next step. Otherwise U (1)
K has negative density or pressure, then recompute the first stage with a

time step halved.

Step3. For the given U (1)
K ∈ G, Compute the second stage, denoted by U (2)

K . If the cell average

U (2)
K ∈ G, then proceed to next step. Otherwise U (2)

K has negative density or pressure, then return

the Step2 and restart the computation with a time step halved.

Step4. For the given U (2)
K ∈ G, Compute the U (n+1)

K . If the cell average U (n+1)
K ∈ G, then the

computation to time step n + 1 is done. Otherwise U (n+1)
K has negative density or pressure, then

return the Step2 and restart the computation with a time step halved.

Theorem 1 and Theorem 2 imply that the implementation above will not result in any infinite

loops and the restarting is ensured to stop when time step constraints (3.12) and (3.30) are met

for each stage.

4 Numerical tests

In this section, we test the positivity-preserving (PP) high order finite volume hybrid HWENO

scheme with the third order SSP Runge-Kutta method on several demanding examples. For

HWENO reconstruction, quintic polynomial reconstruction is used in one dimension, and cubic

polynomial reconstruction is used in two dimensions. The hybrid HWENO scheme in [32] will

blow up for Examples 4.3-4.7 for compressible Euler equations due to loss of positivity. The same

positivity-preserving methods in Section 3 also applies to the HWENO scheme without any hy-

bridization, which is also tested. The CPU time of the PP hybrid FV HWENO scheme and the PP

FV HWENO scheme is listed in Table 4. The only difference in these two schemes is in the recon-
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struction step: the HWENO scheme uses nonlinear HWENO reconstruction in all cells, whereas

the hybrid HWENO scheme uses the nonlinear HWENO reconstruction only in troubled cells and

uses linear reconstruction in other cells, e.g., smooth regions. Moreover, on troubled cells, the

hybrid HWENO scheme uses one more non-oscillatory limiter on the first-order moment variables,

as a preprocessing step before the HWENO reconstruction, see [32] for details of the troubled cell

indicator and the non-oscillatory limiter on the first-order moment.

Example 4.1 Accuracy test. We test the accuracy of the PP hybrid HWENO scheme for com-

pressible Navier-Stokes equations in one and two dimensions with Re = 100. For one-dimensional

equation (3.1), the initial condition is ρ = 1,u = 0, E = 12
γ−1 + 1

2 exp(−4(cos(x/2))2) on the in-

terval [0, 2π]. For two-dimensional equation (3.16), the initial condition is ρ = 1, u = v = 0, E =

12
γ−1 + 1

2 exp(−4(cos(x/2))2 − 4(cos(y/2))2) on the rectangle domain [0, 2π] × [0, 2π]. The bound-

ary condition is periodic. The reference solution was generated by a Fourier collocation spectral

method using 1280 points and a 1280 × 1280 mesh in one and two dimensions respectively. The

reconstruction polynomial has degree four in one dimension and, degree three in two dimensions.

The errors in Table 4.1 verifies the accuracy of the diffusion flux and the limiter.

We can see that the PP hybrid HWENO scheme achieves fifth order accuracy in one dimension

and fourth order accuracy in two dimensions, which is consistent with the designed order of accuracy

of the HWENO scheme.

Example 4.2 The Lax problem. The initial condition is

(ρ, u, p, γ) =


(0.445, 0.698, 3.528, 1.4), x ∈ [0, 5)

(0.5, 0, 0.571, 1.4), x ∈ [0, 5].

(4.1)

The final computing time is T = 1.3. See [26] for how the reference solution can be generated.

See Figure 4.1 for results of the HWENO scheme without hybridization of linear reconstruction

and the positivity-preserving limiter. Even though the HWENO scheme produces non-oscillatory

solutions for Re = 100 in Figure 4.1, oscillations will emerge and stability will be lost for larger

Reynolds number. The oscillations can be observed for the numerical solutions of compressible
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Table 4.1: Accuracy test of the PP hybrid HWENO scheme for one-dimensional and two-

dimensional compressible Navier-Stokes equationswith Re = 100, the L1 and L∞ errors are

showed.

Mesh L∞ Error L∞ Order L1 Error L1 Order

20 1.21E-2 −− 5.90E-3 −−

40 2.23E-3 2.44 6.65E-4 3.15

80 5.58E-5 5.32 1.44E-5 5.53

160 1.10E-6 5.66 2.46E-7 5.87

320 2.25E-8 5.61 7.13E-9 5.11

640 6.35E-10 5.15 2.14E-10 5.06

10× 10 1.08E-3 − 2.25E-4 −

20× 20 1.32E-4 3.04 1.73E-5 3.70

40× 40 1.05E-5 3.65 1.24E-6 3.80

80× 80 6.07E-7 4.11 7.71E-8 4.01

160× 160 2.93E-8 4.37 4.53E-9 4.09

320× 320 1.54E-9 4.25 2.70E-10 4.07
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(a) Re = 100 (b) Re=1000

(c) Re=10000 (d) Re=∞

Figure 4.1: The Lax shock tube problem. T = 1.3. Solid line: the reference solution; red

squares: the results of the HWENO scheme on uniform 200 cells.

Euler equations, namely Re =∞ in Figure 4.1. This indicates that, for the HWNEO scheme based

on the reconstruction of the zero-order and first-order moment without modifying the first order

moment in troubled cell, itself is unstable.

See Figure 4.2 for the results of the PP hybrid HWENO scheme, which produces non-oscillatory

solutions with a good resolution. About 2.43% and 2.68% cells are troubled cells for Re = 1000 and

∞ respectively. For other cells, a linear approximation is used thus the the PP hybrid HWENO

scheme saves about 77.68% and 75.08% computational time compared to the PP HWENO scheme

as shown in Table 4. Notice that PP limiter was not triggered in the PP hybrid HWENO scheme in

this test as shown in Table 4, which is due to the additional non-oscillatory limiter on the first-order
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Figure 4.2: The Lax problem. T = 1.3 for Re = ∞ (Left) and 1000 (Right). From top to

bottom: density, velocity, pressure, time history of troubled cells in the PP hybrid HWENO

scheme. Solid line: the reference solution; red squares: PP hybrid HWENO scheme on

uniform 200 cells.
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moment in troubled cells. In other words, the hybrid HWENO scheme without any PP limiter is

already very stable, for the Lax problem. In addition, there is a little dent in the plot of the velocity

(the left figure of the second row of Figure 4.2). This is indeed a numerical artifact in PP hybrid

HWENO scheme. For example, the numerical solution velocity of the FV WENO scheme in [13]

showed a similar dent.

From the the bottom row of Figure 4.2, we observe that there are less troubled cells for the case

Re = 1000 thus the non-oscillatory first-order moment limiter is used on less cells, compared to

the case Re =∞. Roughly speaking, the non-oscillatory first-order moment limiter simply induces

artificial viscosity. For this reason, the numerical results of PP hybrid HWENO scheme for Re

= 1000 has slightly better resolution at the discontinuity than the numerical results of PP hybrid

HWENO scheme for Re =∞. This phenomenon is also observed in other numerical tests.

Example 4.3 The 1D double rarefaction problem This test case has the low pressure and low

density region. Negative density or pressure can be easily produced in many high order numerical

schemes, resulting in blow up of the computation. The initial condition is

(ρ, u, p, γ) =


(7,−1, 0.2, 1.4), x ∈ [−1, 0),

(7, 1, 0.2, 1.4), x ∈ [0, 1].

(4.2)

The final computing time is T = 0.6. The left and right boundary conditions are inflow and outflow

respectively. The numerical results of PP hybrid HWENO scheme are shown in Figure 4.3 for Re

= 1000 and ∞. About 11.30% and 19.57% cells are troubled cells for Re = 1000 and Re =∞. The

PP hybrid HWENO scheme saves 67.34% and 59.05% CPU time compared to the PP HWENO

scheme respectively.

Example 4.4 The 1D Sedov problem. This test involves both very low density and strong

shocks. The exact solution for Euler equation is specified in [9, 21]. The computational domain is

[−2, 2] and initial conditions are that the density is 1, the velocity is 0, the total energy is 10−12

everywhere except in the center cell, which is a constant E0/∆x with E0 = 3200000, with γ = 1.4.
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Table 4.2: CPU time: the total computing time in seconds for the PP hybrid HWENO

scheme and the PP HWENO scheme to solve compressible NS equations; Time saving

ratios: the CPU time saving ratios of the total CPU time by the PP hybrid HWENO

scheme over the PP HWENO scheme on the same numerical example; PP limiter

ratio: the ratio of PP limiter triggered (either θρ < 1 or θe < 1) cells over the total

cells.

Numerical example
PP hybrid HWENO scheme PP HWENO scheme

Time saving

CPU time PP limiter CPU time PP limiter ratios

Re=∞

4.2 1D Lax problem 2.45 0.00% 8.16 0.00% 69.98%

4.3 Double rarefraction problem 1.63 10.00% 3.98 10.00% 59.05%

4.4 1D Sedov problem 17.61 3.00% 56.55 3.00% 68.86%

4.5 Leblanc problem 71.77 0.25% 628.86 0.25% 88.59%

4.6 2D Sedov problem 9611.84 1.09% 25726.30 1.09% 62.64%

4.7 Shock-diffraction problem 13776.48 0.23% 38014.60 0.23% 63.76%

Re=1000

4.2 1D Lax problem 2.20 0.00% 7.64 0.00% 71.20%

4.3 Double rarefraction problem 9.88 10.00% 30.25 10.00% 67.34%

4.4 1D Sedov problem 21.56 3.00% 69.59 3.00% 69.02%

4.5 Leblanc problem 96.97 0.25% 935.99 0.25% 89.64%

4.6 2D Sedov problem 11764.44 1.09% 32355.45 1.09% 63.64%

4.7 Shock-diffraction problem 17183.64 0.23% 48318.10 0.23% 64.45 %
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(a) Re=1000 (b) Re=∞

Figure 4.3: The Double Rarefaction problem. T = 0.6. From top to bottom: density,

velocity, pressure, and time history of troubled cells. Re =∞ (right) and 1000 (left). Solid

line: the exact solution; red squares: PP hybrid HWENO scheme on uniform 200 cells.
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The inlet and outlet conditions are imposed on the left and right boundaries, respectively. The

final compute time is T = 0.001 and computational results of the PP hybrid HWENO scheme are

presented in Figure 4.4. About 14.50% cells are troubled cells, and 68.86% CPU time is saved

compared to HWENO scheme for compressible Euler equations. For compressible Navier-Stokes

equations, there are 11.92% troubled cells, and 69.02% CPU time is saved compared to the PP

HWENO scheme.

Example 4.5 The Leblanc problem. The initial condition is

(ρ, u, p, γ) =


(2, 0, 109, 1.4), x ∈ [−10, 0),

(0.001, 0, 1, 1.4), x ∈ [0, 10].

(4.3)

The inlet and outlet conditions are imposed on the left and right boundaries, respectively. The

computational results of the PP hybrid HWENO scheme at the final time T = 0.0001 are presented

in Figure 4.5. About 0.97% and 1.35% cells are troubled cells for Re = 1000 and ∞ respectively,

and about 89.64% and 88.59% computational time is saved compared to the PP HWENO scheme.

Example 4.6 The 2D Sedov problem. The computational domain is a square of [0, 1.1] ×

[0, 1.1]. For the initial condition, similar to the 1D case, the density is 1, the velocity is 0, the total

energy is 10−12 everywhere except in the lower left corner is the constant 0.244816
∆x∆y and γ = 1.4. The

numerical boundary on the left and bottom edges are reflective. The numerical boundary on the

right and top are outflow. The results at the final time T = 1 of the PP hybrid HWENO schemes

are shown in the Figure 4.6. About 13.82% and 14.62% cells are troubled cells for Re = 1000 and

∞, and 63.64% and 62.64% computational time is saved compared to the PP HWENO scheme.

Example 4.7 The shock diffraction problem. The computational domain is the union of

[0, 1] × [6, 11] and [1, 13] × [0, 11]. The initial condition is a pure right-moving shock of Mach

number 5.09, initially located at x = 0.5 and 6 ≤ y ≤ 11, moving into undisturbed air ahead

of the shock with a density of 1.4 and a pressure of 1. The boundary conditions are inflow at
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(a) Re=∞ (b) Re=1000

Figure 4.4: The 1D Sedov problem. T = 0.001. From top to bottom: density, velocity,

pressure, and time history of troubled cells. Re =∞ (left) and 1000 (right). Solid line: the

reference solution; red squares: PP hybrid HWENO scheme on uniform 400 cells.
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Figure 4.5: The Leblanc problem. T = 0.0001 for Re = ∞ (Left) and 1000 (Right). From

top to bottom: log plot of density, velocity, log plot of pressure, time history of troubled

cells. Solid line: the reference solution; red squares: PP hybrid HWENO scheme on uniform

3200 cells.
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Figure 4.6: The 2D Sedov problem. T = 1.0 for Re =∞(Left) and 1000 (Right). Top row:

30 equally spaced contour lines from 0.95 to 5 for density. Bottom row: troubled cells at

final time. The PP hybrid HWENO scheme with mesh size ∆x = ∆y = 1.1/160.
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x = 0, 6 ≤ y ≤ 11, outflow at x = 13, 0 ≤ y ≤ 11, 1 ≤ x ≤ 13, y = 0 and 0 ≤ x ≤ 13, y = 11, and

reflective at the walls 0 ≤ x ≤ 1, y = 6 and at x = 1, 0 ≤ y ≤ 6. The final computing time T = 2.3.

It is well known that the diffraction of high speed shock waves at sharp angles leads to low density

and low pressure. See Figure 4.7 for the results. For compressible Euler equations, about 5.07%

cells are troubled cells, and 63.76% CPU time is saved compared to the PP HWENO scheme. For

compressible Navier-Stokes equations, about 4.39% cells are troubled cells, and 64.45% CPU time

is saved compared to the PP HWENO scheme.

5 Concluding remarks

In this paper, we have constructed the positivity-preserving FV hybrid HWENO scheme for

solving compressible NS equations, based on the work in [26, 32]. For compressible Euler equa-

tions, the scheme is much more robust than hybrid HWENO schemes in [32]. For both Euler

and Navier-Stokes equations, it performs well on representative challenging low density and low

pressure problems. Thanks to hybridization techniques, it is not only more efficient than conven-

tional HWENO schemes, but also produces better resolution for high Reynolds number flows due

to less artificial viscosity. Numerical tests have demonstrated the robustness and the efficiency of

the scheme. Future work includes the extension of the positivity-preserving FV hybrid HWENO

scheme to unstructured meshes and the positivity-preserving finite difference WENO scheme for

compressible Navier-Stokes equations.

A Appendix

The hybrid HWENO reconstruction for function values u(x, y) at the specific points based on

the zeros-order and first-order moment can be found in [32]. To implement the scheme in this

paper, we still need a reconstruction of gradients ∇u(x, y). Here we describe the hybrid HWENO

reconstruction for derivative ux(x) and the partial derivatives ux(x, y) and uy(x, y).
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Figure 4.7: The Shock Diffraction problem. T = 2.3 for Re = ∞(Left) and 1000 (Right).

From top to bottom: density 20 equally spaced contour lines from 0.066227 to 7.0668,

pressure 40 equally spaced contour lines from 0.091 to 37, and the troubled cells at the final

time. The PP hybrid HWENO scheme with mesh size ∆x = ∆y = 1/32.
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A.1 one-dimensional case

We consider the reconstruction procedure for derivative values (ux)∓
i± 1

2

and (ux)i±
√

5/10 from

{ui, vi}. Here ui(t) = 1
∆x

∫
Ii
u(x, t)dx is the zeroth order moment and vi(t) = 1

∆x

∫
Ii
u(x, t)x−xi∆x dx

is the first order moment in Ii. Given the stencils S1, S2, S3 and S0, similar to hybrid HWENO

reconstruction of (u)∓
i± 1

2

and (u)i±
√

5/10 in [32], first identify the troubled cell and modify the first

order moment in the troubled cell as in [32]. If one of the cells in stencil S0 is identified as a troubled

cell, then apply the HWENO method described in Step A.1 to reconstruct (ux)∓
i± 1

2

; otherwise we

use the linear reconstruction method described in Step A.2 to reconstruct (ux)∓
i± 1

2

. We use linear

reconstruction for (ux)i±
√

5/10 on all cells, as described in Step A.3.

StepA.1. The HWENO reconstruction of (ux)∓
i± 1

2

.

In [32], the reconstruction procedure involves the Hermite cubic polynomials p1(x), p2(x), p3(x)

in the small stencils S1, S2, S3 and a Hermite quintic polynomial p0(x) in a large stencil S0. Now,

we need the derivative of these polynomial at cell boundary xi+ 1
2

in terms of the averages, which

can be written as:

p′0(xi+ 1
2
) =

5

36∆x
ūi−1 −

9

4∆x
ūi +

19

9∆x
ūi+1 +

11

18∆x
v̄i−1 −

97

18∆x
v̄i −

62

9∆x
v̄i+1.

p′1(xi+ 1
2
) =

21

4∆x
ūi−1 −

21

4∆x
ūi +

51

2∆x
v̄i−1 +

99

2∆x
v̄i,

p′2(xi+ 1
2
) =

5

22∆x
ūi−1 −

1

∆x
ūi +

17

22∆x
ūi+1 +

60

11∆x
v̄i,

p′3(xi+ 1
2
) = − 9

4∆x
ūi +

9

4∆x
ūi+1 −

15

2∆x
v̄i −

15

2∆x
v̄i+1,

By p′0(xi+ 1
2
) =

∑3
n=1 γ

′
np
′
n(xi+ 1

2
), we obtain linear weights γ′1 = 11

459 , γ
′
2 = 44

765 , γ
′
3 = 124

135 . and define

the smoothness indicators for the reconstruction of derivatives as

β
′
n =

3∑
α=2

∫
Ii

∆x2α−1

(
∂αpn(x)

∂xα

)2

dx, n = 1, 2, 3, (A.1)

then 

β′1 =
1

4
(15ūi−1 − 15ūi + 66v̄i−1 + 114v̄i)

2 +
975

4
(ūi−1 − ūi + 6v̄i−1 + 6v̄i)

2 ,

β′2 = (ūi−1 − 2ūi + ūi+1)2 +
975

121
(ūi−1 − ūi+1 + 24v̄i)

2 ,

β′3 =
1

4
(15ūi − 15ūi+1 + 66v̄i+1)2 +

975

4
(ūi − ūi+1 + 6v̄i + 6v̄i+1)2 .
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The nonlinear weights are computed as ω′n = ω̄n
ω̄1+ω̄2+ω̄3

with ω̄n = γ′n
(ε+β′n)2

, n = 1, 2, 3. The final

HWENO reconstruction of (ux)−
i+ 1

2

is given by (ux)−
i+ 1

2

=
∑3

n=1 ω
′
np
′
n(xi+ 1

2
). Similarly, we can

obtain the HWENO reconstruction of (ux)+
i− 1

2

.

StepA.2. The linear reconstruction of (ux)∓
i± 1

2

.

If no cells in S0 are identified as troubled cells, then we simply use upwind linear reconstruction

for (ux)∓
i± 1

2

:

(ux)+
i− 1

2

= p′0

(
xi− 1

2

)
= −19ui−1

9∆x
+

9ui
4∆x

− 5ui+1

36∆x
− 62vi−1

9∆x
− 97vi

18∆x
+

11vi+1

18∆x
,

(ux)+
i+ 1

2

= p′0

(
xi+ 1

2

)
=

5ui−1

36∆x
− 9ui

4∆x
+

19ui+1

9∆x
+

11vi−1

18∆x
− 97vi

18∆x
+

62vi+1

9∆x
.

StepA.3. The linear reconstruction of (ux)i±
√

5/10.

(ux)
i−
√
5

10

=p′0

(
x
i−
√
5

10

)
= −

(
99
√

5

360∆x
+

1

72

)
ūi−1 +

11
√

5

20∆x
ūi −

(
99
√

5

360
− 1

72

)
ūi+1

−

(
21
√

5

20∆x
+

11

180∆x

)
v̄i−1 +

1069
√

5

90∆x
v̄i −

(
−21
√

5

20∆x
+

11

180∆x

)
v̄i+1,

(ux)
i+
√
5

10

=p′0

(
x
i+
√
5

10

)
=

(
99
√

5

360∆x
− 1

72

)
ūi−1 −

11
√

5

20∆x
ūi +

(
99
√

5

360
+

1

72

)
ūi+1

+

(
21
√

5

20∆x
− 11

180∆x

)
v̄i−1 +

1069
√

5

90∆x
v̄i +

(
−21
√

5

20∆x
− 11

180∆x

)
v̄i+1.

A.2 Two-dimensional case

Similar to the one-dimensional case, firstly, we first identify the troubled cells and modify

the first order moment in the troubled cells, see in [32] for detail. Then, we use the HWENO

reconstruction in StepA.4 to reconstruct ux(G`) and uy(G`) only when G` is in the interior of a

troubled cell Ii,j . For all other cases, we use the linear reconstruction in StepA.5.

StepA.4. Suppose we have constructed the eight Hermite cubic polynomials p1(x, y), ...,

p8(x, y) in the small stencil and have the explicit expression of these polynomials in [32]. Then we

can get the values of the partial derivative of these polynomial at the specific points. To combine

the polynomials to obtain third-order approximation to ux and uy at the point Gk, we choose the
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linear weights denoted by γ
(k)
x1 , ..., γ

(k)
x8 , γ

(k)
y1 , ..., γ

(k)
y8 such that

∂
∂xu (Gk) =

∑8
n=1 γ

(k)
xn

∂
∂xpn (Gk),

∂
∂yu (Gk) =

∑8
n=1 γ

(k)
yn

∂
∂ypn (Gk) (A.2)

which are valid for any quadratic polynomial u. Then we can obtain third-order approximations

to ux and uy at the point Gk for all sufficiently smooth functions u. Notice that pn(x, y) is an

incomplete Hermite cubic reconstruction polynomial, (A.2) holds for any polynomial u which is a

linear combination of 1, x, y,x2, xy, y2, x3, y3 if
∑8

n=1 γ
(k)
xn = 1 and if

∑8
n=1 γ

(k)
yn = 1 respectively.

There are two other constraints on each of the groups of linear weights γ
(k)
x1 , ..., γ

(k)
x8 and γ

(k)
y1 , ..., γ

(k)
y8

for(A.2) to hold for u = x2y, xy2 respectively. This leaves 5 free parameters in determining each

group of the linear weights, obtained uniquely by the least square methodology on
8∑

n=1
(γ

(k)
xn )2 and

8∑
n=1

(γ
(k)
yn )2 respectively.

Similar to the one dimensional case, if G` is in the interior of a cell Ii,j we use linear reconstruc-

tion to get ux(G`) and uy(G`). Only when G` is located on the cell boundary of a troubled cell

Ii,j , we use HWENO reconstruction procedures as follows. We compute the smoothness indicator,

denoted byβn:

βn =
3∑
|`|=2

|Iij ||`|−1
∫
Iij

(
∂|`|

∂xl1∂yl2
pn(x, y)

)2

dxdy, n = 1, . . . 8, (A.3)

where ` = (`1, `2), |`| = `1 + `2. Computing the nonlinear weights:

ω
(`)
xn = ω

(`)
xn∑
k ω

(`)
xk

, ω
(`)
xk =

γ
(`)
xk

(ε+βxk)2
, ω

(`)
yn = ω

(`)
xn∑
k ω

(`)
xk

, ω
(`)
xk =

γ
(`)
xk

(ε+βxk)2
, k, ` = 1, · · · , 8. (A.4)

The HWENO reconstruction to u−x (Gk) and u−y (Gk) given by u−x (G`) =
∑8

n=1 ω
(`)
xn

∂
∂xpn (G`) and

u−y (G`) =
∑8

n=1 ω
(`)
yn

∂
∂ypn (G`). The reconstructions to u+

x (G`) and u+
y (G`) are similar.

StepA.5. The linear approximation of the partial derivatives at point G` can be taken directly

by (A.2).
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