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RIEMANNIAN OPTIMIZATION USING THREE DIFFERENT
METRICS FOR HERMITIAN PSD FIXED-RANK CONSTRAINTS*

SHIXIN ZHENG!, WEN HUANG!, BART VANDEREYCKEN®, AND XIANGXIONG
ZHANGY

Abstract. For optimization under a Hermitian positive semidefinite fixed-rank constraint, we
consider three approaches including the simple Burer-Monteiro method, Riemannian optimization
over a quotient manifold, and the embedded manifold, all of which can be represented via quotient
geometry with three Riemannian metrics g*(-,-) (i = 1,2,3). By taking the nonlinear conjugate
gradient method (CG) as an example, we show that CG in the factor-based Burer—-Monteiro approach
is equivalent to Riemannian CG on the quotient geometry with the Bures-Wasserstein metric gl.
Riemannian CG on the quotient geometry with the metric g2 is equivalent to Riemannian CG on
the embedded geometry. For comparing the three approaches, we analyze the condition number of
the Riemannian Hessian near the minimizer. Under certain assumptions, the condition number from
the Bures-Wasserstein metric g' is significantly different from the other two metrics. Numerical tests
show that the Burer—Monteiro CG method has a slower asymptotic convergence rate if the minimizer
is rank deficient, which is consistent with the condition number analysis.

Key words. Riemannian optimization, Hermitian PSD fixed-rank matrices, embedded manifold,
quotient manifold, Burer—-Monteiro, conjugate gradient, Riemannian Hessian, Bures-Wasserstein
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1. Introduction.

1.1. The Hermitian PSD low-rank constraints. We are interested in meth-
ods for minimization with a positive semidefinite (PSD) low-rank constraint

(1.1) min f(X), X € H}?,

where H'}'* denotes the set of n-by-n Hermitian PSD matrices of fixed rank p < n.
Even though X € H'* is a nonconvex constraint, in practice (1.1) is often used for
approximating solutions to a minimization with a convex PSD constraint:

(1.2) min f(X), X €C™" X 5= 0.

PSD constraints arise in semidefinite programming. If the solution of (1.2) is low
rank, it is preferable to consider a low-rank representation of PSD matrices, e.g.,
real symmetric PSD fixed-rank matrices were used in [4, 28]. Since X € H'}'” has a
low-rank structure, its low-rank compact form has the complexity O(np?), which is
smaller than the O(n?) storage when using X € C"*". For many problems such as
the PhaseLift problem [9, 8] and the interferometry recovery problem [18, 10], solving
(1.1) can lead to a good approximate solution to (1.2) with compact storage and cost.

*

Funding: S.Z. and X.Z. are supported by NSF DMS-2208518. W.H. is partially supported by
National Natural Science Foundation of China (No. 12001455). B.V. is partially supported by the
Swiss National Science Foundation (grant 178752).

TDepartment of Mathematics, Purdue University, West Lafayette, USA (zhengb13@purdue.edu).

fCorresponding author, School of Mathematical Sciences, Xiamen University, Xiamen, China
(wen.huang@xmu.edu.cn).

8Section of Mathematics, University of Geneva, Switzerland (bart.vandereycken@unige.ch).

9Corresponding author, Department of Mathematics, Purdue University, West Lafayette, USA
(zhan1966@purdue.edu).

This manuscript is for review purposes only.


mailto:zheng513@purdue.edu
mailto:wen.huang@xmu.edu.cn
mailto:bart.vandereycken@unige.ch
mailto:zhan1966@purdue.edu

46
47

48

ot
P L = O ©

Ut Ov Ot gt Ut Ut ¢
IS NN

60

63
64
65

66

Tt = W N

N4 =

2 S. ZHENG, W. HUANG, B. VANDEREYCKEN, AND X. ZHANG

1.2. The real inner product and induced gradient. Since f(X) is real-
valued, f(X) does not have a complex derivative. All linear spaces of complex matrices
will therefore be regarded as vector spaces over R. For any real vector space &£, the
inner product on £ is denoted by (-, ). The Hilbert-Schmidt inner product for R™*"
is (A, B)gmxn = tr(ATB). Let R(A) and 3(B) represent the real and imaginary parts
of A € C™*™, The real inner product for the real vector space C™*" is

(1.3) (A, B) cmxn = R(tr(A*B)),
where * denotes the conjugate transpose. The gradient of f(X) w.r.t (1.3) is

I

mXn
5(X) eC .

_ 0f(X)
See [29] for a derivation of (1.4). For f(X) = 3[|A(X) — b[|% with a linear operator
A, (1.4) becomes V f(X) = A*(A(X) — b), where A* is the adjoint operator of A.

1.3. Three different methodologies. We consider three methods for (1.1).
The first approach, often called the Burer-Monteiro method [7, 6], is to solve

(1.5) in FY):= f(YY™).

The gradient descent (GD) method is Y41 =Yy, — 7VF(Yy) =Y, — 72V f (YY) Y%,
which is one of the simplest low-rank algorithms. The nonlinear conjugate gradient
(CG) and quasi-Newton type methods, like L-BFGS [10], can also be easily used for
(1.5). It is not clear in what sense it converges since F'(Y') = F(Y O) for any O € O,,
where O, denotes the set of unitary matrices of size p x p.

To remove the ambiguity from O,, it is natural to consider the quotient manifold
CI*?/0O,, see [5, 17, 21, 13, 16], where C{*? = {X € C™*? : rank(X) = p} denotes
the noncompact Stiefel manifold.

Another natural approach is to consider Riemannian optimization algorithms on
H'}P as an embedded manifold in the Euclidean space C"*™ [26, 25, 19]. We shall
regard H'P € C™*" as a manifold over R since f(X) is real-valued.

1.4. Main results: a unified representation and analysis of three meth-
ods using quotient geometry. A natural question arises: which of the three meth-
ods is the best? For comparison, we rewrite both the Burer—-Monteiro approach and
embedded manifold approach as Riemannian optimization over the quotient manifold
CL*? /O, with suitable metrics, retractions and vector transports.

It is common to explore different metrics in Riemannian optimization [1, 27, 23].
For any Y € C{*P, A, B € C"*P, we consider metrics gi (-, -) for the total space CL™?

9y (A, B) = (A, B)¢nx, = R(tr(A*B))
9y (A, B) = (AY", BY ") o = R(tr((Y*Y)A*B))
g?’v( B) = (YA* + AY* Y B* + BY *)csn
+ (Y Skew (Y*Y)"'Y*A) Y*,Y Skew (YY) 'Y*B) Y*)

CnXxXn )

where Skew(X) = (X — X*)/2. We have three metrics g* for the quotient manifold
induced from the submersion C;*? — C{*?/0O,. The first metric is the Bures-
Wasserstein metric [22, 21], the second metric is used in [16], and the embedded
manifold approach corresponds to the third metric.

This manuscript is for review purposes only.
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RIEMANNIAN OPTIMIZATION FOR HERMITIAN PSD FIXED-RANK CONSTRAINTS 3

We will prove that the GD and CG methods for solving (1.5) are exactly equivalent
to the Riemannian GD and CG methods on (C:*?/0,,g') with a specific vector
transport. We will also prove that GD and the CG methods using the embedded
geometry of H'['? are equivalent to GD and CG methods on (C*?)0,, g%).

It is well known that the condition number of the Hessian of the cost function
is closely related to the asymptotic performance of optimization methods. We will
analyze and compare the condition numbers of the Riemannian Hessian using these
three different metrics by estimating their Rayleigh quotient.

1.5. Contributions and organization of the paper. The outline of the paper
is as follows. We summarize the notation in Section 2. Then we discuss the geometric
operators such as the Riemannian gradient and vector transport in Section 3 for
the embedded manifold #'}'? and in Section 4 for the quotient manifold C;*?/O,,. In
Section 5, we outline the Riemannian Conjugate Gradient (RCG) methods on different
geometries and discuss equivalences among them.

The first major contribution is the equivalence between the CG method for (1.5)
and the CG method on (C}*?/0,, ¢") for solving (1.1). Thus the convergence of the
simple Burer—Monteiro approach can be understood in the context of Riemannian
optimization on the quotient manifold with the Bures-Wasserstein metric.

In Section 6, we analyze the condition number of the Riemannian Hessian on
the quotient manifold (Ci*?/O,, ¢") near the minimizer, which is another contribu-
tion. Our analysis is also consistent with empirical observation of the performance of
different methods in numerical tests in Section 7. Section 8 are concluding remarks.

2. Notation. For a matrix X, X* denotes its conjugate transpose and X denotes
its complex conjugate. If X is real, X* becomes the matrix transpose and is denoted
by XT. We define Herm(X) := X';X*, Skew(X) = X_TX* Let I, be the identity
matrix of size p-by-p. For any n-by-p matrix Z, Z, denotes the n-by-(n — p) matrix
such that 2% Z, = I,,_, and Z{ Z = 0. Let diag(M) be the n-by-1 vector that is the
diagonal of the n-by-n matrix M. Given a vector v, Diag(v) is a square matrix with
its ith diagonal entry equal to v;. Given a matrix A, tr(A) denotes the trace of A and
Aj; denotes the (i, j)-th entry of A. For any X € H'['", its eigenvalues coincide with
its singular values. The compact singular value decomposition (SVD) of X is denoted
by X = UXU* and ¥ = Diag(c) with singular values o1 > --- > 0, > 0.

In this paper, all manifolds of complex matrices are viewed as manifolds over R.
Given a Euclidean space &, the inner product on £ is denoted by (.,.).. Specifically,
(A, B)gmxn = tr(ATB) for A, B € R™*"™ and (A4, B)gmxn = R(tr(A*B)) for A, B €
C™*™ denote the canonical inner product on R"*™ and C™*"™ respectively.

3. Embedded geometry of %" . The results in this section are natural ex-
tensions of results for ST* = {X € R™" : X = 0,rank(X) = p} in [26]. Such an
extension is not entirely obvious since H''"” is treated as a real manifold and (1.3) is
not the complex Hilbert—Schmidt inner product. Nonetheless, all proofs can be done
following [26], thus we only state the results. Omitted proofs can be found in [29].

3.1. Tangent space. First we show that H''” is a smooth embedded subman-
ifold of C™*™ following the case of S}"* in [26, Prop. 2.1], [12, Prop. 2.1] and [11,
Chap. 5]. The tangent space of H™? follows the argument in [25, Proposition 2.1].

THEOREM 3.1. Regard C™ " as a real vector space over R of dimension 2n?.
Then H'['P is a smooth embedded submanifold of C**™ of dimension 2np — 2.

This manuscript is for review purposes only.
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4 S. ZHENG, W. HUANG, B. VANDEREYCKEN, AND X. ZHANG

THEOREM 3.2. Let X = UXU* € H}P. Then the tangent space of H'}'P at X,
denoted by Tx H'}'", is

H K*] [U*

TxH" = {[U an {K 0 UI] , H=H"eCr? K e@nmp},

3.2. Riemannian gradient. The Riemannian metric of the embedded mani-
fold at X € H'" is induced from the Euclidean inner product on C"*",

(3.1) 9x(C1,G2) = (€1, C2)nxn = R(1(¢7C2)), 1 C € TxHP.

The Riemannian gradient of f at X is the projection of V f(X) onto TxH'}'? [2]:

grad f(X) = Pk (Vf(X)),

where P% is the orthogonal projection onto TxH'}'”, given by the following theorem.

THEOREM 3.3. Let X = YY* = UXU* be the compact SVD for X € H'P with
Y € C*P. For a complex matriz Z, the orthogonal projection onto TxH'y? is

U* Z—;Z*U U*Z-l—QZ* UJ_:| |:U*:|

Ui U 0 U

Pi(z)=[U U]

REMARK 3.4. We can write Py = P5 + PY by introducing the two operators

7+ 7 747 747
*2 p, P;}:ZHPUL—’_TPU-I-PU z

(3.2) Py :Zw— Py Py,

where Py = UU* and Py, =U, UT.

3.3. A retraction by projection to the embedded manifold. A retraction
is essentially a first-order approximation to the exponential map; see [2, Def. 4.1.1].
By [3, Props. 3.2 and 3.3], the truncated SVD Rx (Z) := Pyi,p(XJrZ) =3P oi(X+
Z)vv} is a retraction on H''¥, where v; is the singular vector of X + Z corresponding
to the ith largest singular value 0;(X + Z). We remark that such a retraction can be
compactly implemented, see Section 5 and [29] for implementation details.

3.4. Vector transport. A vector transport is a mapping that transports a tan-
gent vector from one tangent space to another tangent space. See [2, Def. 8.1.1]. The
vector transport of H'"? that we use is derived from the vector transport by projec-
tion. Let £x,nx € TxH"" and let R be a retraction on H"”. By [2, section 8.1.3],
the projection of one tangent vector onto another tangent space is a vector transport:

(3.3) Toxéx = Pjtzx(nx)fxv

where P}, is the projection operator onto TzHYP with Z = Rx(nx). Namely, we
first apply the retraction Rx to nx to arrive at a new point on the manifold, then we
project the old tangent vector £x onto the tangent space at that new point.
Now, we derive the expression of the vector transport (3.3) in closed form. Given
X1 = Ui Uf € HYP, the retracted point Xo = UpXoUsy € HPP, and a tangent
H, K| |Us
vector vy = [Ur Uii] |7 . L = UH\U; + U, K\U; + U KU €
K]_ O Ulj_
TXl”Hi’p , we need to determine Hs and K of the transported tangent vector vy =

This manuscript is for review purposes only.
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RIEMANNIAN OPTIMIZATION FOR HERMITIAN PSD FIXED-RANK CONSTRAINTS 5

Uz Us,] [H(z [32 {[5]221 € Tx,H"’. By the projection formula (3.2), we have
UsvnUs Ui U Us
vy = P)t(Q (Vl) = [UQ U2L] |:U221Vljl[]22 ’ VE) 2J_:| |:U22j:| ; where

Hy = U;l/lUQ = UQ*UlHlUl*UQ + UQ*UlJ_KlUfUQ + U;UlKikUl*J_Ug, and
Ky = UQj_VlUQ = Ugj_UlHlUl*UQ + UQj_UllKlUfUQ + UQj_UlKikUl*J_UQ

In implementation, we observe better numerical performance if we only keep the
first term in the above sum of Hy and the second term of Ks, i.e., we define

(343) H2:U;U1H1UTU2, KQZUQj_UlJ_KlUfUQ.

One can verify that (3.4) is a vector transport by parallelization in [14]. In numerical

tests, we have observed that the nonlinear CG method using this simpler version of

vector transport is usually more efficient. So in all our numerical tests, we do not use

the more complicated (3.3). Instead, we use the following simplified vector transport:
1. Given X1 = U131 Uf € HP, and 1x,,€x, € Tx, H}'?, first compute

Xy = RX1 (77)(1) = Pq—[ﬁ_”’(Xl + 77X1) = UQEQUQ* S Hi’p.

H, Kf] [ Uy

2. Let £x, = [Ul UlJ_] Lﬁ 0 Ul*J € Tx,H''", then compute

Hy K;||U; n
(34b) 7;7X1£X1 = [UQ UQL} |:Kz 02:| |:U22j_:| S TX2H+’p.

3.5. Riemannian Hessian operator. For a real-valued function f(X) defined
on the Euclidean space C"*", the Hessian V2 f(X) is defined w.r.t (1.3), see [29]. The
Riemannian Hessian (see [2, definition 5.5.1]) of f at X, is denoted by Hess f(X),
where f is viewed as a function on the manifold #}"¥ with metric (3.1).

The following proposition gives the Riemannian Hessian of f. The proof follows
similar ideas as in [28, Prop. 5.10] and [24, Prop. 2.3]. We leave the outline of the
proof in Appendix A.1.

PROPOSITION 3.5. Let f(X) be a real-valued function defined on H''" with met-
ric (3.1). Let X € H}P and {x € TxHP. Then the Riemannian Hessian operator
of f at X is given by

Hess f(X)[6x] = PR (V2 f(X)[ex]) + Py (VF(X)(XTER)" + (€ XT)' V(X))

where -7 denotes the pseudo-inverse operator, £ = Py (Ex), & = PY(€x), and P&
and P are defined in (3.2).

4. The quotient geometry of C.*” /0, using three Riemannian metrics.
Besides being regarded as an embedded manifold in C™*", H''"" can also be viewed
as a quotient set C1 ™7 /0O, since Hf_Xp is diffeomorphic to C¥*? /0, as will be shown
below. The smooth Lie group action of O, on CL*P defines an equivalence relation
on CI*? by setting Y7 ~ Y5 if there exists an O € O, such that ¥; = Y20. The set
CY™? is called the total space of C{*F /O,

Denote the natural projection as

m:CPP — CY*P/0O,.

This manuscript is for review purposes only.
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6 S. ZHENG, W. HUANG, B. VANDEREYCKEN, AND X. ZHANG

The equivalence class of Y is denoted as [Y] = 7~ }(7(Y)) = {YO|O € O,}. Define
h(n(Y)) = f(YY™), then (1.1) is equivalent to

(4.1) 7{1(1%% h(m(Y)), =(Y)eCy*?/O,.

Define a map 3 : C3*7 — H'pP with B(Y) = YY™*. Then § is invariant under
the equivalence relation ~ and induces a unique function § on CY*?/0,, called the
projection of 8, such that 8 = Bom [2, Section 3.4.2]. One can easily check that B is
a bijection. For any f on H'['”, there is a function F' defined on C*? that induces f:
forany X =YY* e H}P, F(Y) := fo B(Y) = f(YY™), which is summarized in the
diagram:

(CnXp
[ s mder
2>y
X B , f
cr 0, 25w LR

The next theorems follow from [20, Cor. 21.6; Thm. 21.10], and [21, Prop. A.7].

THEOREM 4.1. The quotient space Ci*? /O, is a manifold over R of dimension
2np — p? and has a unique smooth structure such that w is a smooth submersion.

THEOREM 4.2. The manifold (Cpr/Op is diffeomorphic to Hi’p under B

4.1. Vertical space, three Riemannian metrics, and horizontal spaces.
The equivalence class [Y] is an embedded submanifold of C}*? [2, Prop. 3.4.4]. There-
fore, the tangent space of [Y] at Y is a subspace of Ty CL ™", called the vertical space

at Y, and is denoted by Vy. The following proposition characterizes Vy .
PROPOSITION 4.3. The vertical space atY € [Y] ={YO|O € O,}, defined as the
tangent space of [Y] at Y, is Vy = {YQIQ* = —Q,Q € CP*P}.

With a Riemannian metric g of the total space Ci *?, we can define the orthogonal
complement in Ty C}*? of Vy. In other words, we choose the horizontal distribution
as orthogonal complement w.r.t. Riemannian metric g, see [2, Section 3.5.8]. This
orthogonal complement to Vy is called horizontal space at Y and is denoted by Hy:

(4.2) Ty CP = Hy @ Vy.

There exists a unique vector {y € My that satisfies D7(Y)[ly] = &r(y) for each
§x(v) € T,r(y)(CZZXp/Op. This &y is called the horizontal lift of Er(yy at Y.

There exist more than one choice of Riemannian metric on CL*P. Metrics do not
affect the vertical space but generally result in different horizontal spaces.

4.1.1. The Bures-Wasserstein metric. The most straightforward choice of a
Riemannian metric on C}*? is the Euclidean inner product on C™*? defined by

9y (A, B) := (A, B)gnxp, = R(tr(A*B)), VA, B € Ty CP*P = C" P,
PROPOSITION 4.4. Under metric g', the horizontal space at Y satisfies

Hy ={ZeC?:Y*Z=2YV}={Y(Y'Y) IS+ Y.K|S*=5,5€CPP K e Chpxr},

g* is also called the Bures-Wasserstein metric [22] for the quotient manifold

CY*?/0O,. One can show that g' is also consistent with the Bures-Wasserstein metric
defined for Hermitian positive-definite matrices, see [29] for details.

This manuscript is for review purposes only.
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RIEMANNIAN OPTIMIZATION FOR HERMITIAN PSD FIXED-RANK CONSTRAINTS 7
4.1.2. The second quotient metric. A metric used in [16, 13] is defined by
95 (A, B) := (AY*, BY ") cxn = R(tr((Y*Y)A*B)), VA, B € TyCl*? = C"*P.
PROPOSITION 4.5. Under metric g%, the horizontal space at'Y satisfies
Hy ={ZeCP . (YY) 'Y Z=2V(Y*Y) '} = {YS+ YL K|S = 5,8 € CP*?, K € Clnp)xp)

4.1.3. The third quotient metric. The third metric for is induced by the
diffeomorphism between C}*?/O,, and the embedded geometry of H''’. We first use
the metric g and the decomposition Ty Cy*? = H2. @ Vy, by which A € Ty C}*? can
be uniquely decomposed as A = AY + A" AV € Yy, A" € H2 . Now define g3 as

g3(4,B) == (DBY)AL DAY B)) -+ g3 (4¥,BY)

= (VA" + AY*, Y B* + BY *)cxn + (Y Skew (Y*Y) 'Y *A) Y*, Y Skew (Y*Y)'Y*B) Y*) s -

Cnx

It is straightforward to verify that ¢ defined above is a Riemannian metric. With
the definition (1.3), we have

(4.3) VA,Be A¥'| g3 (A, B)= (YA* + AY*,YB* + BY*)cnrn = 2(AY*Y + Y A*Y, B)tonsy -
PROPOSITION 4.6. Under metric g°, the horizontal space atY is the same as H3-:
HYy ={ZeCP . (YY) 'YV Z=2Y(Y'Y) '} = {YS+YLK|S* =5,5 € CPP K e Clnpxr},

4.2. Projections onto vertical space and horizontal space. Due to the di-
rect sum property (4.2), for H%, there exist projection operators for any A € Ty C*?

to Hy as A = PY(A) + PJ*'(A). We note that the operator Py depends on g* but V
is independent of ¢*. It is straightforward to verify the following formulae.

PROPOSITION 4.7. For g*, PY(A) = YQ, P*' (A) = A—YQ, where Q is the skew-
Hermitian matriz that solves the Lyapunov equation QY*Y + Y*YQ =Y*A — A*Y.
For g%, we have PY(A) =Y Skew ((Y*Y)"'Y*A), and

PP (A) = A— PY(A) = YHerm (YY) "'Y*A) + Y Y] A,
For g%, we have PY(A) =Y Skew((Y*Y)~1Y*A), and
PI(A) = A— PY(A) = YHerm (YY) 'Y*A) + Y. Y] A,
4.3. C*?/0, as a Riemannian quotient manifold. First, we show in the
following lemma the relationship between the horizontal lifts of the quotient tangent
vector &y lifted at different representatives in [Y]. A proof based on metric g' for

817 is given in [21, Prop. A.8], and [16, Lemma 5.1] proves the result for metric g*.
The proof for g3 can be found in [29].

LEMMA 4.8. Let  be a vector field on C{*P /O, and let 7j be the horizontal lift
of n. Then for each Y € CL™", we have

vo =7ny0, VYO € Op.

This manuscript is for review purposes only.
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Recall from [2, Section 3.6.2] that if the expression gy (£y,(y) does not de-
pend on the choice of Y € [Y] for every m(Y) € C{*?/O, and every &r(v), Ca(y) €

Tﬂ(y)Cpr/Op, then
(4.4) Ir(v) En(vys Gavy) = 9y (§v, &)

defines a Riemannian metric on the quotient manifold C{*?/O,. By Lemma 4.8,
it is straightforward to verify that each Riemannian metric ¢* on C;*” induces a
Riemannian metric on Cy*?/0O,. The quotient manifold C}*”/0O,, endowed with a
Riemannian metric defined in (4.4) is called a Riemannian quotient manifold. By
abuse of notation, we use g° for denoting Riemannian metrics on both total space
CY™? and quotient space C}*?/O,,.

4.4. Riemannian gradient. Given a smooth real-valued function f on H)'”,

recall that a corresponding cost function h is defined on C*?/0, satisfying (4.1).
The next theorem shows that the horizontal lift of grad h(7w(Y")) can be obtained from
the Riemannian gradient of F. Its proof can be found in [2, Section 3.6.2].

THEOREM 4.9. The horizontal lift of the gradient of h at w(Y") is the Riemannian
gradient of F at'Y. That is,

gradh(n(Y))y = grad F(Y).

Therefore, grad F(Y') is always in Hy .

The next proposition summarizes the expression of grad FI(Y') under different
metrics. The proof is by simple calculation and definition of each metric, which can
be found in [29].

PROPOSITION 4.10. Let f be a smooth real-valued function defined on H''P and
let F:CYP - R:Y — f(YY*). Assume YY* = X. Then

AVF(YY*)Y, if using metric g*

* * —1 . . . 2
grad F(Y) = VFYY )Y (YY), if using metric g

1 .
(I - 2Py> VIYYHY(Y*Y)™!  if using metric g°

where V f denotes the gradient (1.4) and Py =Y (Y*Y)~1Y*.

4.5. Retraction. The retraction on C¢*? /0, can be defined using the retrac-

tion on the total space C}*P. For any A € Ty Cy*? and a step size 7 > 0,

Ry (TA) ==Y +7A,
is a retraction on CL*P if Y + 7A remains full rank, which is ensured for small enough
7. Lemma 4.8 indicates that R satisfies the conditions of [2, Prop. 4.1.3], implying

(4.5) Ry (T(v)) o= 7By (17y)) = 7(Y + 77y )

defines a retraction on the manifold C7*P / O,, for a small step size 7 > 0.

This manuscript is for review purposes only.
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4.6. Vector transport. A vector transport on C}”* /0O, is projection to hori-
zontal space (see [2, Section 8.1.2]):

(46) (ﬁ]”(y)gw(Y))Y+ﬁy = P;{l»ﬁy (EY)

It can be shown that this vector transport is actually the differential of the retraction
R defined in (4.5). Denote Y2 = Y1 + 7}y, . Base on the projection formula in Section
4.2, the explicit formula of (4.6) using different Riemannian metrics is then

. Eyl = Yo}, for g,
(7777F(Y1)§7"(Y1))Y _ * —1v*¢ *F 2 3
117y, YoHerm((Y5Y2)” Y5&y,) + Yo 1 Y2' &y, for g= or g°.

4.7. Riemannian Hessian operator. Recall that the function h on Ci"?/0,
is defined in (4.1). The Riemannian Hessian of h under the three different metrics g*
can be given as follows. The proofs are given in Appendix B.1.

PROPOSITION 4.11. Using g*, the Riemannian Hession of h is given by

(Hessh(r (V))& ))y = P (2V2F(YY)VE + & VIV + 29 (YY)ey ) .

PROPOSITION 4.12. Using g2, the Riemannian Hession of h is given by

(Hessh(x (V) exr])y = P {202/ (YY) IVE, + &Y Y (1Y)

FVIYY) PR (YY) 4+ PRV A(YY)E (YY) !
+2Skew(E Y )VFYY )Y (YY) 2 + 2Skew{&y (YY) 'Y*VFYY")}Y (YY) '},

PROPOSITION 4.13. Using ¢>, the Riemannian Hession of h is given by

(ess GV e Dy = (1 57 ) VYN, + Y (1Y)
HI = PV Ay (I~ Py (V7).

5. The Riemannian conjugate gradient method. We only consider the Rie-
mannian CG (RCG) described as Algorithm 1 in [25] with the geometric variant of
Polak-Ribiére (PR+). Note that it is possible to explore other methods such as
LRBFGS in [15]. We choose RCG since RCG is easier to implement and performs
well on a wide variety of problems.

We focus on establishing two equivalences in algorithms. First, we show that
the Burer-Monteiro CG method, i.e. CG solving (1.5), is equivalent to RCG on
(C*?/0O,, g*) with the retraction (4.5) and vector transport (4.6). Second, we show
that RCG on the embedded manifold H'['" is equivalent to RCG (C{*?/0,, ¢°) with
a specific retraction (5.3) and vector transport (5.4) given later.

Let Tx,_,—x, denote a vector transport that maps from Tx, , H"" to T'x, H}":

Txh 15X, Txk,l'Hi’p = Tx,HY", (xy = T, };71(Xk)(<xk—1)’
where R;(l exists locally for every X € ’Hi’p . Hence Tx, ,-x, should be under-

stood locally in the sense that X is sufficiently close to X}, (see [24, Section 2.4]).
Similarly, Ty, _, v, denotes a vector transport that maps from Hy, , to Hy,:

Ekflﬁyk :HYk,1 — HYk? fyk_l — (TR_l ) 9
Yk

W(Yk_l)g"(yk)

This manuscript is for review purposes only.
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where R;(ly) also exists locally for every 7(Y) € CX*?/O,. Ty, ,-v, and should
again be understood locally in the sense that 7(Yj_1) is sufficiently close to m(Y%).
We summarize two RCG algorithms in Algorithm 5.1 and Algorithm 5.2 below.
Algorithm 5.1 is the RCG on the embedded manifold for solving (1.1) and Algorithm
5.2 is the RCG on the quotient manifold (C}*?/0,, ¢*) for solving (4.1). The explicit
constants 0.0001 and 0.5 in the Armijo backtracking are chosen for convenience.

Algorithm 5.1 Riemannian Conjugate Gradient on the embedded manifold ’Hi’p

Require: initial iterate X; € H'"”, tolerance € > 0, tangent vector 7o = 0
1: for k=1,2,... do

2: Compute gradient

& = grad f(Xg) > See Algorithm 5.3
3: Check convergence

if |6kl :== v/ 9x, (§k, &) < €, then break
4: Compute a conjugate direction by PR and vector transport

M = =&k + B Tx_1— x5, (Mh—1) > See Algorithm 5.4

_gx (6 & — Tx = x (E6-1))
B = .
9Xp_1 (gk—hfk—l)

5: Compute an initial step t;. For special cost functions, it is possible to compute:

tr = argmin, f(Xg + tnk)
6: Perform Armijo backtracking to find the smallest integer m > 0 such that

f(Xk) — f(RXk (05mtk77k)) > —0.0001 x 0.5mtngk (fk, ﬂk)

7 Obtain the new iterate by retraction
Xk+1 = Rx, (0.5™t,mk) > See Algorithm 5.5
8: end for

5.1. Equivalence between Burer—Monteiro CG and RCG on the man-
ifold with the Bures-Wasserstein metric (CI*?/0,, g').

THEOREM 5.1. Using retraction (4.5), vector transport (4.6) and metric g*, Al-
gorithm 5.2 is equivalent to the conjugate gradient method solving (1.5) in the sense
that they produce exactly the same iterates if started from the same initial point.

Proof. First of all, for g, the Riemannian gradient of F at Y is grad F(Y) =
2Vf(YY™*)Y, which is equal to the gradient of F(Y) = f(YY™) at Y. Since vector
transport is the orthogonal projection to the horizontal space, the Si of PR used in
Riemannian CG becomes

- 5 gil/k (grad F(Yy),grad F(Yy) — P;,f (grad F(Yk,l))>
-1 £= o (@ad F(Y, 1), grad F(¥i 1)

Now observe that
P (grad F(Yy_1)) = grad F(Yj,_1) — PY. (grad F(Yj,_1))

and g' is equivalent to the classical inner product for C"*P. Hence 8 computed by
(5.1) is equal to B of PR, in conjugate gradient for (1.5).

This manuscript is for review purposes only.
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Algorithm 5.2 Riemannian Conjugate Gradient on the quotient manifold C%*?/0,,
with metric g°

Require: initial iterate Y € 7= (m(Y7)), tolerance € > 0, tangent vector 1y = 0
1: for k=1,2,... do
2: Compute the horizontal lift of gradient
&, = (grad h(TF(Yk)))Yk = grad F'(Y%)

3: Check convergence
if (||| == 1/ 9%, (&, &) < &, then break
4: Compute a conjugate direction by PR and vector transport

e = =& + BTy 1 —vi (Mk—1)

_ g9y, (grad F(Yy), grad F(Yz) — Ty, _, —v, (§k—1))

Br 4
gy, , (grad F'(Yy—1), grad F'(Yy—1))
5: Compute an initial step t;. For special cost functions, it is possible to compute:

ty, = argmin, F(Y}, + tny)
6: Perform Armijo backtracking to find the smallest integer m > 0 such that

F(Y},) — F(Ry, (0.5™tgny,)) > —0.0001 x 0.5™t4g%, (ks i)
7 Obtain the new iterate by the simple retraction

Yit1 = Ry, (0.5™t,my) = Yy + 0.5ty
8: end for

Since 1 = —grad F(Y1) = —VF(Y1), Burer-Monteiro CG coincides with RCG
for the first iteration. It remains to show that 7, generated in Riemannian CG by

me = —&k + 51@1337;,[: (Me—1)
is equal to 7 generated in Burer—-Monteiro CG for each k > 2. It suffices to show
P;«'il (Mk—1) = Nk—1, Vk>2.
Equivalently we need to show that for all £ > 2, the Lyapunov equation
(5.2) (YY) Q+ QYY) = Yine—1 — np_1 Yk

only has trivial solution 2 = 0. By invertibility of the equation, this means that we
only need to show the right hand side is zero. We prove it by induction. For k = 2,
Ne—1 = m = —& = —grad F(Y7). The following shows that the RHS of (5.2) satisfies

Yom —niYe = -Y5& + Yo = —(Y1 —c61)"6 + & (V1 — c&1) =Y — Y&
=Y QViMY")Y1 = Y@V f(Y1Y))Y1 = 0.

Hence Q2 =0 and P;Cil (Mk—1) = -1 for k= 2.
Now suppose for k& > 2, the RHS of (5.2) is 0 and hence Pg,f (Mk—1) = nr—1 holds.
Then the RHS of the Lyapunov equation of step k + 1 is

Yieame — M Yo = (Y +ene) e — mp (Y + one) = Yine — mp Ya

This manuscript is for review purposes only.
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=Y (—fk + kagl (771@71)) - (—fk + ﬁkp%cl (nk,l)) Y3
=Y (=& + Benk—1) — (=& + Brme—1)" Y
So P;/f+1 (nx) = mx also holds, thus RCG is equivalent to Burer-Monteiro CG. ]

Since 8 = 0 gives the gradient descent, the same proof above gives Theorem 5.2.

THEOREM 5.2. Using retraction (4.5) and metric g*, the Riemannian gradient
descent is equivalent to the Burer—Monteiro gradient descent method with suitable
step size (1.3) in the sense that they produce exactly the same iterates.

5.2. Equivalence between RCG on embedded manifold and RCG on
the quotient manifold (C*”/0,, ¢). In this subsection we show that Algorithm
5.1 is equivalent to Algorithm 5.2 with Riemannian metric g3, a specific retraction
(5.3) and a specific vector transport (5.4). The idea is to take the advantage of the
diffeomorphism 3 between C}*? /0, and H''", as well as the fact that the metric ¢

of C{*?/0,, is induced from the metric of H'}"”.

Since § is a diffeomorphism between C*? /O, and H''?, DA(n(Y))[] defines an
isomorphism between the tangent space T, 7r(y)(Cfpr /Op and Tyy-H}P. We denote
this isomorphism by Ly (y). The following lemma can be verified by straightforward
computation, see [29].

LEMMA 5.3. For (C{*?/O,,g?), the Riemannian gradient of f and h is related
by (DB)(x(¥)) [gradh(x(Y))] = grad f(YY") and

Lr(y)(gradh((Y))) = grad f(5(m(Y))).

In Algorithm 5.1, we have a retraction R” and a vector transport 7% on the
embedded manifold H'}'?, (with the superscript E for Embedded), such that R is the
retraction associated with 7F. Then we claim that there is a retraction R? and a
vector transport 7%, (with the superscript Q denoting Quotient), on the Riemannian
quotient manifold (C}*?/0,, ¢%), such that Algorithm 5.2 is equivalent to Algorithm

5.1. The idea is again to use the diffeomorphism 3 and the isomorphism L, yy. We
give the desired expression of R? and 7% as follows.

(53) R (eiy)) = B (RE, ) (L&xr))

(5.4) T2, e) = Ly (T ) (Er)) )

where 7(Yz) is in CL*? /O, such that S(m(Y3)) denotes the foot of the tangent vector

TLE(%(Y)) (L&)
Now it remains to show that R? defined in (5.3) is indeed a retraction and 79
defined in (5.4) is indeed a vector transport.

LEMMA 5.4. R? defined in (5.3) is a retraction.

Proof. First it is easy to see that RS(Y)(Oﬂ(Y)) = m(Y). Then we also have for all
Vr(y) € Tu(vyCE™ /O, Dng(Y) (Ox(yy)[-] is an identity map because

D B2y (0x))[om(r)] = (D B (B(x(Y)) |D RE 4y, (0) [D L(0) [Uw(y)m

This manuscript is for review purposes only.
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w7 = OF)EEY)) [DRE ) (0) [Len)]]
-1

w5 = OFEE)) [Eenm)] = (DAY [Elwmry)] = L7 L (o)) = var)

399 LEMMA 5.5. TF defined in (5.4) is a vector transport and R? is the retraction
100 associated with TF.

401 Proof. Consistency and linearity are straightforward. It thus suffices to verify that
402 the foot of 7:763(‘/) (§x(vy) is equal to RS(Y) (=(v))- Since R¥ is the associated retraction

103 with 7%, the foot of TLEE%(YQ(L(fﬁ(y))) is equal to Rg(w(y)) (L(?’]ﬂ-(y))), which we de-

104 mnote by B(m(Y2)) for some 7(Y3). Hence RS(Y)(W(Y)) =4t (Rg(ﬂ(y)) (L(?’]ﬂ-(y)))> =
405 7(Ya).

» —1 .
406 Furthermore, we have that 7;12(),) &rv)) = L vy <TE (L(Eﬂ(y)))) is a tan-

L(nx(yy)
107 gent vector in Ty(y,)Ci™?/O,. Hence, the foot of 7;20,) (§x(yy) is also m(Ya). ]
108 We also need the initial step size to match the one in step 5 of Algorithm 5.2. We
109 simply replace the original initial step size t;, by t, = argmin, f(Y3Y;" +t(Yan; +n:Y))
410 This value of t; now is equivalent to the initial step size in Step 5 of Algorithm

411 5.1. This gives us the following result:

412 THEOREM 5.6. With the newly constructed initial step size, retraction, and vector
413 transport in this subsection, Algorithm 5.2 for solving (4.1) is equivalent to Algorithm
114 5.1 solving (1.1) in the sense that they produce exactly the same iterates.

415 5.3. Implementation details. The algorithms in this paper can be used for any
416 smooth f(X) in (1.1). For large n, however, it is advisable to avoid using Vf(X) €
417 C™*™ explicitly. Instead, we compute the matrix-vector multiplications V f(X)U.
118 For example, in the PhaseLift problem [9], these matrix-vector multiplications can be
119 implemented via the FFT at a cost of O(pnlogn) when U € C™"*P| see [16]. We give
420 some detailed implementation in Algorithms 5.1 and 5.2. When counting flops, we
assume that V f(X)U € C"*P can be computed in spnlogn flops with s small.

Algorithm 5.3 Calculate the Riemannian gradient grad f(X)
Require: X =UXU* € H"*?
Ensure: grad f(X) = UHU* + U,U* + UU, € TxH}”

T+ Vf(X)U > # spnlogn flops
H <« U*T > # np(2p — 1) flops
U,«T—-UH > # np(2p — 1) + np flops
121
422 6. Estimates of Rayleigh quotient for Riemannian Hessians. In many

123 applications, (1.1) or (4.1) is often used for solving (1.2). Even if the global minimizer
124 of (1.2) has a known rank 7, one might consider solving (1.1) or (4.1) for Hermitian
425  PSD matrices with fixed rank p > r. For instance, in PhaseLift [9] and interferometry
126 recovery [10], the minimizer to (1.2) is rank one, but in practice optimization over the
427 set of PSD Hermitian matrices of rank p with p > 2 is often used because of a larger
428 basin of attraction [10, 16]. If p > r, then an algorithm that solves (1.1) or (4.1)
129 can generate a sequence that goes to the boundary of the manifold. Numerically, the
130 smallest p — r singular values of the iterates X will become very small as k — oo.
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Algorithm 5.4 Calculate the vector transport P%, (v)

Require: X; = U13,Uf, Xy = UpXpU3 and tangent vector v = Uy H1U{ + Uy, U7 +
UU,; € Tx, HYP.

Ensure: Pi (v) = UyHyUs + Up,Us + UsU,,

A+ UfU, > # np(2p — 1) flops
HYY « AH A, U « Uy(H,A) > # 3p*(2p — 1) + np(2p — 1) flops
HY) « UsU, A, U « U, A > # p?(2n — 1) + 2np(2p — 1) flops
HY « H?', U « Uy (U0,) > # np(2p — 1) +p*(2n — 1) flops
Hy « HY + HP + g7 > # 2p? flops
Upy — UV +UP + U Uy = Uy — Us(U3U,) > #

3np +np(2p — 1) +p%(2n — 1) flops

Algorithm 5.5 Calculate the retraction Rx(Z) = PHi,p(X +2)

Require: X = UXU* € H", tangent vector Z = UHU* + U,U* + UU};.
Ensure: Rx(Z) =U; X, Uj}.

(Q.R) « ar(U,,0) M + [E ;H ]f') } > # 20np? flops
[V, S] + eig(M) > O(p®) flops
S+« S(1:pl:p), Up« [U QV(;,1:p) > # np(4p — 1) flops

In this section, we analyze the eigenvalues of the Riemannian Hessian near the
global minimizer. We will obtain upper and lower bounds of the Rayleigh quotient at
X =YY* (or 7(Y)) that is close to the global minimizer X = YY* (or 7(Y)).

6.1. The Rayleigh quotient estimates.
DEFINITION 6.1. The Rayleigh quotient of the Riemannian Hessian of f on (H?, )|

is defined by p¥(X,(x) = gX(H?is(g;(gXC)E)X L&) ey e TxH". The Rayleigh quotient

of the Riemannian Hessian of h on (Ci"?/O,,g%) is defined by p'(n(Y),&x(y)) =
Iy (€85 h(mw (V) En(v) ) bm(v)) : :

&) gi,(m(fw(y),éw(g; CL ) Veayy € TryCL*P /O, If the Rayleigh quotient has
a lower bound a and an upper bound b, then we define g as an upper bound on the
condition number of the Riemannian Hessian.

By the expressions of Riemannian Hessian, we have

(V2 FX)CxTCX ) e
gx ({x,Cx)

x (PR(VAX)(XTR) (G XD V(X)) x)

E _ g
(X7 CX) = + 9x (Cx,Cx)

) _AVHOYOIYEAEGYLY G A6 Y ) i | g @VF(YY )Ey Ey)
p (7T( ) fTr(Y)) - 9y €y .€y) + 9y €y ,€y) '

(VIO EAEY IV EAEY ) (TIOYIPEE &)y

2 _
P (W(Y)7€7T(Y)) o Qé(gyzy) Qi(gyzy)

(PEVIYY ™ )Ey &y ) cnxp " (Y&& 2V/ Y)YV Y) )y (Y E2VAYO)YTY) ) L,
.‘1%/ (Ey Ey) gf, (Ey «Ey) ‘1%/ (EY Ey) ’
PV ), erery) = (VIO OYE A& Y IV EAEY ) nxn | gY (U=P)VFYY )U-Py)E (YY) &)

g%(gy,gy) gY(iy fy)
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Observe that the leading terms in the above Rayleigh quotients take similar forms:
the numerator involves the Hessian V2 f, and the denominator is the induced norm
of tangent vector from the respective Riemannian metric. We call the leading term
second order term (SOT) as it involves Hessian of f as the second order information
of f and we call the other terms that follow the leading term first order terms (FOTS)
as they only contain the first order gradient.

We assume that the Hessian V2 f is well conditioned on the tangent space:

ASSUMPTION 6.1. For a fized € > 0, there exists constants A > 0 and B > 0 such
that for all X with HX - XHF < €, the following inequality holds for all (x € TxH™.

AlCxl % < (V2F(X)Cx), Cx dgnnn < BlICx IS

Observe that this assumption is always satisfied for sufficiently small € when f is
smooth and X is a nondegenerate minimizer of f. However, the condition number
B/A might be large in general. An important case for which this assumption holds
is f(X)=1[X- H||§, with H being a given Hermitian PSD matrix. In this case,
V2f(X) is the identity operator thus A = B = 1.

Under Assumption 6.1, we get bounds of the SOT in p¥ (X, (x) as:

Ao a Ntz (VE)) ) nnn g NGk

9x (Cx,Cx) — 9x (Cx,Cx) ~ gx(Cx,Cx) =5

For quotient manifold, since YE; +&Y* € Tyy-H''", under Assumption 6.1, we get

V& &Y : (VAIOY Y EAE Y IYEAEY ) <B||Y§§tEY7Y*H?
9 (&v&y)  — 9% (€ Ey) - 9% (€ &y)

[Ye 4+ |

So the estimates of SOT for quotient manifold reduces to analyzing . —
9y (fy’gy)

We denote its infimum and supremum by
T Y&+l 5 Y& +& v
Crivy = be e, crv/0, 9% €y Ey) »Drnyy 7= W em 0y ci70 0, gy v &y)
The subscript is used to emphasize that the infimum and supremum are dependent

on 7(Y). The next lemma characterizes these infimum and supremum.
LEMMA 6.1. Let YY™* = UXU™ denote the compact SVD of YY™* and denote the
i-th diagonal entry of ¥ by o; with 01 > --- > 0, > 0. Then the following estimates
_ ) YEL 4F.vH|?
for the infimum C;(Y) and the supremum D;(Y) of % hold: C’}T(Y) =

0,2
20,201 < Diyy <2(Z 4 01); €2y = 2, D2y =45 and €2y = D3y = 1.

T

Proof. Tt is straightforward to see C’i(y) = Di(y) = 1 by the definition of g. For
metric 2, write £, = Y'.S + Y| K for some S = S* € CP*P and K € C"*P. We have

NI
\Pfy+5YY\Lw: 2|V SY*|}

9% (v, &y) [V SY*[[5 + [ KY*[[5.

Hence it is easy to see C?r(Y) = 2 when S is zero matrix and DZ(Y) =4 when Y SY*
is nonzero and K is zero matrix. For metric 1, by its horizontal space, we can write
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Y) 1S+ Y, K for some S = S* € CP*P and K € C"*P. Notice that the

SVD of Y can be given as Y = UX2V*. Let § = V*SV and K = KV, and K; be
the i-th column of K, then

- 2
P& &,y s seey) oy vy
9 €y &) 1Y (v*Y) LS5 + | K5
1 1 1 102 %G, |2 3 2
B L W Lkl O ol
_112 _ -
EREEER P>y B +E IR B

where symmetry S* = S is used in the last step. The lower bound is given by

Q_Zp:l% Sk - Plai K, 2F 2(%’4-1) zpzl Pk
,j= i= i,j=
> |55 +Zp:||f(_||2 = EE SN
ig=1 1 st =] S
2 P _
2(2+0,) |8, +202 2 |

P _ P _
3 18] + oy S 1Kl
1,7=1 =1

This lower bound is sharp as one can choose S = 0 and K with HKPH » = land

||I_(iHF = 0 for i < p. We have the upper bound as follows.

p o _ 2 o1 p 2
2 Z T C"i K; P ( +1) Z zg
i,j=1 i,j=1
L |Su| = P
> o 2 |5
¥ Z]:l

=1
p _
o) 3 15[ +2012HKHF

2
hi=l <2(U+Jl>,
> 15 +012HKHF ’

t,j=1

where the last inequality is obtained by the range of the rational function f(z,y) =
by with ¢ = 2 ( +01> ,b=20%? and d = o1 on {(z,y)|z > 0,y > 0,2y # 0}.

z+dy

This upper bound 2 (U— + 01) may not be the supremum as the inequalities are
P

not sharp. However, we can show that D}r(y) > 20;. To see this, choose S = 0 and K

I

=1 and ||K;||,, = 0 for i > 1. Then (6.1) reaches the value 20y. Hence

the supremum must be at least 20;. So we have

(6.1)

2
Op

Next we estimate the FOTs in Rayleigh quotient.

LEMMA 6.2. Let X = YY* for any Y € 7 H(n(Y)) with X € H}? and (V) €

CY*?/O,. Let USU* be the compact SVD of X and denote the ith diagonal entry of

> with o1 Z

- >o0p>0.
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w N

4.

For the embedded manifold we have |FOT| < % V(X)) -

For the quotient manifold with metric g* we have |[FOT| < 2||Vf(YY™*)|.
For the quotient manifold with g* we have |[FOTs| < 4({4:1) IVAYY™)].
For the quotient manifold with g° we have |FOTs| < é IVfYY™)].

Proof. We will use ||B*A*||p = | AB|lp < |A|Blr < [ A] | Blr where [|A] is
the spectral norm. If X is Hermitian, ||AX||F = || XA*||F < || X||||A*||F = | X A|| F-

For the embedded manifold, recall that % = P§(£x) and &5 = P ({x) and P
and P} are defined in (3.2), and the bound for the FOT is given by

lox (P (VFX)(XTCR)* +(CE XN VX)) .Cx)|  [(PR(VAX)EXT+XTCE V(X)) Cx) nn |
gX(<X7<X) - <<X7<X>¢‘n><n
- KPR (VIE)CEXT)  Cx)gual |, (PR (XTEVFD) X
o <CXa<X>(Cn><n <CX’<X>(C7L><7L
<o IVFX) S X rl¢x|r <2va(X)H||§§(XT||F||CXHF <2||Vf(X)||||XTH||C§(||F||CXHF
o <<X CX)(Can o <<X7<X>(Cn><n o <€X7CX>(Cnxn
2|\ VO IXT IS 17
< XTI ex e =2|VF(X) HXTHffIIVf( -

<CX7 CX>(Cn><n

For quotient manifold with g', the FOT is bounded by

|9y @VFYY ey Ev)| _ [VIY 8 &y )y | o 2IVIOOY IES I

g%/(EYaEY) o <fy:§y>cn><p - <£Y1£Y>Cn><p

=2V Y.

For quotient manifold with g2, the FOTs contains four terms and we estimate
each term separately. Notice that the SVD of Y can be given as Y = U $2V*. Let
S =V*SV and K = KV, and K; be the i-th column of K. For the first summand

we have

v

‘<vf(YY*)PYLEY7gY>CnXp} _ ’<Vf(YY*)P}}EYagY>(Cn><p’ < va(YY*)H

9% &y, &) B <EYY*7EYY*>CTLXTL B <EYY*,EYY*>CTLM .

YS|a+ K| i Y S| K3 i

Y SY* |G 4+ 1KY

YV IRY;
Jv=s],
F

2
le | ywrarvy < 2 ivrarv).

iz T 7
vesvel,, [&ve,

Similarly, we have the second term:

[Py VIV ey Er )|

2 *
9% (Ey Ey) ||Vf(YY -

For the third term, with the fact ||A*A|r = || Al|%, we have

‘ <YE;EY7 2Vf(YY*)Y(Y*Y)71>

crxrl _ ’<Y§/ZYY*7QVf(YY*)Y(Y*Y)’QY*>

CnXxXn

HngsyY*

95 &y &) - 95 &y &)
HQVf YY*)Y(Y*Y)_QY* ||£YY*||F 12V £ (YY) HY (Y*Y)~2y*

I

=2[|Y(Y*Y)?Y*

gy(fyfy) gy(§Y &y)
2
PVl < 22wy,
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[(€yY*E& 2V (YY" )Y (YY)~

531 Similarly, we can bound the fourth term: Dens 2\f VYY) I

93/ (EY7§Y)
532 Thus, for the quotient manifold with g2 we have |[FOTs| < @ HVf(YY )| -
533 For g3, recall that Pz = I — Py = [ — Y (Y*Y)~1Y*, with the property (4.3) and

534 the fact (I — Py)*Y =0, the FOT can be bounded as follows:

|G (I=P)VFYY)U-P)E (YY) LE)| 2Py VIY)PrEy &) |

535 FOT EaRS

’ | = 93 (€ &y) 93 (Ev &y)

cag = AVFOYIIKYL Kyenxp| _ 2[(VFOYIVLK YL K)ensn| 2| (VIYY)YL K YL K) cn|

- Ve +& v+ || |2y sy +v Ky *+vEvr | 12V SY * |2+ YL KY* |2 +]| Y K=Y ;||
e VIOY YLK YLK ) cnxp| o (VFYY)YLK YL K) onxp| YL K2

o VSR HIVLRY T2 = VoRy T < v IV < IV
538 With Lemma 6.2 and Lemma 6.1, we summarize the main result as follows.

539 THEOREM 6.3. Let X = YY™* be the global minimizer of (1.2) with rank r < p.

510 For X = YY* = USU* with singular values o; near X where Y € CI?, under the
541 Assumption 6.1, for any arbitrary tangent vectors Cx and &x(yy, the following hold:

542 1A= Z|[VFX)| < pP(X,¢x) < B+ 2 [VFX),

543 2. 240, -2 VIV )| < pM(r(V), €nry) < B - Dy, + 2 V(YY)

544 3. 24 = WL\ GF(YY™)| < p(r(Y), Enqry) < 4B + V(YY)
545 4 A= L|VFYY)| < p3<7r<Y> Ev)) S B+ = VYY),

546 where Dﬂ(y) satzsﬁes 207 < D! (Y) (Z—i +01). In particular, zfX = YYV* has

517 rank p, we have the following limits, where X — X and n(Y) — n(Y) are taken in

548  the sense of ‘X - XHF — 0 and ”YY* —YY*| —o0:

549 LA-2 HVf(X) ] <limy ¢ pP(X,6x) < B+ 2 HVf

550 2. 2A&p—2HVf( X)|| <ty (V) Exr) gB.D;(Y)HHVf(X)

551 3. 24— /D HVf )| < 1) i) PO, ) < 4B+ 2 (%) ]
552 4 A- HVf )| < tim (Y)%(y)p $(r(V),brr) < B+ V15

553 where D;(A) satzsﬁes 261 < D!

554 REMARK 6.4. If we also assume Vf(X) =0, then the limits above can be further
555  simplified. Though V f(X) = 0 may not be true in general, it holds for all numerical

2
w() S (E + Ul)

556 examples considered in this paper, where the cost function takes the form f(X) =
557 3 A(X) — b||§7 , and the minimizer X for (1.1) or (1.2) satisfies f(X) = 0. IA’hus X
558 18 also the minimizer for minimizing f(X) over all X € C, which implies V f(X) = 0.

559 REMARK 6.5. Under the assumption Vf(X') =0, the limit of the condition num-
560 ber for the Bures-Wasserstein metric g' depends on the condition number of the min-
561 imizer X. This reflects a significant difference between g' and the other two metrics.

562 6.2. The Rayleigh quotient for a rank-deficient minimizer. Next, we con-
563 sider the rank deficient case p > r where r is the rank of the minimizer X, i.e., the
564 minimizer X lies on the boundary of the constraint manifold. Under the Assump-
565 tion Vf(X) = 0, any convergent algorithm that solves (1.1) or (4.1) will generate a
566 sequence such that both o,41,---,0, and Vf(X) will vanish as X — X. We make
567 one more assumption for a simpler quantification of the lower and upper bounds of
568  Rayleigh quotient near the minimizer.
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ASSUMPTION 6.2. For a sequence {X;} with Xj, € HP (or m(Y},) € CL*P/O,
) that converges to the minimizer X (or w(Y)), let (0p), be the smallest nonzero

singular value of X, = YY), assume the following limits hold.
1. For the embedded manifold, limy_ o ﬁ IVF(Xe)| < %.
Pk
2. For the quotient manifold with metric g*, limy_, o0 ﬁ (IVfYRY)| < %.
Pk
3. For the quotient manifold with metric g%, limg_, oo V] VYY)

(U;n)k

<
4. For the quotient manifold with metric ¢, limy_s oo ﬁ (IVFYRYE)] < %.

If X has rank r < p and {X}} is a sequence that satisfies Assumption 6.2, then
Theorem 6.3 implies
1. For the embedded manifold we have é < limy o0 pP ( Xk, €x,) < B+ é.

1 1
2. A < limy oo SO0 < Blimg o 20 424,

3. A <limy o0 P2(7T(Yk)a§7r(Yk)) <4B + A7
4. g < hmk—>00 pg(Tr(Ykr)agfr(Yk)) < B+ %7

Dl
where lim —=0%) > iy 2ue
koo (Op)k koo (Tp)k
Notice that the condition number in Bures-Wassertein metric g' is fundamentally

different from the other ones since it is the only metric that blows up.

= +o00 since o, — 7, = 0.

7. Numerical experiments. We compare the following four algorithms:
1. RCG on (C:*?/0,, g'), i.e., Algorithm 5.2 with metric g'. This algorithm is
equivalent to Burer-Monteiro CG, that is, CG applied directly to (1.5).
2. RCG on (CI*?/0,,¢%), i.e., Algorithm 5.2 with metric g% in [16].
3. RCG on (CI*?/0,,¢%), i.e., Algorithm 5.2 with metric g.
4. Burer-Monteiro L-BFGS method, i.e., L-BFGS directly applied to (1.5).

7.1. Eigenvalue problem. For a Hermitian PSD matrix H, its top p eigen-
values and associated eigenvectors can be found by solving min 3 || X — H ||2F with
X € H'P. Tt is easy to verify that Vf(X) = X — H and V2 f(X) is the identity map.

We consider random Hermitian PSD matrices H of size 50 000-by-50000 with
different ranks » = 10 or » = 15. See the performance of the algorithms on the
manifold with rank p = 15 in Figure 1, in which we can see the slowness of Burer-
Monteiro methods corresponding to Bures-Wasserstein metric g' is consistent with
condition number analysis in the previous section.

ic 1 (Burer Monteiro)

=
s

i
10°
|

ic
ic 3 (Embedded geometry)

Normalized Cost Function

Normalized Cost Function
fj E
Normalized Cost Function

3

0 50 100 150 200 250 300 350 0 100 200 300 400 500 0 100 200 300 400 500
Iteration Number Iteration Number Iteration Number

(a) r=10and p=15 (b)r:p:ISandg—;’:lO6 (c)'r:p:lSand%:lOS

Fia. 1. FEigenvalue problem: minimizer has rank r, solved on the rank p manifold. Burer-
Monteiro methods (Bures-Wasserstein metric g') become slower either when the minimizer has a

rank r < p or when minimizer X has a larger condition number Z—l
P
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7.2. Matrix completion. We consider a Hermitian matrix completion problem
for a given H € H'P: min i ||Po(X — A)|%,X € H}P, where Po is a sampling
operator. We have Vf(X) = Po(X — 4), V2f(X)[(x] = Pa(lx), (x €Cr .

We consider a Hermitian PSD matrix H € C™*™ with n = 10000 with rank r = 25
and Py a random 90% sampling operator. The initial guess is the same random matrix
for all four algorithms. In Figure 2, we see that the simpler Burer—-Monteiro approach,
including the L-BFGS method and the CG method with Bures-Wasserstein metric g*,
is significantly slower for the rank deficient case r < p, which is consistent with the
Hessian analysis in the previous section.

100 0 -&-L-BFGS Burer Monteiro
= L-BFGS Burer Monteiro 10 GG quotient manifold metric 1 (Burer Monteiro)
! © . CG quotient manifold metric 2
GG quotient manifold metric 1 (Burer Monteiro) Yy
GG quotient manifold metric 2 \ —+CG quotient manifold metric 3 geometry)
- ~+CG quotient manifold metric 3 geometry c
S R, 2
2 { S < N\
s
2 405 %W»Nwﬁ% = o10° \ N ]
- Sove. 3 \ N\
g 996999@9669' S \ N\
S © \ N
3 ]; i % >
8 s \ <
3 £ \
g i 5 \ \‘\ \
5 # SN \ X5
. 10° N G\l
Z g0t | Y\ \ ﬁ\&
{ \ VR
| \ )
£
!
0 50 100 150 200 250 300 350 0 5 “‘Ot N L5 20 25
Iteration Number eration Numboer
(a) r =25 and p = 30. (b) r=p=25.

Fic. 2. Matrixz completion: minimizer has rank r, solved on the rank p manifold. When r < p,
Burer-Monteiro methods ( Bures- Wasserstein metric gl) are significantly slower.

7.3. The PhaseLift problem. We consider the phase retrieval problem as de-
scribed in [9]. The setup is the same as described in [16]. The cost function can be
written as f(X) = 1| A(X) — b||%. Straightforward calculation shows

V(X)) = A(AX) —b), VZF(X)[(x] = A"(A(Cx)) for all ¢x € C™*".

For the numerical experiments, we take the phase retrieval problem for a complex
gold ball image of size 256 x 256 as in [16]. Thus n = 256% = 65,536 in (1.2) or (1.1).
We consider the operator A that corresponds to 6 Gaussian random masks. Hence,
the size of b is 6n = 393,216. Remark that the problem is easier to solve with more
masks.

We first test the algorithms with the same random initial guess on the rank-1 and
rank-3 manifolds. The results are shown in Figure 3. The initial guess is randomly
generated. First, we observe that the nonconvex lifting solving it on rank-p manifold
with p > 1 can accelerate the convergence, even though the minimizer is always rank-
1. Second, when p = r = 1, the asymptotic convergence rates of all algorithms are
essentially the same, though the algorithms differ in the length of their convergence
”plateaus”. When p > r, we can see that the Burer—-Monteiro approach has slower
asymptotic convergence rates.

7.4. Interferometry recovery problem. We consider solving the interferom-
etry recovery problem described in [10], given by min f(X) = & || Po(FXF* — dd*)||;,
X € H'P, where Pq is a sparse and symmetric sampling operator, and F € C™*".
We solve an interferometry problem with a randomly generated F e C10000x1000
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102
—=-L-BFGS Burer Monteiro -5-L-BFGS Burer Monteiro ]
——CG quotient manifold metric 1 (Burer Monteiro) —CG quotient manifold metric 1 (Burer Monteiro)
CG quotient manifold metric 2 100 CG quotient manifold metric 2
0. [+ CG quotient manifold metric 3 geometry) ——CG quotient manifold metric 3 (Embedded geometry)
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k &53 108

X \&
10—10
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Iteration Number Iteration Number
(a) Rank p = 1 manifold (b) Rank p = 3 manifold

FiG. 3. Phase retrieval of a compler image: minimizer has rank r = 1. Nonconvex lifting on
manifolds of rank-p with p > r can accelerate convergence, but Burer-Monteiro methods (Bures-
Wasserstein metric g' ) has an obvious slower asymptotic convergence rate when p > 7.

~5-L-BFGS Burer Monteiro 10° <~ L-BFGS Burer Monteiro
100 —+CG quotient manifold metric 1 (Burer Monteiro) —CG quotient manifold metric 1 (Burer Monteiro)
s | = CG quotient manitold metric 2 | CG quotient manifold metric 2
GG quotient manifold metric 3 (Embedded geometry) 1,/+-CG quotent manifod mefic 3 Embedced geomer)
5 g e
< S Q%%
It [T
B 195 5 10
8 10 8
he] o
2 8
© «©
£ £
2 2
10710 1010
0 50 100 150 200 0 50 100 150 200 250 300 350
Iteration Number Iteration Number
(a) Rank p = 1 manifold. (b) Rank p = 3 manifold.
Fia. 4. Interferometry recovery: minimizer has rank r = 1. When the minimizer is rank

deficient r < p, Burer-Monteiro methods (Bures-Wasserstein metric g') are significantly slower.

Hence n = 1000 in (1.2) or (1.1). The sampling operator 2 is also randomly gen-
erated, with 1% density. In Figure 4, when p = 3 and r = 1, we can see that the
Burer—Monteiro approach has slower asymptotic convergence rates.

8. Conclusion. We have shown that the CG method on the Burer—-Monteiro
formulation for Hermitian PSD fixed-rank constraints is equivalent to a Riemannian
CG method on a quotient manifold with the Bures-Wasserstein metric g'. We have
analyzed the condition numbers of the Riemannian Hessians on (C{*?/O,,g") for
three metrics. We have shown that when the rank p of the optimization manifold is
larger than the rank of the minimizer to the original PSD constrained minimization,
the condition number of the Riemannian Hessian on (CZ*? /0, g') can be unbounded,
which is consistent with the observation that the Burer—-Monteiro approach or Bures-
Wasserstein metric often has a slower asymptotic convergence rate in numerical tests.

A. Embedded manifold .

A.1. Riemannian Hessian operator. By [3, section 4], the retraction R de-
fined by projection is a second-order retraction. Proposition 5.5.5 in [2] states that if
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644 R is a second-order retraction, then the Riemannian Hessian of f can be computed by
645 Hess f(X) = Hess (f o Rx)(0x). Thus gx (Hess f(X)[¢x],&x) = %f(RX(th))’t,o
616 In [28] and [25], a method was proposed to compute Hess f(X) by constructing a
647 second-order retraction R that has a second-order series expansion which makes it
648 simple to derive a series expansion of f o Rg?) up to second order and thus obtain the
640 Hessian of f. Following [28, Proposition 5.10], we have

650 LEMMA A.1. VX € H''P, the mapping Rg?) CTXHY? — HP
% Top* ; Los P Los Tes Ly tes
651 Ex —»wXTw*, withw =X + §§X +& — §§XX & — §§XX &%,

652 18 a second-order retraction on Hi’p, where X1 is the pseudoinverse, &% = Py(€x)
653 and &% = PY(Ex) as defined in (3.2). Moreover, we have

, 2 3
634 R (6x) = X +&x + & Xk + O(lex]).
655 From this the Riemannian Hessian operator of f can be computed in essentially

6 the same way as in [24, Section A.2] but applied to the general cost function f(X)
657 instead of a least square cost function. Consider the Taylor expansion of f)(? ) =

658 fo Rg?), which is a real-valued function on a vector space. We get

50 fP(ex) = FIRD (€S (X +&x + & XTek + O(liex]))
660 = F(X)+ (VF(X),Ex + ERXTER) conn + 2 (VEF(X)[Ex + & XTER], €x + EX XTER) cunn + OUIEx®)
661 = f(X) +(VFX),Ex)enxn + (VX), & XTER ) cnren + 3 (V2F(X)EXT Ex ) pnen + OlIEx 1)

662 We can immediately recognize the first-order term and the second-order term that
663 contribute to the Riemannian gradient and Hessian, respectively. That is,

664 gx (grad f(X),&x) = (VF(X),€x)onxn = grad f(X) = PL(Vf(X)),

665 gx (Hess f(X)[¢x],6x) = 2(VF(X), & XTE ) crn + (V2 F(X)[Ex] € ) g -
fri=(H1(€x),§x)cnxn far=(H2(x),6x )cnxn

666 Since £x is already separated in fs, the contribution to Riemannian Hessian from H,

667 is readily given by Ha(éx) = Pk (V2 f(X)[Ex])-

668 Now, we still need to separate £x in f1 to see the contribution to Riemannian

669 Hessian from ;. Since we can choose to bring over fg(XT or XT§§( to the first

670 position of (.,.)cnxn, We write H1(€x) as the linear combination of both:

671 f1 =2 (V(X)(XTER)" €8 ) cunn +2(1 = 0) ((ERXT)* V(X)X ) e

672 Operator M is clearly linear. Since #H; is symmetric, we must have (H1({x), vx)cnxn =J}
673 (vx, H1(€x))enxn for all tangent vector vx. Hence we must have ¢ = 1 and we obtain

674 Hi(€x) = Py (VIX)(XTER)" + (X1 V(X).

676 Hess [(X)lex] = Pk (V2F(X)[ex]) + P% (VAX)(XTER) + (€ XT)"VF(X)).

677 B. Quotient manifold C:*?/0,.
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B.1. Calculations for the Riemannian Hessian. By [2, Definition 5.5.1],
the Riemannian Hessian of f at a point x in M is given by

Hessf(x)[@] = nggradf(x), §e € TuM,
where V is the Riemannian connection on M. By [2, Proposition 5.3.3] and the
definition of the Riemannian Hessian, we have

LEMMA B.1. The Riemannian Hessian of h : C{*?/O, — R is related to the
Riemannian Hessian of F : C1*P +— R in the following way:

(Hessh(m(Y))[€x(v)))y =PI (Hess F(Y)[Ey])

where &y is the horizontal lift of Ern(y) at Y.

B.1.1. Riemannian Hessian for the metric g'. By [2, Proposition 5.3.2],

the Riemannian connection on C}”? is the classical directional derivative V,, ¢ =
D&(Y)[ny]- Recall that for g, grad F(Y) = 2V f(YY*)Y. Thus

Hess F(Y)[€y] = Ve, grad F = Dgrad F(Y)[6y] = 2V2F(YY )Y} + & VY + 2VF(YY )&y

(Hess h(r (V) lexv)])y = PI (2927 (Y)Y Ey + & Y]V +2VF(YY )y )

B.1.2. Riemannian Hessian under metric ¢2. Any Riemannian metric ¢
satisfies the Koszul formula

QQz(Viz/\v 7790) = fzg()‘v 77) + Azg(na 5) - 77x9(£7 )‘) - gz(ng P‘/’ﬂz) + gz()‘zv [7]7511‘) + 91(777 [57 )‘]x)
= Dg(\n)(@)[&] + D g, (@) [A] — D g(&, N)(@) 2] — 9o (&a [N 1)) + 92(Aas [0, €]e) + 92(n, 1§, Ala),

where [, -] is the Lie bracket. In particular, for g? the Koszul formula turns into

265 (Vey Aty) = D@ (A ) (V) [Ev] + D g*(0,€) (V) Av] = D (€, M) (V) lnv] — g5 (&v, [N ily) + 93 Ay, 0. Ely) + g3 (0, [€ Aly).-
Recall that g*>(A\,n)(Y) = R(tr(Y*Y A\;ny)). The first term equals

D> (A n)(Y)[Ev] = g5 DAY)[Ev], nv) + 95 Ay, Dn(Y)[Ev]) + R(tr (&5 Y Ay ny ) + Rt (Y *Ey Ay ny ).

Following [2, Section 5.3.4], since C} ™" is an open subset of C"*P we also have
Aly = Dn(Y)[Ay] — DA(Y)[ny . Thus we get

265 (Vey Ay) = D g> (A ) (Y)[ev] + D g% (0, ) (V) [Ay] = D g*(&, M)(Y) [ny]

—¢* (&, Dn(Y)Ay] = DAY)nv]) + ¢° Oy, DEY) [yv] = Dn(Y)[ev]) + ¢* (v, DAY)[Ev] = DEY)[Av])
= 2957 (v, DAY)[Ev]) + R(tr(n5 Ay (&Y + Y &) + & (Y Ay + A3 Y) =Y A&y — YEPAy)))
= 263 (ny, DAY)[Ey]) + g3 (ny, A (Y +Y7&) + & (Y Ay +AY) = YA Ey = YEAY) (YY) 7).

. . . . . X
We therefore obtain a closed-form expression for Riemannian connection on C}”*?:

Ve, A=DA(Y)[¢yv] + % MW (&Y +Y) + & (Y Ay +A0Y) =Y ALy —YEAY) (YY) 7L

Hess F(Y)[{y] = Veygrad F = D ygrad F(Y) [¢y]
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+3{erad F(Y) (&Y + Y*éy) + & (Yigrad F(Y) + grad F(Y)*Y) — Ygrad F(Y)*¢y — Y&y grad F(Y)}(Y*Y) 7!
= VYY)V + &Y Y (YY) 2V f(YY)e (YY) - VAYY )Y (YY) Yy + §Y)(YY)
&YV VEYY)Y (YY) 4+ (VY)Y VY Y)Y HYY) T = (Y (VY)Y VY Y )y + YEVAYY )Y (YY) YY)~ !
= V(YY)YE + &Y Y (YY) + VAYY )Py (YY) + PrV (YY" )ey (YY)
+2skew(Ey Y )VF(YYH)Y (YY) 2 4 2skew{éy (YY) 'Y * V(YY) Y (YY) !

B.1.3. Riemannian Hessian under metric g3. Denote
gy &ysny) = (Y + &Y Y0y + 0y Y ) cnsn -

Recall that the Riemannian metric g3 on Cy*? satisfies g5-(&v,ny) = gy (&v,my) +
95 (PY (&), Py (ny)). Hence D g°(A, n)(Y)[év] =

Gy (DAY)Ev]ny) + Ay, Dn(Y)[Ey]) + 2R(6r (- Ay Y™ ny + Y Ay &ny + &Y A ny + Y & AT ny))
+ g3 (PY(\y), DPY (ny)[&v]) + g*(D PY (Ay)[Ev], PY (ny)) + R(tr(Ey PY Ay )* PY (ny )Y * + Y PY (Ay )* PY (v )&3)).-

If A,n and £ are horizontal vector fields, many terms in the above equation vanish:

D@ (A n)(Y)[&v] = gy (DAY)[Ev],ny) + Gy Ay, Dy [&y])
F2R(r(EF Ay Y "y + Y A &Sy + 65 Y ATy + Y v Apny)).

Combining it with the Koszul formula with &, 7, A horizontal vector fields, we obtain

295 (Vey A ny) =D g (A n)(Y)[Ey] + D g (0, £)(Y)[Ady] = Dg® (&, A) (V) [ny]
=45 (&, Dn(Y)Ay] = DY) [nv]) + g3 (v, DEY ) [ny] = Dn(Y)[Ev]) + g3 (nv, DA(Y) [Ev] = DE(Y) [Av])
=20y (DAY)[Ev ], ny) + ARt (Y sy Ay ny + Y Ay &S ny)).

9y (Vey Mny) = gy DAY [Ev], ny) + 2R((Y* ey XSy + Y Ay Eny).

Recall Hess F(Y)[{y] = Ve, grad F. For &y being a horizontal vector we have

gy (Hess F(Y)[¢y],ny) = g5 (Vey grad F, ny )
= g(ny, Dgrad F(Y)[§y]) + 2R(tr(Y "y grad F(Y) ny + Y grad F'(Y)E5ny )
= g(ny,Dgrad F(Y)[¢y]) + R(tr((Yny + nyY ™) (grad F(Y )&y + Eygrad F(Y)")))
=g(ny,Dgrad F(Y)[¢y]) + g (ny, ( %Py) (grad F(Y)&; + &y grad F(Y)*)Y(Y*Y)*l).

Darad F(Y)ley] = (1= 4Py ) VIOV )Y G + 67 Y (r°Y)
—3(D (P& )VAYY)Y (YY) + (I - 3Py) V(YY)D (Y(Y*Y) )&y ],
where we have

D (Py)[gy] =D (Y (YY) ~'Y™)[év]
=& YY) YY) THEY + Y ) (YY) Y Y (YY) T,

D(Y(Y'Y) Dley] = & (YY) = V(YY) (G + V' &)(¥*Y) !
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741 Combining these equations we have

e gy(Hess F(Y)ey]ny) =3 (ny, (I - Py) V(YY) ES + & VY (YY) )
743 =4 (v, 3(& (Y)Y Y (YY) HGY + Y ) (YY) Y Y (YY) 1§y)Vf(YY* v)~)
744 +3 (v, (I — 3Py) VIYY™) (& (YY) =Y (YY) 1Y + Y6y )( Y* 1)
745 +3 (v, (I = 5Py) (I = 3Py ) VIYY" )Y (YY) + & (YY) 'Y VYY) (I - Py)) Y)™)
76 =gy, (I - 3P) VYY)V + &Y Y (YY) ) = g (v, 5 (YY) 1Y*Vf(YY* Y)™)
U =g (v, SY (YY) TG VAYY)Y (YY) ) + g (g, 2Y (YY) %Ypyvjf(w* 1)
748 +3 (v, 3Py &y (V)T VY Y)Y (YY) ™) 4 g (v, (T = 3Py) VAYY™) (= Py)&y (YY) =Y (Y léy )
749 +3(ny, (I =3P ) VYY" )Y (YY) I GY YY) - IR VI YY)Y (YY) lgy 1)
750 +3 (v, 3 (I - Py) &Y (VY)Y VA YY)Y (YY) 4+ 1P &G (YY) Y V(Y Y)Y (Ve 1)
L =gy, (I - 5Py) VYY)V E + &Y Y (YY) ) + g (v, (I - Py)VYY*)I = Py)éy (YY) ™)
752 T3 (ny, 3V skew (Y*Y)T'YE& (VY)W VYY)V (YY) ) + 3§ (ny, Yskew (YY) WY VA(YY*)(I — Py)&y (YY) 1))
753 =gy, (I - 3Py) VYY)V + &YV (YY) + (YY)™)

G(ny,I = Py)Vf(YY*)I - Py)éy
54 =g (v, (I = 3Py) VEAYY)YE + & Y)Y (YY) 4+ (I = Py)VIYY*)(I = Pr)éy (YY) ™).

755 Hence for &y € Hy, we have

756 Hess F(Y)[ey] = (I — 1Py) VEA(YY )Y + &YV (Y*Y) 7 4+ (I — P)VAYY*)(I - Py)éy (Y*Y) !
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