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Abstract. For optimization under a Hermitian positive semidefinite fixed-rank constraint, we5
consider three approaches including the simple Burer–Monteiro method, Riemannian optimization6
over a quotient manifold, and the embedded manifold, all of which can be represented via quotient7
geometry with three Riemannian metrics gi(·, ·) (i = 1, 2, 3). By taking the nonlinear conjugate8
gradient method (CG) as an example, we show that CG in the factor-based Burer–Monteiro approach9
is equivalent to Riemannian CG on the quotient geometry with the Bures-Wasserstein metric g1.10
Riemannian CG on the quotient geometry with the metric g3 is equivalent to Riemannian CG on11
the embedded geometry. For comparing the three approaches, we analyze the condition number of12
the Riemannian Hessian near the minimizer. Under certain assumptions, the condition number from13
the Bures-Wasserstein metric g1 is significantly different from the other two metrics. Numerical tests14
show that the Burer–Monteiro CG method has a slower asymptotic convergence rate if the minimizer15
is rank deficient, which is consistent with the condition number analysis.16

Key words. Riemannian optimization, Hermitian PSD fixed-rank matrices, embedded manifold,17
quotient manifold, Burer–Monteiro, conjugate gradient, Riemannian Hessian, Bures-Wasserstein18

MSC codes. 65K05, 49Q99, 53B20, 65F55, 90C3019

1. Introduction.20

1.1. The Hermitian PSD low-rank constraints. We are interested in meth-21

ods for minimization with a positive semidefinite (PSD) low-rank constraint22

(1.1) min
X

f(X), X ∈ Hn,p+ ,23

where Hn,p+ denotes the set of n-by-n Hermitian PSD matrices of fixed rank p � n.24

Even though X ∈ Hn,p+ is a nonconvex constraint, in practice (1.1) is often used for25

approximating solutions to a minimization with a convex PSD constraint:26

(1.2) min
X

f(X), X ∈ Cn×n, X < 0.27

PSD constraints arise in semidefinite programming. If the solution of (1.2) is low28

rank, it is preferable to consider a low-rank representation of PSD matrices, e.g.,29

real symmetric PSD fixed-rank matrices were used in [4, 28]. Since X ∈ Hn,p+ has a30

low-rank structure, its low-rank compact form has the complexity O(np2), which is31

smaller than the O(n2) storage when using X ∈ Cn×n. For many problems such as32

the PhaseLift problem [9, 8] and the interferometry recovery problem [18, 10], solving33

(1.1) can lead to a good approximate solution to (1.2) with compact storage and cost.34

∗

Funding: S.Z. and X.Z. are supported by NSF DMS-2208518. W.H. is partially supported by
National Natural Science Foundation of China (No. 12001455). B.V. is partially supported by the
Swiss National Science Foundation (grant 178752).
†Department of Mathematics, Purdue University, West Lafayette, USA (zheng513@purdue.edu).
‡Corresponding author, School of Mathematical Sciences, Xiamen University, Xiamen, China

(wen.huang@xmu.edu.cn).
§Section of Mathematics, University of Geneva, Switzerland (bart.vandereycken@unige.ch).
¶Corresponding author, Department of Mathematics, Purdue University, West Lafayette, USA

(zhan1966@purdue.edu).

1

This manuscript is for review purposes only.

mailto:zheng513@purdue.edu
mailto:wen.huang@xmu.edu.cn
mailto:bart.vandereycken@unige.ch
mailto:zhan1966@purdue.edu


2 S. ZHENG, W. HUANG, B. VANDEREYCKEN, AND X. ZHANG

1.2. The real inner product and induced gradient. Since f(X) is real-35

valued, f(X) does not have a complex derivative. All linear spaces of complex matrices36

will therefore be regarded as vector spaces over R. For any real vector space E , the37

inner product on E is denoted by 〈·, ·〉E . The Hilbert–Schmidt inner product for Rm×n38

is 〈A,B〉Rm×n = tr(ATB). Let <(A) and =(B) represent the real and imaginary parts39

of A ∈ Cm×n. The real inner product for the real vector space Cm×n is40

(1.3) 〈A,B〉Cm×n := <(tr(A∗B)),41

where ∗ denotes the conjugate transpose. The gradient of f(X) w.r.t (1.3) is42

(1.4) ∇f(X) =
∂f(X)

∂<(X)
+ i

∂f(X)

∂=(X)
∈ Cm×n.43

See [29] for a derivation of (1.4). For f(X) = 1
2‖A(X) − b‖2F with a linear operator44

A, (1.4) becomes ∇f(X) = A∗(A(X)− b), where A∗ is the adjoint operator of A.45

1.3. Three different methodologies. We consider three methods for (1.1).46

The first approach, often called the Burer–Monteiro method [7, 6], is to solve47

(1.5) min
Y ∈Cn×p

F (Y ) := f(Y Y ∗).48

The gradient descent (GD) method is Yk+1 = Yk − τ∇F (Yk) = Yk − τ2∇f(YkY
∗
k )Yk,49

which is one of the simplest low-rank algorithms. The nonlinear conjugate gradient50

(CG) and quasi-Newton type methods, like L-BFGS [10], can also be easily used for51

(1.5). It is not clear in what sense it converges since F (Y ) = F (Y O) for any O ∈ Op,52

where Op denotes the set of unitary matrices of size p× p.53

To remove the ambiguity from Op, it is natural to consider the quotient manifold54

Cn×p∗ /Op, see [5, 17, 21, 13, 16], where Cn×p∗ = {X ∈ Cn×p : rank(X) = p} denotes55

the noncompact Stiefel manifold.56

Another natural approach is to consider Riemannian optimization algorithms on57

Hn,p+ as an embedded manifold in the Euclidean space Cn×n [26, 25, 19]. We shall58

regard Hn,p+ ⊂ Cn×n as a manifold over R since f(X) is real-valued.59

1.4. Main results: a unified representation and analysis of three meth-60

ods using quotient geometry. A natural question arises: which of the three meth-61

ods is the best? For comparison, we rewrite both the Burer–Monteiro approach and62

embedded manifold approach as Riemannian optimization over the quotient manifold63

Cn×p∗ /Op with suitable metrics, retractions and vector transports.64

It is common to explore different metrics in Riemannian optimization [1, 27, 23].65

For any Y ∈ Cn×p∗ , A,B ∈ Cn×p, we consider metrics giY (·, ·) for the total space Cn×p∗ :66

g1
Y (A,B) = 〈A,B〉Cn×p = <(tr(A∗B))67

g2
Y (A,B) = 〈AY ∗, BY ∗〉Cn×n = <(tr((Y ∗Y )A∗B))68

g3
Y (A,B) = 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉Cn×n69

+
〈
Y Skew

(
(Y ∗Y )−1Y ∗A

)
Y ∗, Y Skew

(
(Y ∗Y )−1Y ∗B

)
Y ∗
〉
Cn×n ,7071

where Skew(X) = (X −X∗)/2. We have three metrics gi for the quotient manifold72

induced from the submersion Cn×p∗ −→ Cn×p∗ /Op. The first metric is the Bures-73

Wasserstein metric [22, 21], the second metric is used in [16], and the embedded74

manifold approach corresponds to the third metric.75
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We will prove that the GD and CG methods for solving (1.5) are exactly equivalent76

to the Riemannian GD and CG methods on (Cn×p∗ /Op, g1) with a specific vector77

transport. We will also prove that GD and the CG methods using the embedded78

geometry of Hn,p+ are equivalent to GD and CG methods on (Cn×p∗ /Op, g3).79

It is well known that the condition number of the Hessian of the cost function80

is closely related to the asymptotic performance of optimization methods. We will81

analyze and compare the condition numbers of the Riemannian Hessian using these82

three different metrics by estimating their Rayleigh quotient.83

1.5. Contributions and organization of the paper. The outline of the paper84

is as follows. We summarize the notation in Section 2. Then we discuss the geometric85

operators such as the Riemannian gradient and vector transport in Section 3 for86

the embedded manifold Hn,p+ and in Section 4 for the quotient manifold Cn×p∗ /Op. In87

Section 5, we outline the Riemannian Conjugate Gradient (RCG) methods on different88

geometries and discuss equivalences among them.89

The first major contribution is the equivalence between the CG method for (1.5)90

and the CG method on (Cn×p∗ /Op, g1) for solving (1.1). Thus the convergence of the91

simple Burer–Monteiro approach can be understood in the context of Riemannian92

optimization on the quotient manifold with the Bures-Wasserstein metric.93

In Section 6, we analyze the condition number of the Riemannian Hessian on94

the quotient manifold (Cn×p∗ /Op, gi) near the minimizer, which is another contribu-95

tion. Our analysis is also consistent with empirical observation of the performance of96

different methods in numerical tests in Section 7. Section 8 are concluding remarks.97

2. Notation. For a matrixX, X∗ denotes its conjugate transpose andX denotes98

its complex conjugate. If X is real, X∗ becomes the matrix transpose and is denoted99

by XT . We define Herm(X) := X+X∗

2 , Skew(X) := X−X∗
2 . Let Ip be the identity100

matrix of size p-by-p. For any n-by-p matrix Z, Z⊥ denotes the n-by-(n− p) matrix101

such that Z∗⊥Z⊥ = In−p and Z∗⊥Z = 0. Let diag(M) be the n-by-1 vector that is the102

diagonal of the n-by-n matrix M . Given a vector v, Diag(v) is a square matrix with103

its ith diagonal entry equal to vi. Given a matrix A, tr(A) denotes the trace of A and104

Aij denotes the (i, j)-th entry of A. For any X ∈ Hn,p+ , its eigenvalues coincide with105

its singular values. The compact singular value decomposition (SVD) of X is denoted106

by X = UΣU∗ and Σ = Diag(σ) with singular values σ1 ≥ · · · ≥ σp > 0.107

In this paper, all manifolds of complex matrices are viewed as manifolds over R.108

Given a Euclidean space E , the inner product on E is denoted by 〈., .〉E . Specifically,109

〈A,B〉Rm×n = tr(ATB) for A,B ∈ Rm×n and 〈A,B〉Cm×n = <(tr(A∗B)) for A,B ∈110

Cm×n denote the canonical inner product on Rm×n and Cm×n, respectively.111

3. Embedded geometry of Hn,p+ . The results in this section are natural ex-112

tensions of results for Sn,p+ = {X ∈ Rn×n : X < 0, rank(X) = p} in [26]. Such an113

extension is not entirely obvious since Hn,p+ is treated as a real manifold and (1.3) is114

not the complex Hilbert–Schmidt inner product. Nonetheless, all proofs can be done115

following [26], thus we only state the results. Omitted proofs can be found in [29].116

3.1. Tangent space. First we show that Hn,p+ is a smooth embedded subman-117

ifold of Cn×n following the case of Sn,p+ in [26, Prop. 2.1], [12, Prop. 2.1] and [11,118

Chap. 5]. The tangent space of Hn,p follows the argument in [25, Proposition 2.1].119

Theorem 3.1. Regard Cn×n as a real vector space over R of dimension 2n2.120

Then Hn,p+ is a smooth embedded submanifold of Cn×n of dimension 2np− p2.121
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4 S. ZHENG, W. HUANG, B. VANDEREYCKEN, AND X. ZHANG

Theorem 3.2. Let X = UΣU∗ ∈ Hn,p+ . Then the tangent space of Hn,p+ at X,122

denoted by TXHn,p+ , is123

TXHn,p+ =

{[
U U⊥

] [H K∗

K 0

] [
U∗

U∗⊥

]
, H = H∗ ∈ Cp×p,K ∈ C(n−p)×p

}
.124

3.2. Riemannian gradient. The Riemannian metric of the embedded mani-125

fold at X ∈ Hn,p+ is induced from the Euclidean inner product on Cn×n,126

(3.1) gX(ζ1, ζ2) = 〈ζ1, ζ2〉Cn×n = <(tr(ζ∗1 ζ2)), ζ1, ζ2 ∈ TXHn,p+ .127

The Riemannian gradient of f at X is the projection of ∇f(X) onto TXHn,p+ [2]:128

grad f(X) = P tX(∇f(X)),129

where P tX is the orthogonal projection onto TXHn,p+ , given by the following theorem.130

Theorem 3.3. Let X = Y Y ∗ = UΣU∗ be the compact SVD for X ∈ Hn,p+ with131

Y ∈ Cn×p∗ . For a complex matrix Z, the orthogonal projection onto TXHn,p+ is132

P tX(Z) =
[
U U⊥

] [U∗ Z+Z∗

2 U U∗ Z+Z∗

2 U⊥
U∗⊥

Z+Z∗

2 U 0

] [
U∗

U∗⊥

]
.133

Remark 3.4. We can write P tX = P sX + P pX by introducing the two operators134

P sX : Z 7→ PU
Z + Z∗

2
PU , P pX : Z 7→ PU⊥

Z + Z∗

2
PU + PU

Z + Z∗

2
PU⊥ ,(3.2)135

where PU = UU∗ and PU⊥ = U⊥U
∗
⊥.136

3.3. A retraction by projection to the embedded manifold. A retraction137

is essentially a first-order approximation to the exponential map; see [2, Def. 4.1.1].138

By [3, Props. 3.2 and 3.3], the truncated SVD RX(Z) := PHn,p+
(X+Z) =

∑p
i=1 σi(X+139

Z)viv
∗
i is a retraction on Hn,p+ , where vi is the singular vector of X+Z corresponding140

to the ith largest singular value σi(X +Z). We remark that such a retraction can be141

compactly implemented, see Section 5 and [29] for implementation details.142

3.4. Vector transport. A vector transport is a mapping that transports a tan-143

gent vector from one tangent space to another tangent space. See [2, Def. 8.1.1]. The144

vector transport of Hn,p+ that we use is derived from the vector transport by projec-145

tion. Let ξX , ηX ∈ TXHn,p+ and let R be a retraction on Hn,p+ . By [2, section 8.1.3],146

the projection of one tangent vector onto another tangent space is a vector transport:147

(3.3) TηX ξX := P tRX(ηX)ξX ,148

where P tZ is the projection operator onto TZHn,p+ with Z = RX(ηX). Namely, we149

first apply the retraction RX to ηX to arrive at a new point on the manifold, then we150

project the old tangent vector ξX onto the tangent space at that new point.151

Now, we derive the expression of the vector transport (3.3) in closed form. Given152

X1 = U1Σ1U
∗
1 ∈ H

n,p
+ , the retracted point X2 = U2Σ2U

∗
2 ∈ H

n,p
+ , and a tangent153

vector ν1 =
[
U1 U1⊥

] [H1 K∗1
K1 0

] [
U∗1
U1
∗
⊥

]
= U1H1U

∗
1 + U1⊥K1U

∗
1 + U1K

∗
1U1

∗
⊥ ∈154

TX1
Hn,p+ , we need to determine H2 and K2 of the transported tangent vector ν2 =155
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[
U2 U2⊥

] [H2 K∗2
K2 0

] [
U∗2
U2
∗
⊥

]
∈ TX2

Hn,p+ . By the projection formula (3.2), we have156

ν2 = P tX2
(ν1) =

[
U2 U2⊥

] [ U∗2 ν1U2 U∗2 ν1U2⊥
U2
∗
⊥ν1U2 0

] [
U∗2
U2
∗
⊥

]
, where157

H2 = U∗2 ν1U2 = U∗2U1H1U
∗
1U2 + U∗2U1⊥K1U

∗
1U2 + U∗2U1K

∗
1U1

∗
⊥U2, and158

K2 = U2
∗
⊥ν1U2 = U2

∗
⊥U1H1U

∗
1U2 + U2

∗
⊥U1⊥K1U

∗
1U2 + U2

∗
⊥U1K

∗
1U1

∗
⊥U2.159

In implementation, we observe better numerical performance if we only keep the160

first term in the above sum of H2 and the second term of K2, i.e., we define161

H2 = U∗2U1H1U
∗
1U2, K2 = U2

∗
⊥U1⊥K1U

∗
1U2.(3.4a)162

One can verify that (3.4) is a vector transport by parallelization in [14]. In numerical163

tests, we have observed that the nonlinear CG method using this simpler version of164

vector transport is usually more efficient. So in all our numerical tests, we do not use165

the more complicated (3.3). Instead, we use the following simplified vector transport:166

1. Given X1 = U1Σ1U
∗
1 ∈ H

n,p
+ , and ηX1

, ξX1
∈ TX1

Hn,p+ , first compute

X2 = RX1(ηX1) := PHn,p+
(X1 + ηX1) = U2Σ2U

∗
2 ∈ H

n,p
+ .

2. Let ξX1
=
[
U1 U1⊥

] [H1 K∗1
K1 0

] [
U∗1
U1
∗
⊥

]
∈ TX1

Hn,p+ , then compute167

(3.4b) TηX1
ξX1

=
[
U2 U2⊥

] [H2 K∗2
K2 0

] [
U∗2
U2
∗
⊥

]
∈ TX2

Hn,p+ .168

3.5. Riemannian Hessian operator. For a real-valued function f(X) defined169

on the Euclidean space Cn×n, the Hessian ∇2f(X) is defined w.r.t (1.3), see [29]. The170

Riemannian Hessian (see [2, definition 5.5.1]) of f at X, is denoted by Hess f(X),171

where f is viewed as a function on the manifold Hn,p+ with metric (3.1).172

The following proposition gives the Riemannian Hessian of f . The proof follows173

similar ideas as in [28, Prop. 5.10] and [24, Prop. 2.3]. We leave the outline of the174

proof in Appendix A.1.175

Proposition 3.5. Let f(X) be a real-valued function defined on Hn,p+ with met-176

ric (3.1). Let X ∈ Hn,p+ and ξX ∈ TXHn,p+ . Then the Riemannian Hessian operator177

of f at X is given by178

Hess f(X)[ξX ] = P tX(∇2f(X)[ξX ]) + P pX
(
∇f(X)(X†ξpX)∗ + (ξpXX

†)∗∇f(X)
)
,179

where ·† denotes the pseudo-inverse operator, ξsX = P sX(ξX), ξpX = P pX(ξX), and P tX180

and P pX are defined in (3.2).181

4. The quotient geometry of Cn×p∗ /Op using three Riemannian metrics.182

Besides being regarded as an embedded manifold in Cn×n, Hn,p+ can also be viewed183

as a quotient set Cn×p∗ /Op since Hn×p+ is diffeomorphic to Cn×p∗ /Op as will be shown184

below. The smooth Lie group action of Op on Cn×p∗ defines an equivalence relation185

on Cn×p∗ by setting Y1 ∼ Y2 if there exists an O ∈ Op such that Y1 = Y2O. The set186

Cn×p∗ is called the total space of Cn×p∗ /Op.187

Denote the natural projection as

π : Cn×p∗ → Cn×p∗ /Op.
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The equivalence class of Y is denoted as [Y ] = π−1(π(Y )) = {Y O|O ∈ Op} . Define188

h(π(Y )) = f(Y Y ∗), then (1.1) is equivalent to189

(4.1) min
π(Y )

h(π(Y )), π(Y ) ∈ Cn×p∗ /Op.190

Define a map β : Cn×p∗ → Hn,p+ with β(Y ) = Y Y ∗. Then β is invariant under191

the equivalence relation ∼ and induces a unique function β̃ on Cn×p∗ /Op, called the192

projection of β, such that β = β̃ ◦ π [2, Section 3.4.2]. One can easily check that β̃ is193

a bijection. For any f on Hn,p+ , there is a function F defined on Cn×p∗ that induces f :194

for any X = Y Y ∗ ∈ Hn,p+ , F (Y ) := f ◦ β(Y ) = f(Y Y ∗), which is summarized in the195

diagram:196

Cn×p∗

Cn×p∗ /Op Hn,p+ R

β:=β̃◦π
π

β̃ f

197

The next theorems follow from [20, Cor. 21.6; Thm. 21.10], and [21, Prop. A.7].198

Theorem 4.1. The quotient space Cn×p∗ /Op is a manifold over R of dimension199

2np− p2 and has a unique smooth structure such that π is a smooth submersion.200

Theorem 4.2. The manifold Cn×p∗ /Op is diffeomorphic to Hn,p+ under β̃.201

4.1. Vertical space, three Riemannian metrics, and horizontal spaces.202

The equivalence class [Y ] is an embedded submanifold of Cn×p∗ [2, Prop. 3.4.4]. There-203

fore, the tangent space of [Y ] at Y is a subspace of TY Cn×p∗ , called the vertical space204

at Y , and is denoted by VY . The following proposition characterizes VY .205

Proposition 4.3. The vertical space at Y ∈ [Y ] = {Y O|O ∈ Op}, defined as the206

tangent space of [Y ] at Y , is VY = {Y Ω|Ω∗ = −Ω,Ω ∈ Cp×p} .207

With a Riemannian metric g of the total space Cn×p∗ , we can define the orthogonal208

complement in TY Cn×p∗ of VY . In other words, we choose the horizontal distribution209

as orthogonal complement w.r.t. Riemannian metric g, see [2, Section 3.5.8]. This210

orthogonal complement to VY is called horizontal space at Y and is denoted by HY :211

(4.2) TY Cn×p∗ = HY ⊕ VY .212

There exists a unique vector ξ̄Y ∈ HY that satisfies Dπ(Y )[ξ̄Y ] = ξπ(Y ) for each213

ξπ(Y ) ∈ Tπ(Y )Cn×p∗ /Op. This ξ̄Y is called the horizontal lift of ξπ(Y ) at Y .214

There exist more than one choice of Riemannian metric on Cn×p∗ . Metrics do not215

affect the vertical space but generally result in different horizontal spaces.216

4.1.1. The Bures-Wasserstein metric. The most straightforward choice of a217

Riemannian metric on Cn×p∗ is the Euclidean inner product on Cn×p defined by218

g1
Y (A,B) := 〈A,B〉Cn×p = <(tr(A∗B)), ∀A,B ∈ TY Cn×p∗ = Cn×p.219

Proposition 4.4. Under metric g1, the horizontal space at Y satisfies220

H1
Y = {Z ∈ Cn×p : Y ∗Z = Z∗Y } =

{
Y (Y ∗Y )−1S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p} .221

g1 is also called the Bures-Wasserstein metric [22] for the quotient manifold222

Cn×p∗ /Op. One can show that g1 is also consistent with the Bures-Wasserstein metric223

defined for Hermitian positive-definite matrices, see [29] for details.224
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4.1.2. The second quotient metric. A metric used in [16, 13] is defined by225

g2
Y (A,B) := 〈AY ∗, BY ∗〉Cn×n = <(tr((Y ∗Y )A∗B)), ∀A,B ∈ TY Cn×p∗ = Cn×p.226

Proposition 4.5. Under metric g2, the horizontal space at Y satisfies227

H2
Y =

{
Z ∈ Cn×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1

}
=
{
Y S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p} .228

4.1.3. The third quotient metric. The third metric for is induced by the229

diffeomorphism between Cn×p∗ /Op and the embedded geometry of Hn,p+ . We first use230

the metric g2 and the decomposition TY Cn×p∗ = H2
Y ⊕VY , by which A ∈ TY Cn×p∗ can231

be uniquely decomposed as A = AV +AH
2

, AV ∈ VY , AH
2 ∈ H2

Y . Now define g3 as232

g3
Y (A,B) :=

〈
Dβ(Y )[AH

2

],Dβ(Y )[BH
2

]
〉
Cn×n

+ g2
Y

(
AV , BV

)
233

= 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉Cn×n +
〈
Y Skew

(
(Y ∗Y )−1Y ∗A

)
Y ∗, Y Skew

(
(Y ∗Y )−1Y ∗B

)
Y ∗
〉
Cn×n .234

It is straightforward to verify that g3 defined above is a Riemannian metric. With235

the definition (1.3), we have236

(4.3) ∀A,B ∈ AH2

, g3
Y (A,B) = 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉Cn×n = 2 〈AY ∗Y + Y A∗Y,B〉Cn×p .237

Proposition 4.6. Under metric g3, the horizontal space at Y is the same as H2
Y :238

H3
Y =

{
Z ∈ Cn×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1

}
=
{
Y S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p} .239

4.2. Projections onto vertical space and horizontal space. Due to the di-240

rect sum property (4.2), for HiY , there exist projection operators for any A ∈ TY Cn×p∗241

to HiY as A = PVY (A) + PH
i

Y (A). We note that the operator PVY depends on gi but V242

is independent of gi. It is straightforward to verify the following formulae.243

Proposition 4.7. For g1, PVY (A) = Y Ω, PH
1

Y (A) = A−Y Ω, where Ω is the skew-244

Hermitian matrix that solves the Lyapunov equation ΩY ∗Y + Y ∗Y Ω = Y ∗A − A∗Y.245

For g2, we have PVY (A) = Y Skew
(
(Y ∗Y )−1Y ∗A

)
, and246

PH
2

Y (A) = A− PVY (A) = Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y

∗
⊥A.247

For g3, we have PVY (A) = Y Skew((Y ∗Y )−1Y ∗A), and248

PH
3

Y (A) = A− PVY (A) = Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y

∗
⊥A.249

4.3. Cn×p∗ /Op as a Riemannian quotient manifold. First, we show in the250

following lemma the relationship between the horizontal lifts of the quotient tangent251

vector ξπ(Y ) lifted at different representatives in [Y ]. A proof based on metric g1 for252

Sn,p+ is given in [21, Prop. A.8], and [16, Lemma 5.1] proves the result for metric g2.253

The proof for g3 can be found in [29].254

Lemma 4.8. Let η be a vector field on Cn×p∗ /Op, and let η̄ be the horizontal lift
of η. Then for each Y ∈ Cn×p∗ , we have

η̄Y O = η̄YO, ∀O ∈ Op.
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Recall from [2, Section 3.6.2] that if the expression gY (ξ̄Y , ζ̄Y ) does not de-255

pend on the choice of Y ∈ [Y ] for every π(Y ) ∈ Cn×p∗ /Op and every ξπ(Y ), ζπ(Y ) ∈256

Tπ(Y )Cn×p∗ /Op, then257

(4.4) gπ(Y )(ξπ(Y ), ζπ(Y )) := gY (ξ̄Y , ζ̄Y )258

defines a Riemannian metric on the quotient manifold Cn×p∗ /Op. By Lemma 4.8,259

it is straightforward to verify that each Riemannian metric gi on Cn×p∗ induces a260

Riemannian metric on Cn×p∗ /Op. The quotient manifold Cn×p∗ /Op endowed with a261

Riemannian metric defined in (4.4) is called a Riemannian quotient manifold. By262

abuse of notation, we use gi for denoting Riemannian metrics on both total space263

Cn×p∗ and quotient space Cn×p∗ /Op.264

4.4. Riemannian gradient. Given a smooth real-valued function f on Hn,p+ ,265

recall that a corresponding cost function h is defined on Cn×p∗ /Op satisfying (4.1).266

The next theorem shows that the horizontal lift of gradh(π(Y )) can be obtained from267

the Riemannian gradient of F . Its proof can be found in [2, Section 3.6.2].268

Theorem 4.9. The horizontal lift of the gradient of h at π(Y ) is the Riemannian269

gradient of F at Y . That is,270

gradh(π(Y ))Y = gradF (Y ).271

Therefore, gradF (Y ) is always in HY .272

The next proposition summarizes the expression of gradF (Y ) under different273

metrics. The proof is by simple calculation and definition of each metric, which can274

be found in [29].275

Proposition 4.10. Let f be a smooth real-valued function defined on Hn,p+ and276

let F : Cn×p∗ → R : Y 7→ f(Y Y ∗). Assume Y Y ∗ = X. Then277

gradF (Y ) =


2∇f(Y Y ∗)Y, if using metric g1

2∇f(Y Y ∗)Y (Y ∗Y )−1, if using metric g2(
I − 1

2
PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1 if using metric g3

278

where ∇f denotes the gradient (1.4) and PY = Y (Y ∗Y )−1Y ∗.279

4.5. Retraction. The retraction on Cn×p∗ /Op can be defined using the retrac-280

tion on the total space Cn×p∗ . For any A ∈ TY Cn×p∗ and a step size τ > 0,281

RY (τA) := Y + τA,282

is a retraction on Cn×p∗ if Y +τA remains full rank, which is ensured for small enough283

τ . Lemma 4.8 indicates that R satisfies the conditions of [2, Prop. 4.1.3], implying284

(4.5) Rπ(Y )(τηπ(Y )) := π(RY (τηY )) = π(Y + τηY )285

defines a retraction on the manifold Cn×p∗ /Op for a small step size τ > 0.286
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4.6. Vector transport. A vector transport on Cn×p∗ /Op is projection to hori-287

zontal space (see [2, Section 8.1.2]):288

(4.6)
(
Tηπ(Y )

ξπ(Y )

)
Y+ηY

:= PHY+ηY
(ξY ).289

It can be shown that this vector transport is actually the differential of the retraction290

R defined in (4.5). Denote Y2 = Y1 + ηY1
. Base on the projection formula in Section291

4.2, the explicit formula of (4.6) using different Riemannian metrics is then292 (
Tηπ(Y1)

ξπ(Y1)

)
Y1+ηY1

=

{
ξY1
− Y2Ω, for g1,

Y2Herm((Y ∗2 Y2)−1Y ∗2 ξY1
) + Y2⊥Y2

∗
⊥ξY1

, for g2 or g3.
293

4.7. Riemannian Hessian operator. Recall that the function h on Cn×p∗ /Op294

is defined in (4.1). The Riemannian Hessian of h under the three different metrics gi295

can be given as follows. The proofs are given in Appendix B.1.296

Proposition 4.11. Using g1, the Riemannian Hession of h is given by297 (
Hessh(π(Y ))[ξπ(Y )]

)
Y

= PH
1

Y

(
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]Y + 2∇f(Y Y ∗)ξY

)
.298

Proposition 4.12. Using g2, the Riemannian Hession of h is given by299 (
Hessh(π(Y ))[ξπ(Y )]

)
Y

= PH
2

Y

{
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]Y (Y ∗Y )−1
300

+∇f(Y Y ∗)P⊥Y ξY (Y ∗Y )−1 + P⊥Y ∇f(Y Y ∗)ξY (Y ∗Y )−1
301

+2Skew(ξY Y
∗)∇f(Y Y ∗)Y (Y ∗Y )−2 + 2Skew{ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)}Y (Y ∗Y )−1

}
.302

Proposition 4.13. Using g3, the Riemannian Hession of h is given by303 (
Hessh(π(Y ))[ξπ(Y )]

)
Y

=

(
I − 1

2
PY

)
∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]Y (Y ∗Y )−1
304

+(I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1.305

5. The Riemannian conjugate gradient method. We only consider the Rie-306

mannian CG (RCG) described as Algorithm 1 in [25] with the geometric variant of307

Polak–Ribiére (PR+). Note that it is possible to explore other methods such as308

LRBFGS in [15]. We choose RCG since RCG is easier to implement and performs309

well on a wide variety of problems.310

We focus on establishing two equivalences in algorithms. First, we show that311

the Burer–Monteiro CG method, i.e. CG solving (1.5), is equivalent to RCG on312

(Cn×p∗ /Op, g1) with the retraction (4.5) and vector transport (4.6). Second, we show313

that RCG on the embedded manifold Hn,p+ is equivalent to RCG (Cn×p∗ /Op, g3) with314

a specific retraction (5.3) and vector transport (5.4) given later.315

Let TXk−1→Xk denote a vector transport that maps from TXk−1
Hn,p+ to TXkH

n,p
+ :316

TXk−1→Xk : TXk−1
Hn,p+ → TXkH

n,p
+ , ζXk−1

7→ TR−1
Xk−1

(Xk)(ζXk−1
),317

where R−1
X exists locally for every X ∈ Hn,p+ . Hence TXk−1→Xk should be under-318

stood locally in the sense that Xk−1 is sufficiently close to Xk (see [24, Section 2.4]).319

Similarly, TYk−1→Yk denotes a vector transport that maps from HYk−1
to HYk :320

TYk−1→Yk : HYk−1
→ HYk , ξYk−1

7→
(
TR−1

π(Yk−1)
ξπ(Yk)

)
Yk

,321
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where R−1
π(Y ) also exists locally for every π(Y ) ∈ Cn×p∗ /Op. TYk−1→Yk and should322

again be understood locally in the sense that π(Yk−1) is sufficiently close to π(Yk).323

We summarize two RCG algorithms in Algorithm 5.1 and Algorithm 5.2 below.324

Algorithm 5.1 is the RCG on the embedded manifold for solving (1.1) and Algorithm325

5.2 is the RCG on the quotient manifold (Cn×p∗ /Op, gi) for solving (4.1). The explicit326

constants 0.0001 and 0.5 in the Armijo backtracking are chosen for convenience.327

Algorithm 5.1 Riemannian Conjugate Gradient on the embedded manifold Hn,p+

Require: initial iterate X1 ∈ Hn,p+ , tolerance ε > 0, tangent vector η0 = 0
1: for k = 1, 2, . . . do
2: Compute gradient

ξk := grad f(Xk) . See Algorithm 5.3
3: Check convergence

if ‖ξk‖ :=
√
gXk(ξk, ξk) < ε, then break

4: Compute a conjugate direction by PR+ and vector transport
ηk = −ξk + βkTXk−1→Xk(ηk−1) . See Algorithm 5.4

βk =
gXk

(
ξk, ξk − TXk−1→Xk(ξk−1)

)
gXk−1

(ξk−1, ξk−1)
.

5: Compute an initial step tk. For special cost functions, it is possible to compute:
tk = arg mint f(Xk + tηk)

6: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

f(Xk)− f(RXk(0.5mtkηk)) ≥ −0.0001× 0.5mtkgXk(ξk, ηk)

7: Obtain the new iterate by retraction
Xk+1 = RXk(0.5mtkηk) . See Algorithm 5.5

8: end for

5.1. Equivalence between Burer–Monteiro CG and RCG on the man-328

ifold with the Bures-Wasserstein metric (Cn×p∗ /Op, g1).329

Theorem 5.1. Using retraction (4.5), vector transport (4.6) and metric g1, Al-330

gorithm 5.2 is equivalent to the conjugate gradient method solving (1.5) in the sense331

that they produce exactly the same iterates if started from the same initial point.332

Proof. First of all, for g1, the Riemannian gradient of F at Y is gradF (Y ) =333

2∇f(Y Y ∗)Y , which is equal to the gradient of F (Y ) = f(Y Y ∗) at Y . Since vector334

transport is the orthogonal projection to the horizontal space, the βk of PR+ used in335

Riemannian CG becomes336

(5.1) βk =
g1
Yk

(
gradF (Yk), gradF (Yk)− PH1

Yk
(gradF (Yk−1))

)
g1
Yk−1

(gradF (Yk−1), gradF (Yk−1))
.337

Now observe that338

PH
1

Yk
(gradF (Yk−1)) = gradF (Yk−1)− PVYk(gradF (Yk−1))339

and g1 is equivalent to the classical inner product for Cn×p. Hence βk computed by340

(5.1) is equal to βk of PR+ in conjugate gradient for (1.5).341
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Algorithm 5.2 Riemannian Conjugate Gradient on the quotient manifold Cn×p∗ /Op
with metric gi

Require: initial iterate Y1 ∈ π−1(π(Y1)), tolerance ε > 0, tangent vector η0 = 0
1: for k = 1, 2, . . . do
2: Compute the horizontal lift of gradient

ξk := (gradh(π(Yk)))Yk = gradF (Yk)
3: Check convergence

if ‖ξk‖ :=
√
giYk(ξk, ξk) < ε, then break

4: Compute a conjugate direction by PR+ and vector transport
ηk = −ξk + βkTYk−1→Yk(ηk−1)

βk =
giYk

(
gradF (Yk), gradF (Yk)− TYk−1→Yk(ξk−1)

)
giYk−1

(gradF (Yk−1), gradF (Yk−1))
.

5: Compute an initial step tk. For special cost functions, it is possible to compute:
tk = arg mint F (Yk + tηk)

6: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

F (Yk)− F (RYk(0.5mtkηk)) ≥ −0.0001× 0.5mtkg
i
Yk

(ξk, ηk)

7: Obtain the new iterate by the simple retraction
Yk+1 = RYk(0.5mtkηk) = Yk + 0.5mtkηk

8: end for

Since η1 = −gradF (Y1) = −∇F (Y1), Burer–Monteiro CG coincides with RCG342

for the first iteration. It remains to show that ηk generated in Riemannian CG by343

ηk = −ξk + βkP
H1

Yk
(ηk−1)344

is equal to ηk generated in Burer–Monteiro CG for each k ≥ 2. It suffices to show345

PH
1

Yk
(ηk−1) = ηk−1, ∀k ≥ 2.346

Equivalently we need to show that for all k ≥ 2, the Lyapunov equation347

(5.2) (Y ∗k Yk)Ω + Ω(Y ∗k Yk) = Y ∗k ηk−1 − η∗k−1Yk348

only has trivial solution Ω = 0. By invertibility of the equation, this means that we349

only need to show the right hand side is zero. We prove it by induction. For k = 2,350

ηk−1 = η1 = −ξ1 = −gradF (Y1). The following shows that the RHS of (5.2) satisfies351

Y ∗2 η1 − η∗1Y2 = −Y ∗2 ξ1 + ξ∗1Y2 = −(Y1 − cξ1)∗ξ1 + ξ∗1(Y1 − cξ1) = ξ∗1Y1 − Y ∗1 ξ1352

= Y ∗1 (2∇f(Y1Y
∗
1 ))Y1 − Y ∗1 (2∇f(Y1Y

∗
1 ))Y1 = 0.353

Hence Ω = 0 and PH
1

Yk
(ηk−1) = ηk−1 for k = 2.354

Now suppose for k ≥ 2, the RHS of (5.2) is 0 and hence PH
1

Yk
(ηk−1) = ηk−1 holds.355

Then the RHS of the Lyapunov equation of step k + 1 is356

Y ∗k+1ηk − η∗kYk+1 = (Yk + cηk)∗ηk − η∗k(Yk + cηk) = Y ∗k ηk − η∗kYk357
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= Y ∗k

(
−ξk + βkP

H1

Yk
(ηk−1)

)
−
(
−ξk + βkP

H1

Yk
(ηk−1)

)∗
Yk358

= Y ∗k (−ξk + βkηk−1)− (−ξk + βkηk−1)∗Yk359

= −Y ∗k ξk + ξ∗kYk = −Y ∗k (2∇f(YkY
∗
k ))Yk + Y ∗k (2∇f(YkY

∗
k ))Yk = 0.360

So PH
1

Yk+1
(ηk) = ηk also holds, thus RCG is equivalent to Burer–Monteiro CG.361

Since βk ≡ 0 gives the gradient descent, the same proof above gives Theorem 5.2.362

Theorem 5.2. Using retraction (4.5) and metric g1, the Riemannian gradient363

descent is equivalent to the Burer–Monteiro gradient descent method with suitable364

step size (1.3) in the sense that they produce exactly the same iterates.365

5.2. Equivalence between RCG on embedded manifold and RCG on366

the quotient manifold (Cn×p∗ /Op, g3). In this subsection we show that Algorithm367

5.1 is equivalent to Algorithm 5.2 with Riemannian metric g3, a specific retraction368

(5.3) and a specific vector transport (5.4). The idea is to take the advantage of the369

diffeomorphism β̃ between Cn×p∗ /Op and Hn,p+ , as well as the fact that the metric g3370

of Cn×p∗ /Op is induced from the metric of Hn,p+ .371

Since β̃ is a diffeomorphism between Cn×p∗ /Op and Hn,p+ , Dβ̃(π(Y ))[·] defines an372

isomorphism between the tangent space Tπ(Y )Cn×p∗ /Op and TY Y ∗Hn,p+ . We denote373

this isomorphism by Lπ(Y ). The following lemma can be verified by straightforward374

computation, see [29].375

Lemma 5.3. For (Cn×p∗ /Op, g3), the Riemannian gradient of f and h is related376

by (D β̃)(π(Y ))[gradh(π(Y ))] = grad f(Y Y ∗) and377

Lπ(Y )(gradh(π(Y ))) = grad f(β̃(π(Y ))).378

In Algorithm 5.1, we have a retraction RE and a vector transport T E on the379

embedded manifold Hn,p+ , (with the superscript E for Embedded), such that RE is the380

retraction associated with T E . Then we claim that there is a retraction RQ and a381

vector transport T Q, (with the superscript Q denoting Quotient), on the Riemannian382

quotient manifold (Cn×p∗ /Op, g3), such that Algorithm 5.2 is equivalent to Algorithm383

5.1. The idea is again to use the diffeomorphism β̃ and the isomorphism Lπ(Y ). We384

give the desired expression of RQ and T Q as follows.385

RQπ(Y )(ξπ(Y )) := β̃−1
(
RE
β̃(π(Y ))

(
L(ξπ(Y ))

))
,(5.3)386

T Qηπ(Y )
(ξπ(Y )) := L−1

π(Y2)

(
T EL(ηπ(Y ))

(
L(ξπ(Y ))

))
,(5.4)387

388

where π(Y2) is in Cn×p∗ /Op such that β̃(π(Y2)) denotes the foot of the tangent vector389

T EL(ηπ(Y ))

(
L(ξπ(Y ))

)
.390

Now it remains to show that RQ defined in (5.3) is indeed a retraction and T Q391

defined in (5.4) is indeed a vector transport.392

Lemma 5.4. RQ defined in (5.3) is a retraction.393

Proof. First it is easy to see that RQπ(Y )(0π(Y )) = π(Y ). Then we also have for all394

vπ(Y ) ∈ Tπ(Y )Cn×p∗ /Op, DRQπ(Y )(0π(Y ))[·] is an identity map because395

DRQπ(Y )(0π(Y ))[vπ(Y )] = (D β̃−1)(β̃(π(Y ))
[
DRE

β̃(π(Y ))
(0)
[
DL(0)

[
vπ(Y )

]]]
396
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= (D β̃−1)(β̃(π(Y ))
[
DRE

β̃(π(Y ))
(0)
[
L(vπ(Y ))

]]
397

= (D β̃−1)(β̃(π(Y ))
[
L(vπ(Y ))

]
=
(

D β̃(π(Y ))
)−1

[L(vπ(Y ))] = L−1(L(vπ(Y ))) = vπ(Y )398

Lemma 5.5. T E defined in (5.4) is a vector transport and RQ is the retraction399

associated with T E.400

Proof. Consistency and linearity are straightforward. It thus suffices to verify that401

the foot of T Qηπ(Y )
(ξπ(Y )) is equal to RQπ(Y )(ηπ(Y )). Since RE is the associated retraction402

with T E , the foot of T EL(ηπ(Y ))
(L(ξπ(Y ))) is equal to RE

β̃(π(Y ))

(
L(ηπ(Y ))

)
, which we de-403

note by β̃(π(Y2)) for some π(Y2). Hence RQπ(Y )(ηπ(Y )) = β̃−1
(
RE
β̃(π(Y ))

(
L(ηπ(Y ))

))
=404

π(Y2).405

Furthermore, we have that T Qηπ(Y )
(ξπ(Y )) = L−1

π(Y2)

(
T EL(ηπ(Y ))

(
L(ξπ(Y ))

))
is a tan-406

gent vector in Tπ(Y2)Cn×p∗ /Op. Hence, the foot of T Qηπ(Y )
(ξπ(Y )) is also π(Y2).407

We also need the initial step size to match the one in step 5 of Algorithm 5.2. We408

simply replace the original initial step size tk by tk = arg mint f(YkY
∗
k + t(Ykη

∗
k + ηkY

∗
k )).409

This value of tk now is equivalent to the initial step size in Step 5 of Algorithm410

5.1. This gives us the following result:411

Theorem 5.6. With the newly constructed initial step size, retraction, and vector412

transport in this subsection, Algorithm 5.2 for solving (4.1) is equivalent to Algorithm413

5.1 solving (1.1) in the sense that they produce exactly the same iterates.414

5.3. Implementation details. The algorithms in this paper can be used for any415

smooth f(X) in (1.1). For large n, however, it is advisable to avoid using ∇f(X) ∈416

Cn×n explicitly. Instead, we compute the matrix-vector multiplications ∇f(X)U .417

For example, in the PhaseLift problem [9], these matrix-vector multiplications can be418

implemented via the FFT at a cost of O(pn log n) when U ∈ Cn×p, see [16]. We give419

some detailed implementation in Algorithms 5.1 and 5.2. When counting flops, we420

assume that ∇f(X)U ∈ Cn×p can be computed in spn log n flops with s small.

Algorithm 5.3 Calculate the Riemannian gradient grad f(X)

Require: X = UΣU∗ ∈ Hn,p+

Ensure: grad f(X) = UHU∗ + UpU
∗ + UU∗p ∈ TXH

n,p
+

T ← ∇f(X)U . # spn log n flops
H ← U∗T . # np(2p− 1) flops
Up ← T − UH . # np(2p− 1) + np flops

421

6. Estimates of Rayleigh quotient for Riemannian Hessians. In many422

applications, (1.1) or (4.1) is often used for solving (1.2). Even if the global minimizer423

of (1.2) has a known rank r, one might consider solving (1.1) or (4.1) for Hermitian424

PSD matrices with fixed rank p > r. For instance, in PhaseLift [9] and interferometry425

recovery [10], the minimizer to (1.2) is rank one, but in practice optimization over the426

set of PSD Hermitian matrices of rank p with p ≥ 2 is often used because of a larger427

basin of attraction [10, 16]. If p > r, then an algorithm that solves (1.1) or (4.1)428

can generate a sequence that goes to the boundary of the manifold. Numerically, the429

smallest p− r singular values of the iterates Xk will become very small as k →∞.430
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Algorithm 5.4 Calculate the vector transport P tX2
(ν)

Require: X1 = U1Σ1U
∗
1 , X2 = U2Σ2U

∗
2 and tangent vector ν = U1H1U

∗
1 +Up1U

∗
1 +

U1Up
∗
1 ∈ TX1

Hn,p+ .
Ensure: P tX2

(ν) = U2H2U
∗
2 + Up2U

∗
2 + U2Up

∗
2

A← U∗1U2 . # np(2p− 1) flops

H
(1)
2 ← A∗H1A, U

(1)
p ← U1(H1A) . # 3p2(2p− 1) + np(2p− 1) flops

H
(2)
2 ← U∗2Up1A, U

(2)
p ← Up1A . # p2(2n− 1) + 2np(2p− 1) flops

H
(3)
2 ← H

(2)
2

∗
, U

(3)
p ← U1(U1

∗
pU2) . # np(2p− 1) + p2(2n− 1) flops

H2 ← H
(1)
2 +H

(2)
2 +H

(3)
2 . # 2p2 flops

Up2 ← U
(1)
p + U

(2)
p + U

(3)
p , Up2 ← Up2 − U2(U∗2Up2) . #

3np+ np(2p− 1) + p2(2n− 1) flops

Algorithm 5.5 Calculate the retraction RX(Z) = PHn,p+
(X + Z)

Require: X = UΣU∗ ∈ Hn,p+ , tangent vector Z = UHU∗ + UpU
∗ + UU∗p .

Ensure: RX(Z) = U+Σ+U
∗
+.

(Q,R)← qr(Up, 0) M ←
[
Σ +H R∗

R 0

]
. # 20np2 flops

[V, S]← eig(M) . O(p3) flops
Σ+← S(1 : p, 1 : p), U+ ←

[
U Q

]
V (:, 1 : p) . # np(4p− 1) flops

In this section, we analyze the eigenvalues of the Riemannian Hessian near the431

global minimizer. We will obtain upper and lower bounds of the Rayleigh quotient at432

X = Y Y ∗ (or π(Y )) that is close to the global minimizer X̂ = Ŷ Ŷ ∗ (or π(Ŷ )).433

6.1. The Rayleigh quotient estimates.434

Definition 6.1. The Rayleigh quotient of the Riemannian Hessian of f on (Hn,p+ , g)435

is defined by ρE(X, ζX) = gX(Hess f(X)[ζX ],ζX)
gX(ζX ,ζX) ,∀ζX ∈ TXHn,p+ . The Rayleigh quotient436

of the Riemannian Hessian of h on (Cn×p∗ /Op, gi) is defined by ρi(π(Y ), ξπ(Y )) =437

giπ(Y )(Hess h(π(Y ))[ξπ(Y )],ξπ(Y ))

gi
π(Y )

(ξπ(Y ),ξπ(Y ))
, ∀ξπ(Y ) ∈ Tπ(Y )Cn×p∗ /Op. If the Rayleigh quotient has438

a lower bound a and an upper bound b, then we define b
a as an upper bound on the439

condition number of the Riemannian Hessian.440

By the expressions of Riemannian Hessian, we have441

ρE(X, ζX) =
〈∇2f(X)[ζX ],ζX〉Cn×n

gX(ζX ,ζX) +
gX(PpX(∇f(X)(X†ζpX)∗+(ζpXX

†)∗∇f(X)),ζX)
gX(ζX ,ζX) .442

443

ρ1(π(Y ), ξπ(Y )) =
〈∇2f(Y Y ∗)[Y ξ

∗
Y +ξY Y

∗],Y ξ
∗
Y +ξY Y

∗〉Cn×n
g1
Y (ξY ,ξY )

+
g1
Y (2∇f(Y Y ∗)ξY ,ξY )

g1
Y (ξY ,ξY )

.444

445

ρ2(π(Y ), ξπ(Y )) =
〈∇2f(Y Y ∗)[Y ξ

∗
Y +ξY Y

∗],Y ξ
∗
Y +ξY Y

∗〉Cn×n
g2
Y (ξY ,ξY )

+
〈∇f(Y Y ∗)P⊥Y ξY ,ξY 〉Cn×p

g2
Y (ξY ,ξY )

446

+
〈P⊥Y ∇f(Y Y ∗)ξY ,ξY 〉Cn×p

g2
Y (ξY ,ξY )

+
〈Y ξ∗Y ξY ,2∇f(Y Y ∗)Y (Y ∗Y )−1〉Cn×p

g2
Y (ξY ,ξY )

− 〈
ξY Y

∗ξY ,2∇f(Y Y ∗)Y (Y ∗Y )−1〉Cn×p
g2
Y (ξY ,ξY )

.447

ρ3(π(Y ), ξπ(Y )) =
〈∇2f(Y Y ∗)[Y ξ

∗
Y +ξY Y

∗],Y ξ
∗
Y +ξY Y

∗〉Cn×n
g3
Y (ξY ,ξY )

+
g3
Y ((I−PY )∇f(Y Y ∗)(I−PY )ξY (Y ∗Y )−1,ξY )

g3
Y (ξY ,ξY )

.448

This manuscript is for review purposes only.



RIEMANNIAN OPTIMIZATION FOR HERMITIAN PSD FIXED-RANK CONSTRAINTS 15

Observe that the leading terms in the above Rayleigh quotients take similar forms:449

the numerator involves the Hessian ∇2f , and the denominator is the induced norm450

of tangent vector from the respective Riemannian metric. We call the leading term451

second order term (SOT) as it involves Hessian of f as the second order information452

of f and we call the other terms that follow the leading term first order terms (FOTs)453

as they only contain the first order gradient.454

We assume that the Hessian ∇2f is well conditioned on the tangent space:455

Assumption 6.1. For a fixed ε > 0, there exists constants A > 0 and B > 0 such456

that for all X with
∥∥∥X − X̂∥∥∥

F
< ε, the following inequality holds for all ζX ∈ TXHn,p+ .457

A ‖ζX‖2F ≤
〈
∇2f(X)[ζX ], ζX

〉
Cn×n ≤ B ‖ζX‖

2
F .458

Observe that this assumption is always satisfied for sufficiently small ε when f is459

smooth and X̂ is a nondegenerate minimizer of f . However, the condition number460

B/A might be large in general. An important case for which this assumption holds461

is f(X) = 1
2 ‖X −H‖

2
F with H being a given Hermitian PSD matrix. In this case,462

∇2f(X) is the identity operator thus A = B = 1.463

Under Assumption 6.1, we get bounds of the SOT in ρE(X, ζX) as:464

A = A
‖ζX‖2F

gX(ζX , ζX)
≤
〈
∇2f(X)[ζX ], ζX

〉
Cn×n

gX(ζX , ζX)
≤ B

‖ζX‖2F
gX(ζX , ζX)

= B.465

For quotient manifold, since Y ξ
∗
Y + ξY Y

∗ ∈ TY Y ∗Hn,p+ , under Assumption 6.1, we get466

A
‖Y ξ∗Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
≤ 〈
∇2f(Y Y ∗)[Y ξ

∗
Y +ξY Y

∗],Y ξ
∗
Y +ξY Y

∗〉Cn×n
giY (ξY ,ξY )

≤ B ‖
Y ξ
∗
Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
.467

So the estimates of SOT for quotient manifold reduces to analyzing
‖Y ξ∗Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
.468

We denote its infimum and supremum by469

Ciπ(Y ) := infξπ(Y )∈Tπ(Y )Cn×p∗ /Op
‖Y ξ∗Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
, Di

π(Y ) := supξπ(Y )∈Tπ(Y )Cn×p∗ /Op
‖Y ξ∗Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
.470

The subscript is used to emphasize that the infimum and supremum are dependent471

on π(Y ). The next lemma characterizes these infimum and supremum.472

Lemma 6.1. Let Y Y ∗ = UΣU∗ denote the compact SVD of Y Y ∗ and denote the473

i-th diagonal entry of Σ by σi with σ1 ≥ · · · ≥ σp > 0. Then the following estimates474

for the infimum Ciπ(Y ) and the supremum Di
π(Y ) of

‖Y ξ∗Y +ξY Y
∗‖2
F

giY (ξY ,ξY )
hold: C1

π(Y ) =475

2σp, 2σ1 ≤ D1
π(Y ) ≤ 2

(
σ2

1

σp
+ σ1

)
; C2

π(Y ) = 2, D2
π(Y ) = 4; and C3

π(Y ) = D3
π(Y ) = 1.476

Proof. It is straightforward to see C3
π(Y ) = D3

π(Y ) = 1 by the definition of g3. For477

metric 2, write ξY = Y S + Y⊥K for some S = S∗ ∈ Cp×p and K ∈ Cn×p. We have478 ∥∥∥Y ξ∗Y + ξY Y
∗
∥∥∥2

F

g2
Y (ξY , ξY )

= 2 +
2 ‖Y SY ∗‖2F

‖Y SY ∗‖2F + ‖KY ∗‖2F
.479

Hence it is easy to see C2
π(Y ) = 2 when S is zero matrix and D2

π(Y ) = 4 when Y SY ∗480

is nonzero and K is zero matrix. For metric 1, by its horizontal space, we can write481
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ξY = Y (Y ∗Y )−1S + Y⊥K for some S = S∗ ∈ Cp×p and K ∈ Cn×p. Notice that the482

SVD of Y can be given as Y = UΣ
1
2V ∗. Let S̄ = V ∗SV and K̄ = KV , and K̄i be483

the i-th column of K̄, then484 ∥∥∥Y ξ∗Y + ξY Y
∗
∥∥∥2

F

g1
Y (ξY , ξY )

=

∥∥Y ((Y ∗Y )−1S + S(Y ∗Y )−1)Y ∗
∥∥2

F
+ 2 ‖KY ∗‖2F

‖Y (Y ∗Y )−1S‖2F + ‖K‖2F
485

=

∥∥∥Σ−
1
2 S̄Σ

1
2 +Σ

1
2 S̄Σ−

1
2

∥∥∥2

F
+2
∥∥∥K̄Σ

1
2

∥∥∥2

F∥∥∥Σ−
1
2 S̄
∥∥∥2

F
+‖K̄‖2

F

=
2

p∑
i,j=1

σj
σi
|S̄ij|2+2

p∑
i,j=1
|S̄ij|2+2

p∑
i=1

σi‖Ki‖2F
p∑

i,j=1

|S̄ij |2
σi

+
p∑
i=1
‖K̄i‖2

F

,486

where symmetry S̄∗ = S̄ is used in the last step. The lower bound is given by487

2
p∑

i,j=1

σj
σi
|S̄ij|2+2

p∑
i,j=1
|S̄ij|2+2

p∑
i=1

σi‖K̄i‖2
F

p∑
i,j=1

|S̄ij |2
σi

+
p∑
i=1
‖K̄i‖2

F

≥
2
(
σp
σ1

+1
) p∑
i,j=1
|S̄ij|2+2σp

p∑
i=1
‖K̄i‖2

F

1
σp

p∑
i,j=1
|S̄ij|2+

p∑
i=1
‖K̄i‖2

F

488

=

2
(
σ2
p

σ1
+ σp

) p∑
i,j=1

∣∣S̄ij∣∣2 + 2σ2
p

p∑
i=1

∥∥K̄i

∥∥2

F

p∑
i,j=1

∣∣S̄ij∣∣2 + σp
p∑
i=1

∥∥K̄i

∥∥2

F

≥ 2σp.489

This lower bound is sharp as one can choose S = 0 and K with
∥∥K̄p

∥∥
F

= 1 and490 ∥∥K̄i

∥∥
F

= 0 for i < p. We have the upper bound as follows.491

2
p∑

i,j=1

σj
σi
|S̄ij|2+2

p∑
i,j=1
|S̄ij|2+2

p∑
i=1

σi‖K̄i‖2
F

p∑
i,j=1

|S̄ij |2
σi

+
p∑
i=1
‖K̄i‖2

F

≤
2
(
σ1
σp

+1
) p∑
i,j=1
|S̄ij|2+2σ1

p∑
i=1
‖K̄i‖2

F

1
σ1

p∑
i,j=1
|S̄ij|2+

p∑
i=1
‖K̄i‖2

F

492

=

2
(
σ2

1

σp
+ σ1

) p∑
i,j=1

∣∣S̄ij∣∣2 + 2σ2
1

p∑
i=1

∥∥K̄i

∥∥2

F

p∑
i,j=1

∣∣S̄ij∣∣2 + σ1

p∑
i=1

∥∥K̄i

∥∥2

F

< 2

(
σ2

1

σp
+ σ1

)
,493

where the last inequality is obtained by the range of the rational function f(x, y) =494

ax+by
x+dy with a = 2

(
σ2

1

σp
+ σ1

)
, b = 2σ2

1 and d = σ1 on {(x, y)|x ≥ 0, y ≥ 0, xy 6= 0}.495

This upper bound 2
(
σ2

1

σp
+ σ1

)
may not be the supremum as the inequalities are496

not sharp. However, we can show that D1
π(Y ) ≥ 2σ1. To see this, choose S̄ = 0 and K497

with
∥∥K̄1

∥∥
F

= 1 and
∥∥K̄i

∥∥
F

= 0 for i > 1. Then (6.1) reaches the value 2σ1. Hence498

the supremum must be at least 2σ1. So we have499

(6.1) 2σ1 ≤ D1
π(Y ) ≤ 2

(
σ2

1

σp
+ σ1

)
.500

Next we estimate the FOTs in Rayleigh quotient.501

Lemma 6.2. Let X = Y Y ∗ for any Y ∈ π−1(π(Y )) with X ∈ Hn,p+ and π(Y ) ∈502

Cn×p∗ /Op. Let UΣU∗ be the compact SVD of X and denote the ith diagonal entry of503

Σ with σ1 ≥ · · · ≥ σp > 0.504
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1. For the embedded manifold we have |FOT| ≤ 2
σp
‖∇f(X)‖ .505

2. For the quotient manifold with metric g1 we have |FOT| ≤ 2 ‖∇f(Y Y ∗)‖ .506

3. For the quotient manifold with g2 we have |FOTs| ≤ 4(
√
p+1)

σp
‖∇f(Y Y ∗)‖ .507

4. For the quotient manifold with g3 we have |FOTs| ≤ 1
σp
‖∇f(Y Y ∗)‖ .508

Proof. We will use ‖B∗A∗‖F = ‖AB‖F ≤ ‖A‖‖B‖F ≤ ‖A‖F ‖B‖F where ‖A‖ is509

the spectral norm. If X is Hermitian, ‖AX‖F = ‖XA∗‖F ≤ ‖X‖‖A∗‖F = ‖X‖‖A‖F .510

For the embedded manifold, recall that ξsX = P sX(ξX) and ξpX = P pX(ξX) and P tX511

and P pX are defined in (3.2), and the bound for the FOT is given by512

|gX(PpX(∇f(X)(X†ζpX)∗+(ζpXX
†)∗∇f(X)),ζX)|

gX(ζX ,ζX) =
|〈PpX(∇f(X)ζpXX

†+X†ζpX∇f(X)),ζX〉Cn×n |
〈ζX ,ζX〉Cn×n

513

≤
∣∣〈P pX (∇f(X)ζpXX

†) , ζX〉Cn×n ∣∣
〈ζX , ζX〉Cn×n

+

∣∣〈P pX (X†ζpX∇f(X)
)
, ζX

〉
Cn×n

∣∣
〈ζX , ζX〉Cn×n

514

≤ 2
‖∇f(X)ζpXX

†‖F ‖ζX‖F
〈ζX , ζX〉Cn×n

≤ 2
‖∇f(X)‖‖ζpXX†‖F ‖ζX‖F

〈ζX , ζX〉Cn×n
≤ 2
‖∇f(X)‖‖X†‖‖ζpX‖F ‖ζX‖F

〈ζX , ζX〉Cn×n
515

≤
2 ‖∇f(X)‖

∥∥X†∥∥ ‖ζX‖2F
〈ζX , ζX〉Cn×n

= 2 ‖∇f(X)‖
∥∥X†∥∥ =

2

σp
‖∇f(X)‖ .516

For quotient manifold with g1, the FOT is bounded by517

|g1
Y (2∇f(Y Y ∗)ξY ,ξY )|

g1
Y (ξY ,ξY )

=
|〈2∇f(Y Y ∗)ξY ,ξY 〉Cn×p |

〈ξY ,ξY 〉Cn×p
≤

2‖∇f(Y Y ∗)‖‖ξY ‖2F
〈ξY ,ξY 〉Cn×p

= 2 ‖∇f(Y Y ∗)‖ .518

For quotient manifold with g2, the FOTs contains four terms and we estimate519

each term separately. Notice that the SVD of Y can be given as Y = UΣ
1
2V ∗. Let520

S̄ = V ∗SV and K̄ = KV , and K̄i be the i-th column of K̄. For the first summand521

we have522 ∣∣〈∇f(Y Y ∗)P⊥Y ξY , ξY
〉
Cn×p

∣∣
g2
Y (ξY , ξY )

=

∣∣〈∇f(Y Y ∗)P⊥Y ξY , ξY
〉
Cn×p

∣∣〈
ξY Y

∗, ξY Y
∗
〉
Cn×n

≤
‖∇f(Y Y ∗)‖

∥∥ξY ∥∥2

F〈
ξY Y

∗, ξY Y
∗
〉
Cn×n

.523

=
‖Y S‖2F + ‖K‖2F

‖Y SY ∗‖2F + ‖KY ∗‖2F
‖∇f(Y Y ∗)‖ ≤

(
‖Y S‖2F
‖Y SY ∗‖2F

+
‖K‖2F
‖KY ∗‖2F

)
‖∇f(Y Y ∗)‖524

=


∥∥∥√ΣS̄

∥∥∥2

F∥∥∥√ΣS̄
√

Σ
∥∥∥2

F

+

∥∥K̄∥∥2

F∥∥∥K̄√Σ
∥∥∥2

F

 ‖∇f(Y Y ∗)‖ ≤ 2

σp
‖∇f(Y Y ∗)‖ .525

Similarly, we have the second term:
|〈P⊥Y ∇f(Y Y ∗)ξY ,ξY 〉Cn×p |

g2
Y (ξY ,ξY )

≤ 2
σp
‖∇f(Y Y ∗)‖ .526

For the third term, with the fact ‖A∗A‖F = ‖A‖2F , we have527 ∣∣∣〈Y ξ∗Y ξY , 2∇f(Y Y ∗)Y (Y ∗Y )−1
〉
Cn×p

∣∣∣
g2
Y (ξY , ξY )

=

∣∣∣〈Y ξ∗Y ξY Y ∗, 2∇f(Y Y ∗)Y (Y ∗Y )−2Y ∗
〉
Cn×n

∣∣∣
g2
Y (ξY , ξY )

528

≤

∥∥∥Y ξ∗Y ξY Y ∗∥∥∥
F

∥∥2∇f(Y Y ∗)Y (Y ∗Y )−2Y ∗
∥∥
F

g2
Y (ξY , ξY )

≤
∥∥ξY Y ∗∥∥2

F
‖2∇f(Y Y ∗)‖

∥∥Y (Y ∗Y )−2Y ∗
∥∥
F

g2
Y (ξY , ξY )

529

= 2
∥∥Y (Y ∗Y )−2Y ∗

∥∥
F
‖∇f(Y Y ∗)‖ ≤

2
√
p

σp
‖∇f(Y Y ∗)‖ .530
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Similarly, we can bound the fourth term:
|〈ξY Y ∗ξY ,2∇f(Y Y ∗)Y (Y ∗Y )−1〉|Cn×p

g2
Y (ξY ,ξY )

≤ 2
√
p

σp
‖∇f(Y Y ∗)‖ .531

Thus, for the quotient manifold with g2 we have |FOTs| ≤ 4(
√
p+1)

σp
‖∇f(Y Y ∗)‖ .532

For g3, recall that P⊥Y = I−PY = I−Y (Y ∗Y )−1Y ∗, with the property (4.3) and533

the fact (I − PY )∗Y = 0, the FOT can be bounded as follows:534

|FOT| = |g
3
Y ((I−PY )∇f(Y Y ∗)(I−PY )ξY (Y ∗Y )−1,ξY )|

g3
Y (ξY ,ξY )

=
2|〈P⊥Y ∇f(Y Y ∗)P⊥Y ξY ,ξY 〉Cn×p |

g3
Y (ξY ,ξY )

535

=
2|〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |

‖Y ξ∗Y +ξY Y
∗‖2
F

=
2|〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |
‖2Y SY ∗+Y⊥KY ∗+Y K∗Y ∗⊥‖2F

=
2|〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |

‖2Y SY ∗‖2F+‖Y⊥KY ∗‖2F+‖Y K∗Y ∗⊥‖2F
536

= |〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |
2‖Y SY ∗‖2F+‖Y⊥KY ∗‖2F

≤ |〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |
‖Y⊥KY ∗‖2F

≤ ‖Y⊥K‖2F
‖Y⊥KY ∗‖2F

‖∇f(Y Y ∗)‖ ≤ 1
σp
‖∇f(Y Y ∗)‖ .537

With Lemma 6.2 and Lemma 6.1, we summarize the main result as follows.538

Theorem 6.3. Let X̂ = Ŷ Ŷ ∗ be the global minimizer of (1.2) with rank r ≤ p.539

For X = Y Y ∗ = UΣU∗ with singular values σi near X̂ where Y ∈ Cn×p∗ , under the540

Assumption 6.1, for any arbitrary tangent vectors ζX and ξπ(Y ), the following hold:541

1. A− 2
σp
‖∇f(X)‖ ≤ ρE(X, ζX) ≤ B + 2

σp
‖∇f(X)‖ ,542

2. 2Aσp − 2 ‖∇f(Y Y ∗)‖ ≤ ρ1(π(Y ), ξπ(Y )) ≤ B ·D1
π(Y ) + 2 ‖∇f(Y Y ∗)‖ ,543

3. 2A− 4(
√
p+1)

σp
‖∇f(Y Y ∗)‖ ≤ ρ2(π(Y ), ξπ(Y )) ≤ 4B +

4(
√
p+1)

σp
‖∇f(Y Y ∗)‖ ,544

4. A− 1
σp
‖∇f(Y Y ∗)‖ ≤ ρ3(π(Y ), ξπ(Y )) ≤ B + 1

σp
‖∇f(Y Y ∗)‖ ,545

where D1
π(Y ) satisfies 2σ1 ≤ D1

π(Y ) ≤ 2
(
σ2

1

σp
+ σ1

)
. In particular, if X̂ = Ŷ Ŷ ∗ has546

rank p, we have the following limits, where X → X̂ and π(Y ) → π(Ŷ ) are taken in547

the sense of
∥∥∥X − X̂∥∥∥

F
→ 0 and

∥∥∥Y Y ∗ − Ŷ Ŷ ∗∥∥∥
F
→ 0:548

1. A− 2
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ limX→X̂ ρ

E(X, ξX) ≤ B + 2
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ,549

2. 2Aσ̂p−2
∥∥∥∇f(X̂)

∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ
1(π(Y ), ξπ(Y )) ≤ B ·D1

π(Ŷ )
+2
∥∥∥∇f(X̂)

∥∥∥ ,550

3. 2A− 4(
√
p+1)

σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ

2(π(Y ), ξπ(Y )) ≤ 4B+
4(
√
p+1)

σ̂p

∥∥∥∇f(X̂)
∥∥∥ ,551

4. A− 1
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ

3(π(Y ), ξπ(Y )) ≤ B + 1
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ,552

where D1
π(Ŷ )

satisfies 2σ̂1 ≤ D1
π(Ŷ )

≤ 2
(
σ̂2

1

σ̂p
+ σ̂1

)
.553

Remark 6.4. If we also assume ∇f(X̂) = 0, then the limits above can be further554

simplified. Though ∇f(X̂) = 0 may not be true in general, it holds for all numerical555

examples considered in this paper, where the cost function takes the form f(X) =556
1
2 ‖A(X)− b‖2F , and the minimizer X̂ for (1.1) or (1.2) satisfies f(X̂) = 0. Thus X̂557

is also the minimizer for minimizing f(X) over all X ∈ C, which implies ∇f(X̂) = 0.558

Remark 6.5. Under the assumption ∇f(X̂) = 0, the limit of the condition num-559

ber for the Bures-Wasserstein metric g1 depends on the condition number of the min-560

imizer X̂. This reflects a significant difference between g1 and the other two metrics.561

6.2. The Rayleigh quotient for a rank-deficient minimizer. Next, we con-562

sider the rank deficient case p > r where r is the rank of the minimizer X̂, i.e., the563

minimizer X̂ lies on the boundary of the constraint manifold. Under the Assump-564

tion ∇f(X̂) = 0, any convergent algorithm that solves (1.1) or (4.1) will generate a565

sequence such that both σr+1, · · · , σp and ∇f(X) will vanish as X → X̂. We make566

one more assumption for a simpler quantification of the lower and upper bounds of567

Rayleigh quotient near the minimizer.568
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Assumption 6.2. For a sequence {Xk} with Xk ∈ Hn,p+ (or π(Yk) ∈ Cn×p∗ /Op569

) that converges to the minimizer X̂ (or π(Ŷ )), let (σp)k be the smallest nonzero570

singular value of Xk = YkY
∗
k , assume the following limits hold.571

1. For the embedded manifold, limk→∞
2

(σp)k
‖∇f(Xk)‖ ≤ A

2 .572

2. For the quotient manifold with metric g1, limk→∞
1

(σp)k
‖∇f(YkY

∗
k )‖ ≤ A

2 .573

3. For the quotient manifold with metric g2, limk→∞
4(
√
p+1)

(σp)k
‖∇f(YkY

∗
k )‖ ≤ A.574

4. For the quotient manifold with metric g3, limk→∞
1

(σp)k
‖∇f(YkY

∗
k )‖ ≤ A

2 .575

If X̂ has rank r < p and {Xk} is a sequence that satisfies Assumption 6.2, then576

Theorem 6.3 implies577

1. For the embedded manifold we have A
2 ≤ limk→∞ ρE(Xk, ξXk) ≤ B + A

2 .578

2. A ≤ limk→∞
ρ1(π(Yk),ξπ(Yk))

(σp)k
≤ B limk→∞

D1
π(Yk)

(σp)k
+ 2A,579

3. A ≤ limk→∞ ρ2(π(Yk), ξπ(Yk)) ≤ 4B +A,580

4. A
2 ≤ limk→∞ ρ3(π(Yk), ξπ(Yk)) ≤ B + A

2 ,581

where lim
k→∞

D1
π(Yk)

(σp)k
≥ lim
k→∞

2(σ1)k
(σp)k

= +∞ since σp → σ̂p = 0.582

Notice that the condition number in Bures-Wassertein metric g1 is fundamentally583

different from the other ones since it is the only metric that blows up.584

7. Numerical experiments. We compare the following four algorithms:585

1. RCG on (Cn×p∗ /Op, g1), i.e., Algorithm 5.2 with metric g1. This algorithm is586

equivalent to Burer–Monteiro CG, that is, CG applied directly to (1.5).587

2. RCG on (Cn×p∗ /Op, g2), i.e., Algorithm 5.2 with metric g2 in [16].588

3. RCG on (Cn×p∗ /Op, g3), i.e., Algorithm 5.2 with metric g3.589

4. Burer–Monteiro L-BFGS method, i.e., L-BFGS directly applied to (1.5).590

7.1. Eigenvalue problem. For a Hermitian PSD matrix H, its top p eigen-591

values and associated eigenvectors can be found by solving min 1
2 ‖X −H‖

2
F with592

X ∈ Hn,p+ . It is easy to verify that ∇f(X) = X−H and ∇2f(X) is the identity map.593

We consider random Hermitian PSD matrices H of size 50 000-by-50 000 with594

different ranks r = 10 or r = 15. See the performance of the algorithms on the595

manifold with rank p = 15 in Figure 1, in which we can see the slowness of Burer-596

Monteiro methods corresponding to Bures-Wasserstein metric g1 is consistent with597

condition number analysis in the previous section.598
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(a) r = 10 and p = 15
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Fig. 1. Eigenvalue problem: minimizer has rank r, solved on the rank p manifold. Burer-
Monteiro methods (Bures-Wasserstein metric g1) become slower either when the minimizer has a

rank r < p or when minimizer X̂ has a larger condition number σ̂1
σ̂p

.
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7.2. Matrix completion. We consider a Hermitian matrix completion problem599

for a given H ∈ Hn,p+ : min 1
2 ‖PΩ(X −A)‖2F , X ∈ H

n,p
+ , where PΩ is a sampling600

operator. We have ∇f(X) = PΩ(X −A), ∇2f(X)[ζX ] = PΩ(ζX), ζX ∈ Cn×n.601

We consider a Hermitian PSD matrix H ∈ Cn×n with n = 10 000 with rank r = 25602

and PΩ a random 90% sampling operator. The initial guess is the same random matrix603

for all four algorithms. In Figure 2, we see that the simpler Burer–Monteiro approach,604

including the L-BFGS method and the CG method with Bures-Wasserstein metric g1,605

is significantly slower for the rank deficient case r < p, which is consistent with the606

Hessian analysis in the previous section.607
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(a) r = 25 and p = 30.
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(b) r = p = 25.

Fig. 2. Matrix completion: minimizer has rank r, solved on the rank p manifold. When r < p,
Burer-Monteiro methods ( Bures-Wasserstein metric g1) are significantly slower.

7.3. The PhaseLift problem. We consider the phase retrieval problem as de-608

scribed in [9]. The setup is the same as described in [16]. The cost function can be609

written as f(X) = 1
2‖A(X)− b‖2F . Straightforward calculation shows610

∇f(X) = A∗(A(X)− b), ∇2f(X)[ζX ] = A∗(A(ζX)) for all ζX ∈ Cn×n.611

For the numerical experiments, we take the phase retrieval problem for a complex612

gold ball image of size 256× 256 as in [16]. Thus n = 2562 = 65, 536 in (1.2) or (1.1).613

We consider the operator A that corresponds to 6 Gaussian random masks. Hence,614

the size of b is 6n = 393, 216. Remark that the problem is easier to solve with more615

masks.616

We first test the algorithms with the same random initial guess on the rank-1 and617

rank-3 manifolds. The results are shown in Figure 3. The initial guess is randomly618

generated. First, we observe that the nonconvex lifting solving it on rank-p manifold619

with p > 1 can accelerate the convergence, even though the minimizer is always rank-620

1. Second, when p = r = 1, the asymptotic convergence rates of all algorithms are621

essentially the same, though the algorithms differ in the length of their convergence622

”plateaus”. When p > r, we can see that the Burer–Monteiro approach has slower623

asymptotic convergence rates.624

7.4. Interferometry recovery problem. We consider solving the interferom-625

etry recovery problem described in [10], given by min f(X) = 1
2 ‖PΩ(FXF ∗ − dd∗)‖2F ,626

X ∈ Hn,p+ , where PΩ is a sparse and symmetric sampling operator, and F ∈ Cm×n.627

We solve an interferometry problem with a randomly generated F ∈ C10 000×1000.628
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(a) Rank p = 1 manifold
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Fig. 3. Phase retrieval of a complex image: minimizer has rank r = 1. Nonconvex lifting on
manifolds of rank-p with p > r can accelerate convergence, but Burer-Monteiro methods (Bures-
Wasserstein metric g1) has an obvious slower asymptotic convergence rate when p > r.
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(a) Rank p = 1 manifold.
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Fig. 4. Interferometry recovery: minimizer has rank r = 1. When the minimizer is rank
deficient r < p, Burer-Monteiro methods (Bures-Wasserstein metric g1) are significantly slower.

Hence n = 1000 in (1.2) or (1.1). The sampling operator Ω is also randomly gen-629

erated, with 1% density. In Figure 4, when p = 3 and r = 1, we can see that the630

Burer–Monteiro approach has slower asymptotic convergence rates.631

8. Conclusion. We have shown that the CG method on the Burer–Monteiro632

formulation for Hermitian PSD fixed-rank constraints is equivalent to a Riemannian633

CG method on a quotient manifold with the Bures-Wasserstein metric g1. We have634

analyzed the condition numbers of the Riemannian Hessians on (Cn×p∗ /Op, gi) for635

three metrics. We have shown that when the rank p of the optimization manifold is636

larger than the rank of the minimizer to the original PSD constrained minimization,637

the condition number of the Riemannian Hessian on (Cn×p∗ /Op, g1) can be unbounded,638

which is consistent with the observation that the Burer–Monteiro approach or Bures-639

Wasserstein metric often has a slower asymptotic convergence rate in numerical tests.640

A. Embedded manifold Hn,p+ .641

A.1. Riemannian Hessian operator. By [3, section 4], the retraction R de-642

fined by projection is a second-order retraction. Proposition 5.5.5 in [2] states that if643
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R is a second-order retraction, then the Riemannian Hessian of f can be computed by644

Hess f(X) = Hess (f ◦RX)(0X). Thus gX (Hess f(X)[ξX ], ξX) = d2

dt2 f(RX(tξX))
∣∣∣
t=0

.645

In [28] and [25], a method was proposed to compute Hess f(X) by constructing a646

second-order retraction R(2) that has a second-order series expansion which makes it647

simple to derive a series expansion of f ◦R(2)
X up to second order and thus obtain the648

Hessian of f . Following [28, Proposition 5.10], we have649

Lemma A.1. ∀X ∈ Hn,p+ , the mapping R
(2)
X : TXHn,p+ → Hn,p+650

ξX 7→ wX†w∗, with w = X +
1

2
ξsX + ξpX −

1

8
ξsXX

†ξsX −
1

2
ξpXX

†ξsX ,651

is a second-order retraction on Hn,p+ , where X† is the pseudoinverse, ξsX = P sX(ξX)652

and ξpX = P pX(ξX) as defined in (3.2). Moreover, we have653

R
(2)
X (ξX) = X + ξX + ξpXX

†ξpX +O(‖ξX‖3).654

From this the Riemannian Hessian operator of f can be computed in essentially655

the same way as in [24, Section A.2] but applied to the general cost function f(X)656

instead of a least square cost function. Consider the Taylor expansion of f̂
(2)
X :=657

f ◦R(2)
X , which is a real-valued function on a vector space. We get658

f̂
(2)
X (ξX) = f(R

(2)
X (ξX))f

(
X + ξX + ξpXX

†ξpX +O(‖ξX‖3)
)

659

= f(X) +
〈
∇f(X), ξX + ξpXX

†ξpX
〉
Cn×n + 1

2

〈
∇2f(X)[ξX + ξpXX

†ξpX ], ξX + ξpXX
†ξpX

〉
Cn×n +O(‖ξX‖3)660

= f(X) + 〈∇f(X), ξX〉Cn×n +
〈
∇f(X), ξpXX

†ξpX
〉
Cn×n + 1

2

〈
∇2f(X)[ξX ], ξX

〉
Cn×n +O(‖ξX‖3).661

We can immediately recognize the first-order term and the second-order term that662

contribute to the Riemannian gradient and Hessian, respectively. That is,663

gX (grad f(X), ξX) = 〈∇f(X), ξX〉Cn×n ⇒ grad f(X) = P tX(∇f(X)),664

gX (Hess f(X)[ξX ], ξX) = 2
〈
∇f(X), ξpXX

†ξpX
〉
Cn×n︸ ︷︷ ︸

f1:=〈H1(ξX),ξX〉Cn×n

+
〈
∇2f(X)[ξX ], ξX

〉
Cn×n︸ ︷︷ ︸

f2:=〈H2(ξX),ξX〉Cn×n

.665

Since ξX is already separated in f2, the contribution to Riemannian Hessian from H2666

is readily given by H2(ξX) = P tX(∇2f(X)[ξX ]).667

Now, we still need to separate ξX in f1 to see the contribution to Riemannian668

Hessian from H1. Since we can choose to bring over ξpXX
† or X†ξpX to the first669

position of 〈., .〉Cn×n , we write H1(ξX) as the linear combination of both:670

f1 = 2c
〈
∇f(X)(X†ξpX)∗, ξpX

〉
Cn×n + 2(1− c)

〈
(ξpXX

†)∗∇f(X), ξpX
〉
Cn×n .671

OperatorH1 is clearly linear. SinceH1 is symmetric, we must have 〈H1(ξX), νX〉Cn×n =672

〈νX ,H1(ξX)〉Cn×n for all tangent vector νX . Hence we must have c = 1
2 and we obtain673

H1(ξX) = P pX
(
∇f(X)(X†ξpX)∗ + (ξpXX

†)∗∇f(X)
)
.674

675

Hess f(X)[ξX ] = P tX(∇2f(X)[ξX ]) + P pX
(
∇f(X)(X†ξpX)∗ + (ξpXX

†)∗∇f(X)
)
.676

B. Quotient manifold Cn×p∗ /Op.677
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B.1. Calculations for the Riemannian Hessian. By [2, Definition 5.5.1],678

the Riemannian Hessian of f at a point x in M is given by679

Hess f(x)[ξx] = ∇ξxgrad f(x), ξx ∈ TxM,680

where ∇ is the Riemannian connection on M. By [2, Proposition 5.3.3] and the681

definition of the Riemannian Hessian, we have682

Lemma B.1. The Riemannian Hessian of h : Cn×p∗ /Op 7→ R is related to the683

Riemannian Hessian of F : Cn×p∗ 7→ R in the following way:684 (
Hessh(π(Y ))[ξπ(Y )]

)
Y

= PHY
(
HessF (Y )[ξY ]

)
,685

where ξY is the horizontal lift of ξπ(Y ) at Y .686

B.1.1. Riemannian Hessian for the metric g1. By [2, Proposition 5.3.2],687

the Riemannian connection on Cn×p∗ is the classical directional derivative ∇ηY ξ =688

D ξ(Y )[ηY ]. Recall that for g1, gradF (Y ) = 2∇f(Y Y ∗)Y . Thus689

HessF (Y )[ξY ] = ∇ξY gradF = D gradF (Y )[ξY ] = 2∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]Y + 2∇f(Y Y ∗)ξY .690

691 (
Hessh(π(Y ))[ξπ(Y )]

)
Y

= PH
1

Y

(
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]Y + 2∇f(Y Y ∗)ξY

)
.692

B.1.2. Riemannian Hessian under metric g2. Any Riemannian metric g693

satisfies the Koszul formula694

2gx(∇ξxλ, ηx) = ξxg(λ, η) + λxg(η, ξ)− ηxg(ξ, λ)− gx(ξx, [λ, η]x) + gx(λx, [η, ξ]x) + gx(η, [ξ, λ]x)695

= D g(λ, η)(x)[ξx] + D g(η, ξ)(x)[λx]−D g(ξ, λ)(x)[ηx]− gx(ξx, [λ, η]x) + gx(λx, [η, ξ]x) + gx(η, [ξ, λ]x),696

where [·, ·] is the Lie bracket. In particular, for g2 the Koszul formula turns into697

2g2
Y (∇ξY λ, ηY ) = D g2(λ, η)(Y )[ξY ] + D g2(η, ξ)(Y )[λY ]−D g2(ξ, λ)(Y )[ηY ]− g2

Y (ξY , [λ, η]Y ) + g2
Y (λY , [η, ξ]Y ) + g2

Y (η, [ξ, λ]Y ).698

Recall that g2(λ, η)(Y ) = <(tr(Y ∗Y λ∗Y ηY )). The first term equals699

D g2(λ, η)(Y )[ξY ] = g2
Y (Dλ(Y )[ξY ], ηY ) + g2

Y (λY ,D η(Y )[ξY ]) + <(tr(ξ∗Y Y λ
∗
Y ηY )) + <(tr(Y ∗ξY λ

∗
Y ηY )).700

Following [2, Section 5.3.4], since Cn×p∗ is an open subset of Cn×p, we also have701

[λ, η]Y = D η(Y )[λY ]−Dλ(Y )[ηY ]. Thus we get702

2g2
Y (∇ξY λ, ηY ) = D g2(λ, η)(Y )[ξY ] + D g2(η, ξ)(Y )[λY ]−D g2(ξ, λ)(Y )[ηY ]703

−g2(ξY ,D η(Y )[λY ]−Dλ(Y )[ηY ]) + g2(λY ,D ξ(Y )[ηY ]−D η(Y )[ξY ]) + g2(ηY ,Dλ(Y )[ξY ]−D ξ(Y )[λY ])704

= 2g2
Y (ηY ,Dλ(Y )[ξY ]) + <(tr(η∗Y (λY (ξ∗Y Y + Y ∗ξY ) + ξY (Y ∗λY + λ∗Y Y )− Y λ∗Y ξY − Y ξ∗Y λY )))705

= 2g2
Y (ηY ,Dλ(Y )[ξY ]) + g2

Y (ηY , (λY (ξ∗Y Y + Y ∗ξY ) + ξY (Y ∗λY + λ∗Y Y )− Y λ∗Y ξY − Y ξ∗Y λY )(Y ∗Y )−1).706

We therefore obtain a closed-form expression for Riemannian connection on Cn×p∗ :707

∇ξY λ = Dλ(Y )[ξY ] + 1
2 (λY (ξ∗Y Y + Y ∗ξY ) + ξY (Y ∗λY + λ∗Y Y )− Y λ∗Y ξY − Y ξ∗Y λY ) (Y ∗Y )−1.708

HessF (Y )[ξY ] = ∇ξY gradF = D Y gradF (Y )[ξY ]709
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+ 1
2{gradF (Y )(ξ∗Y Y + Y ∗ξY ) + ξY (Y ∗gradF (Y ) + gradF (Y )∗Y )− Y gradF (Y )∗ξY − Y ξ∗Y gradF (Y )}(Y ∗Y )−1710

= 2∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]Y (Y ∗Y )−1 + 2∇f(Y Y ∗)ξY (Y ∗Y )−1 −∇f(Y Y ∗)Y (Y ∗Y )−1(Y ∗ξY + ξ∗Y Y )(Y ∗Y )−1711

+ξY {Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1 + (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y }(Y ∗Y )−1 − {Y (Y ∗Y )−1Y ∗∇f(Y Y ∗)ξY + Y ξ∗Y∇f(Y Y ∗)Y (Y ∗Y )−1}(Y ∗Y )−1712

= 2∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]Y (Y ∗Y )−1 +∇f(Y Y ∗)P⊥Y ξY (Y ∗Y )−1 + P⊥Y ∇f(Y Y ∗)ξY (Y ∗Y )−1713

+2skew(ξY Y
∗)∇f(Y Y ∗)Y (Y ∗Y )−2 + 2skew{ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)}Y (Y ∗Y )−1.714

B.1.3. Riemannian Hessian under metric g3. Denote

g̃Y (ξY , ηY ) = 〈Y ξ∗Y + ξY Y
∗, Y η∗Y + ηY Y

∗〉Cn×n .

Recall that the Riemannian metric g3 on Cn×p∗ satisfies g3
Y (ξY , ηY ) = g̃Y (ξY , ηY ) +715

g2
Y (PVY (ξY ), PVY (ηY )). Hence D g3(λ, η)(Y )[ξY ] =716

g̃Y (Dλ(Y )[ξY ], ηY ) + g̃(λY , Dη(Y )[ξY ]) + 2<(tr(ξ∗Y λY Y
∗ηY + Y ∗λY ξ

∗
Y ηY + ξ∗Y Y λ

∗
Y ηY + Y ∗ξY λ

∗
Y ηY ))717

+ g2
Y (PVY (λY ), DPVY (ηY )[ξY ]) + g2(DPVY (λY )[ξY ], PVY (ηY )) + <(tr(ξY P

V
Y (λY )∗PVY (ηY )Y ∗ + Y PVY (λY )∗PVY (ηY )ξ∗Y )).718

If λ, η and ξ are horizontal vector fields, many terms in the above equation vanish:719

D g3(λ, η)(Y )[ξY ] = g̃Y (Dλ(Y )[ξY ], ηY ) + g̃Y (λY ,D ηY [ξY ])720

+2<(tr(ξ∗Y λY Y
∗ηY + Y ∗λY ξ

∗
Y ηY + ξ∗Y Y λ

∗
Y ηY + Y ∗ξY λ

∗
Y ηY )).721

Combining it with the Koszul formula with ξ, η, λ horizontal vector fields, we obtain722

2g3
Y (∇ξY λ, ηY ) = D g3(λ, η)(Y )[ξY ] + D g3(η, ξ)(Y )[λY ]−D g3(ξ, λ)(Y )[ηY ]723

−g3
Y (ξY ,D η(Y )[λY ]−Dλ(Y )[ηY ]) + g3

Y (λY ,D ξ(Y )[ηY ]−D η(Y )[ξY ]) + g3
Y (ηY ,Dλ(Y )[ξY ]−D ξ(Y )[λY ])724

= 2g̃Y (Dλ(Y )[ξY ], ηY ) + 4<(tr(Y ∗ξY λ
∗
Y ηY + Y ∗λY ξ

∗
Y ηY )).725

726

g3
Y (∇ξY λ, ηY ) = g̃Y (Dλ(Y )[ξY ], ηY ) + 2<(tr(Y ∗ξY λ

∗
Y ηY + Y ∗λY ξ

∗ηY )).727

Recall HessF (Y )[ξY ] = ∇ξY gradF . For ξY being a horizontal vector we have728

g3
Y (HessF (Y )[ξY ], ηY ) = g3

Y (∇ξY gradF, ηY )729

= g̃(ηY ,D gradF (Y )[ξY ]) + 2<(tr(Y ∗ξY gradF (Y )∗ηY + Y ∗gradF (Y )ξ∗Y ηY ))730

= g̃(ηY ,D gradF (Y )[ξY ]) + <(tr((Y η∗Y + ηY Y
∗)(gradF (Y )ξ∗Y + ξY gradF (Y )∗)))731

= g̃(ηY ,D gradF (Y )[ξY ]) + g̃
(
ηY ,

(
I − 1

2PY
)

(gradF (Y )ξ∗Y + ξY gradF (Y )∗)Y (Y ∗Y )−1
)
.732

733

D gradF (Y )[ξY ] =

(
I − 1

2
PY

)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
734

− 1
2 (D (PY )[ξY ])∇f(Y Y ∗)Y (Y ∗Y )−1 +

(
I − 1

2PY
)
∇f(Y Y ∗)D (Y (Y ∗Y )−1)[ξY ],735

where we have736

D (PY )[ξY ] = D (Y (Y ∗Y )−1Y ∗)[ξY ]737

= ξY (Y ∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y ∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗Y ,738

739

D (Y (Y ∗Y )−1)[ξY ] = ξY (Y ∗Y )−1 − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y ∗Y )−1.740
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Combining these equations we have741

g3
Y (HessF (Y )[ξY ], ηY ) = g̃

(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
)

742

−g̃
(
ηY ,

1
2 (ξY (Y ∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y ∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗Y )∇f(Y Y ∗)Y (Y ∗Y )−1

)
743

+g̃
(
ηY ,

(
I − 1

2PY
)
∇f(Y Y ∗)

(
ξY (Y ∗Y )−1 − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y ∗Y )−1

))
744

+g̃
(
ηY ,

(
I − 1

2PY
) ((

I − 1
2PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗Y + ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)

(
I − 1

2PY
))
Y (Y ∗Y )−1

)
745

= g̃
(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
)
− g̃

(
ηY ,

1
2ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

)
746

−g̃
(
ηY ,

1
2Y (Y ∗Y )−1ξ∗Y∇f(Y Y ∗)Y (Y ∗Y )−1

)
+ g̃

(
ηY ,

1
2Y (Y ∗Y )−1ξ∗Y PY∇f(Y Y ∗)Y (Y ∗Y )−1

)
747

+g̃
(
ηY ,

1
2PY ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

)
+ g̃

(
ηY ,

(
I − 1

2PY
)
∇f(Y Y ∗)

(
(I − PY )ξY (Y ∗Y )−1 − Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1

))
748

+g̃
(
ηY ,

(
I − 1

2PY
)
∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1 − 1

4PY∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1
)

749

+g̃
(
ηY ,

1
2 (I − PY ) ξY Y (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1 + 1

4PY ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1
)

750

= g̃
(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
)

+ g̃
(
ηY , (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

)
751

+g̃
(
ηY ,

1
2Y skew

(
(Y ∗Y )−1Y ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

))
+ g̃

(
ηY , Y skew

(
(Y ∗Y )−1Y ∗∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

))
752

= g̃
(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
)

+ g̃
(
ηY , (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

)
753

= g3
Y

(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1 + (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1
)
.754

Hence for ξY ∈ HY , we have755

HessF (Y )[ξY ] =
(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1 + (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1.756
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