
A simple GPU implementation of

spectral-element methods for solving 3D Poisson

type equations on rectangular domains and its

applications

Xinyu Liu∗1, Jie Shen†2, and Xiangxiong Zhang‡1

1Department of Mathematics, Purdue University, West Lafayette,
IN 47906, US

2Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R.
China

Abstract

It is well known since 1960s that by exploring the tensor product struc-
ture of the discrete Laplacian on Cartesian meshes, one can develop a

simple direct Poisson solver with an O(N
d+1
d) complexity in d-dimension,

where N is the number of the total unknowns. The GPU acceleration
of numerically solving PDEs has been explored successfully around fif-
teen years ago and become more and more popular in the past decade,
driven by significant advancement in both hardware and software tech-
nologies, especially in the recent few years. We present in this paper a
simple but extremely fast MATLAB implementation on a modern GPU,
which can be easily reproduced, for solving 3D Poisson type equations
using a spectral-element method. In particular, it costs less than one
second on a Nvidia A100 for solving a Poisson equation with one billion
degree of freedoms. We also present applications of this fast solver to
solve a linear (time-independent) Schrödinger equation and a nonlinear
(time-dependent) Cahn-Hilliard equation.

1 Introduction

It is well known that the tensor product structure of the discrete Laplacian on
Cartesian meshes can be used to invert the Laplacian since 1960s [15]. This ap-
proach has been particularly popular for spectral and spectral-element methods

∗liu1957@purdue.edu
†jshen@eitech.edu.cn
‡zhan1966@purdue.edu

1

[8, 17, 18, 12, 2]. In fact, this method can be used for any discrete Lapla-
cian on a Cartesian mesh. In this paper, as an example, we focus on the Qk

spectral-element method, which is equivalent to the classical continuous finite
element method with Lagrangian Qk basis implemented with the (k + 1)-point
Gauss–Lobatto quadrature [16, 13]. Tensor based solvers naturally fit the design
of graphic processing units (GPUs). The earliest successful attempts to accel-
erate the computation of high order accurate methods in scientific computing
communities include nodal discontinuous Galerkin method [11] almost fifteen
years ago. These pioneering efforts of GPU acceleration of high order methods,
or even those ones published later such as [3] in 2013, often rely on intensive
coding.

In recent years, the surge in computational demands from machine learning
and neural network based approaches has led to the evolution of modern GPUs.
Correspondingly, software technologies have advanced considerably, streamlin-
ing the utilization of GPU computing. The landscape of both hardware and
software has dramatically transformed, differing substantially from what ex-
isted a decade or even just two years ago.

In this paper, we present a straightforward yet robust implementation of ac-
celerating the spectral-element method for three-dimensional discrete Laplacian
on modern GPUs. In particular, for a total number of degree of freedoms as
large as 10003, the inversion of the 3D Laplacian using an arbitrarily high or-
der Qk spectral-element method, takes no more than one second on one Nvidia
A100 GPU card with 80G memory. While this impressive computational speed
is naturally contingent on the hardware, it is noteworthy that our approach is
grounded in a minimalist MATLAB implementation, ensuring ease of replica-
tion. In the Appendix, we give a full MATLAB code for solving a 3D Poisson
equation on a rectangular domain using Qk spectral-element method.

We remark that a similar simple implementation on GPUs can also be
achieved using Python using the Python package JAX, which however provides
better performance than MATLAB only for single precision computation. Our
numerical tests and comparison on one Nvidia A100 GPU card suggest that
MATLAB implementation performs better than Python for double precision
computation for large problems like one billion DoFs.

We emphasize that the ability of solving Poisson type equation fast can play
an important role in many fields of science and engineering. In fact, a large class
of time dependent nonlinear systems, after a suitable implicit-explicit (IMEX)
time discretization, often reduces to solving Poisson type equations at each
time step (see, for instance, [19]). Therefore, having a simple, accurate and
very fast solver for Poisson type equations can lead to very efficient numerical
algorithms on modern GPUs for these nonlinear systems which include, e.g.,
Allen-Cahn and Chan-Hillard equations and related phase-field models [19],
nonlinear Schrödinger equations, Navier-Stokes equations and related hydro-
dynamic equations through a decoupled (projection, pressure correction etc.)
approach [7]. In particular, by using the code provided in the Appendix, one
can build, with a relatively easy effort, very efficient numerical solvers on modern
GPUs for these time dependent complex nonlinear systems.

2

The rest of the paper is organized as follows. In Section 2, we give the imple-
mentation details for 3D problems, which is robust for very high order elements
with the computation approach in Section 2.3. In Section 3, we demonstrate
the good performance of this simple implementation for equations including the
Poisson equation, a variable coefficient elliptic problem solved by the precondi-
tioned conjugate gradient descent using Laplacian as a preconditioner, as well
as a Cahn–Hilliard equation. Although our focus in this paper remains on the
spectral-element method for these particular equations, similar results can be
obtained for other problems with the same tensor product structure, e.g., finite
difference schemes in implementing the matrix exponential in the exponential
time differencing [6] and spectral fractional Laplacian [4]. We also compare it
with a similar simple implementation in Python, and the numerical results sug-
gest that MATLAB implementation is better than Python for double precision
computation on A100. Some concluding remarks are given in Section 4.

2 A spectral-element method for Poisson type
equations

To fix the idea, we describe the implementation details for solving the Poisson
type equation

αu−∆u = f, (1)

with a constant coefficient α > 0 and homogeneous Neumann boundary condi-
tions on a rectangular domain Ω. We only consider the spectral-element method
with continuous piecewise Qk polynomial basis on uniform rectangular meshes,
and all integrals are approximated by (k + 1)-point Gauss–Lobatto quadrature
[14].

2.1 The spectral-element method in two dimensions

We first consider the two dimensional case. As shown in Figure 1, such quadra-
ture points naturally define all degree of freedoms since a single variable poly-
nomial of degree k is uniquely determined by its values at k + 1 points.

On a rectangular mesh for Qk basis as shown in Figure 1 (a) or (c), let
(xi, yj) (i = 1, · · · , Nx; j = 1, · · ·Ny) denote all the points in Figure 1 (b) or
(d). We consider the following finite element space of continuous piecewise Qk

polynomials:

V h = Span{ϕi(x)ϕj(y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

where ϕi(x) (i = 1, · · · , Nx) denotes the i-th Lagrangian interpolation polyno-
mial of degree k in the x direction as shown in Figure 1 (b) or (d).

Then, the Qk spectral-element method for solving (1) on a rectangular do-
main Ω is to seek uh ∈ V h satisfying

α⟨uh, vh⟩+ ⟨∇uh,∇vh⟩ = ⟨f, vh⟩, ∀vh ∈ V h, (2)

3

(a) A 3× 2 mesh for Q2 element and
the 3× 3 Gauss-Lobatto quadrature.

(b) All the quadrature points for Q2

element.

(c) A 2 × 2 mesh for Q3 element and
the 4× 4 Gauss-Lobatto quadrature.

(d) All the quadrature points for Q3

element.

Figure 1: An illustration of Lagrangian Qk element and the (k + 1) × (k + 1)
Gauss-Lobatto quadrature.

4

where ⟨f, g⟩ denotes the approximation to the integral
∫∫

Ω
f(x, y)g(x, y) dxdy

by the (k+1)× (k+1) Gauss-Lobatto quadrature rule in each cell as shown in
Figure 1.

The numerical solution uh(x, y) ∈ V h can be expressed by the basis as

uh(x, y) =

Nx∑
i=1

Ny∑
j=1

ui,jϕi(x)ϕj(y),

where the coefficients ui,j = uh(xi, yj) since ϕi(x) and ϕj(y) are chosen as the
Lagrangian interpolation polynomials at xi and yj .

Next, we define the one-dimensional stiffness matrix and the mass matrix
as follows. The stiffness matrix Sx is a matrix of size Nx × Nx with (i, j)-th
entry being ⟨ϕ′

i(x), ϕ
′
j(x)⟩. The mass matrix Mx is a matrix of size Nx × Nx

with (i, j)-th entry being ⟨ϕi(x), ϕj(x)⟩. The matrices Sy and My are similarly
defined, with a size Ny ×Ny. Since the basis polynomials ϕi(·) are Lagrangian
interpolants at the quadrature points, the mass matrices Mx and My are diag-
onal.

Remark 1 Instead of the Lagrangian basis, we can also use the modal basis
Lj(x)− Lj+2(x) in each cell, where Lk(x) is the Legendre polynomial of degree
k, as the interior basis functions and the piecewise linear hat function at the
intersecting points of two subintervals. This leads to sparse mass and stiffness
matrices [12, 2].

Let U be a matrix of size Nx × Ny with ui,j being its (i, j)-entry. Then
uh(x, y) can be equivalently represented by the matrix U . Similarly, let F be
a matrix of size Nx ×Ny with f(xi, yj) being its (i, j)-entry. Then the scheme
(2) can be equivalently written as

αMxUMT
y + SxUMT

y +MxUST
y = MxFMT

y . (3)

Detailed derivations of (3) can be found in [14, 20, 10].

2.2 Inversion by eigenvalue decomposition

For any matrix X of size m× n, define a vectorization operation vec(·), and let
vec(X) be the vector of size mn obtained by reshaping all entries of X into a
column vector in a column by column order. Then for any two matrices A1, A2

of proper sizes, it satisfies

vec(A1XAT
2) = (A2 ⊗A1) vec(X), (4)

where ⊗ denotes the Kronecker product. With (4), the Qk spectral-element
method (3) is also equivalent to

(αMy ⊗Mx +My ⊗ Sx + Sy ⊗Mx)vec(U) = (My ⊗Mx)vec(F). (5)

5

The linear system (3), or equivalently (5), can be solved by the following
well-known method by using eigenvalue decomposition for only small matrices
such as S and M . For convenience, we only consider the simplified equivalent
system

αU +HxU + UHT
y = F, (6)

or
(α+ Iy ⊗Hx +Hy ⊗ Ix)vec(U) = vec(F), (7)

where I is the identity matrix and H = M−1S.
First, solve a generalized eigenvalue problem for small matrices S and M ,

i.e., finding eigenvalues λi and eigenvectors vi satisfying

Svi = λiMvi. (8)

Regardless of what kind of basis functions is used in a spectral-element
method, the variational form of (2) ensures the symmetry of S and M , thus a
complete set of eigenvectors exists for (8). Let Λ be a diagonal matrix with all
eigenvalues λi being diagonal entries, and let T be the matrix with all corre-
sponding eigenvectors vi as its columns. Then

ST = MTΛ ⇒ H = M−1S = TΛT−1.

Thus (7) becomes

[α+ (TyIyT
−1
y)⊗ (TxΛxT

−1
x) + (TyΛyT

−1
y)⊗ (TxIxT

−1
x)]vec(U) = vec(F),

which is equivalent to

(Ty ⊗ Tx)[α+ Iy ⊗ Λx + Λy ⊗ Ix](T
−1
y ⊗ T−1

x)vec(U) = vec(F). (9)

Notice that α+ Iy ⊗Λx+Λy ⊗ Ix is a diagonal matrix, thus its inverse is simple
to compute. Let Λ2D be a matrix of size Nx × Ny with its (i, j) entry being
equal to α+ (Λx)i,i + (Λy)j,j , then (9) can be solved by

U = Tx[(T
−1
x FT−T

y)./Λ2D]TT
y , (10)

where ./ denotes the entrywise division between two matrices.

2.3 Robust computation of the generalized eigenvalue prob-
lem

In our spectral-element implementation, M is diagonal. So we can consider
an eigenvalue problem instead of the generalized eigenvalue problem (8). A
numerically robust method, especially for very high order polynomial basis, is
to solve the following symmetric eigenvalue problem. Let

H = M−1S = M−1/2(M−1/2SM−1/2)M1/2.

6

Since S1 = M−1/2SM−1/2 is real and symmetric, we can first find its eigen-
value decomposition as S1 = QΛQT where Λ is a diagonal matrix and Q is an
orthogonal matrix. Then, we have

H = M−1/2(QΛQT)M1/2 = TΛT−1,

with T = M−1/2Q and T−1 = QTM1/2. In Section 3.4, we will show numer-
ical tests validating the robustness of this implementation for very high order
elements.

2.4 Implementation for the three-dimensional case

On a three dimensional rectangualar mesh, any continuous piecewise Qk poly-
nomial uh can be uniquely represented by a 3D array U of size Nx ×Ny ×Nz

with (i, j, k)-th entry denoting the point value uh(xi, yj , zk), where (xi, yj , zk)
(i = 1, · · · , Nx; j = 1, · · · , Ny; k = 1, · · · , Nz) denotes all the quadrature points.

For a 3D array U , we define a page as the matrix obtained by fixing the last
index of U . Namely, U(: , : , k) for any fixed k is a page of U . For a matrix
U(: , : , k) of size Nx ×Ny, recall that vec(U(: , : , k)) is a column vector of size

NxNy. We define Û as the following matrix of size NxNy × Nz obtained by
reshaping U :

Û =
[
vec(U(: , : , 1)) vec(U(: , : , 2)) · · · vec(U(: , : , Nz))

]
.

Then we define vec(U) as the vector of size NxNyNz × 1 by reshaping Û in a
column by column order.

With the notation above, it is straightforward to verify that

(AT
3 ⊗AT

2 ⊗A1)vec(U) = vec((AT
2 ⊗A1)ÛA3). (11)

Next, we consider how to implement the matrix vector multiplication in (11)
without reshaping the 3D arrays. Let Y be a 3D array of size Nx × Ny × Nz

defined by
vec(Y) = (AT

3 ⊗AT
2 ⊗A1)vec(U). (12)

With the simple property (11), in our numerical tests, we find that the following
simple implementation of (12) in MATLAB 2023 is efficient using two functions
tensorprod and pagemtimes:

1 % Computing a 3D array Y of the same size as U defined above
2 Y = tensorprod(U,A3,3,1);
3 Y = pagemtimes(Y,A2);
4 Y = squeeze(tensorprod(A1,Y,2,1));

For the three-dimensional case, for simplicity, we consider the equation (1)
with α = 0. With similar notation as in the two-dimensional case, the matrix
form of the Qk spectral-element method (2) can be given as

(Mz ⊗My ⊗ Sx +Mz ⊗ Sy ⊗Mx + Sz ⊗My ⊗Mx) vec(U)

= (Mz ⊗My ⊗Mx) vec(F),

7

or equivalently,

(Iz ⊗ Iy ⊗Hx + Iz ⊗Hy ⊗ Ix +Hz ⊗ Iy ⊗ Ix) vec(U) = vec(F), (13)

where U is a 3D array with (i, j, k)-th entry denoting the point value uh(xi, yj , zk),
and F is a 3D array with (i, j, k)-th entry denoting the point value f(xi, yj , zk).

With the eigenvalue decomposition H = M−1S = TΛT−1, similar to the
derivation of (9), the equation (13) is equivalent to

(Tz ⊗ Ty ⊗ Tx) (Iz ⊗ Iy ⊗ Λx + Iz ⊗ Λy ⊗ Ix + Λz ⊗ Iy ⊗ Ix) (T
−1
z ⊗ T−1

y ⊗ T−1
x)vec(U) = vec(F).

(14)
Define a 3D array Λ3D with its (i, j, k)-th entry being equal to (Λx)i,i+(Λy)j,j+
(Λz)k,k, then (14) can be implemented efficiently as the following in MATLAB:

1 % Simple and efficient implementation of (14)
2 % TInv denotes the inverse matrix of T
3 U = tensorprod(F,TzInv',3,1);
4 U = pagemtimes(U,TyInv');
5 U = squeeze(tensorprod(TxInv,U,2,1));
6 U = U./Lambda3D;
7 U = tensorprod(U,Tz',3,1);
8 U = pagemtimes(U,Ty');
9 U = squeeze(tensorprod(Tx,U,2,1));

Table 1: The MATLAB 2023 script of implementing (14) on both CPU and
GPU.

3 Numerical tests

In this section, we report the performance of the simple MATLAB implementa-
tion in Table 1. In particular, a demonstration code is provided in the Appendix.
The performance and speed-up are of course dependent on the hardwares. We
test our code on the following three devices:

1. CPU: Intel i7-12700 2.10 GHz (12-core) with 16G memory;

2. GPU: Quadro RTX 8000 (48G memory);

3. GPU: Nvidia A100 (80G memory).

In MATLAB 2023, for computation on either CPU or GPU, the code for
implementing (14) is the same as in Table 1. On the other hand, matrices
like Tx, Ty, Tz and arrays like F and Λ3D must be loaded to GPU memory
before performing the GPU computation, see the full code in the Appendix.
We define the process of loading matrices and arrays Tx, Ty, Tz, F,Λ3D as the

8

offline step since it is preparatory, and undertaken only once, regardless of how
many times the Laplacian needs to be inverted. We define the step in Table 1
as the online computation step. All the computational time reported in
this section are online computational time, i.e., we do not count the
offline preparational time.

3.1 Accuracy tests

We list a few accuracy tests to show that the scheme implemented is indeed
high order accurate. In particular, the Qk (k ≥ 2) spectral-element method is
(k + 2)-th order accurate for smooth solutions when measuring the ℓ2 error in
function values for solving second order PDEs, which has been rigorously proven
recently in [14, 13].

We consider the Poisson type equation (1) with α = 1 in domain Ω =
[−1, 1]3. For Dirichlet boundary conditions, we test a smooth exact solution

u∗
D(x) = sin(πx) sin(2πy) sin(3πz) + (x− x3)(y2 − y4)(1− z2).

For Neumann boundary conditions, we test a smooth exact solution

u∗
N (x) = cos(πx) cos(2πy) cos(3πz) + (1− x2)3(1− y2)2(1− z2)4.

The results of Q5 and Q6 spectral-element methods are listed in Table 2.

Q5 spectral-element method (SEM)

FEM Mesh
Dirichlet boundary Neumann boundary

Total DoFs ℓ2 error order Total DoFs ℓ2 error order
23 93 2.27E-1 - 113 4.76E-1 -
43 193 3.91E-3 5.86 213 5.49E-3 6.44
83 393 4.12E-5 6.57 413 4.32E-5 6.99
163 793 3.34E-7 6.95 813 3.42E-7 6.98
323 1593 2.63E-9 6.99 1613 2.67E-9 7.00

Q6 spectral-element method (SEM)

FEM Mesh
Dirichlet boundary Neumann boundary

Total DoFs ℓ2 error order Total DoFs ℓ2 error order
23 113 9.68E-2 - 133 1.18E-1 -
43 233 6.05E-4 7.32 253 8.42E-4 7.13
83 473 3.11E-6 7.60 493 3.24E-6 8.02
163 953 1.26E-8 7.95 973 1.28E-8 7.98
323 1913 4.96E-11 7.98 1933 5.09E-11 7.98

Table 2: Accuracy tests for discrete Laplacian for a 3D problem with Dirichlet
boundary conditions and a 3D problem with Neumann boundary conditions.

9

3.2 GPU acceleration for solving a Poisson type equation

In this subsection, we list the online computational time comparison for solving
αu −∆u = f on Ω = [−1, 1]3 with α = 1 and Neumann boundary conditions,
by using the Q5 spectral-element method. To obtain a more accurate estimate
of the online computational time, we count the online computation time for
solving the Poisson equation 200 times. The results of online computational
time, depicted in Figure 2 and Table 3, demonstrate a speed-up factor of at least
60 for sufficiently large problems when comparing Nvidia A100 to Intel i7-12700.
In particular, we observe that on the A100, solving a Poisson type equation (1)
with a total degree of freedoms (DoFs) equal to 10013, takes approximately only
0.8 second.

For completeness, in Table 4, we also include the offline preparation time
which includes the time for generating arrays and loading arrays to GPU mem-
ory.

(a) Comparison on three devices. (b) Semilogx plot shows the complexity on all de-

vices are O(N
4
3) for problems with proper sizes.

Figure 2: Online computation time of Q5 spectral-element method solving a
3D Poisson equation two hundred times. On the A100, it takes approximately
only 0.8 second when solving one Poisson equation for the total number of DoFs
being 10013.

3.3 GPU acceleration for solving a Schrödinger equation

For a Problem with general variable coefficients, the tensor product structure
of the eigenvectors no longer holds. Then, an efficient method for solving such
problems is to use a preconditioned conjugate gradient method with the inverse
of Poisson type equation as a preconditioner. As an example, we consider the
following equation

αu−∆u+ V (x)u = f, (15)

10

Total DoFs
Intel i7-12700 NVIDIA Quadro NVIDIA A100
CPU time GPU time speed-up GPU time speed-up

2013 2.29E1 1.03E1 2.23 9.00E-1 25.47
2513 4.86E1 1.91E1 2.54 1.15E0 42.14
3013 1.08E2 4.10E1 2.65 2.05E0 52.94
3513 1.81E2 7.82E1 2.32 3.31E0 54.77
4013 3.36E2 1.36E2 2.47 5.41E0 62.12
4513 4.98E2 2.25E2 2.22 8.52E0 58.49
5013 7.13E2 2.96E2 2.41 1.11E1 64.09
5513 1.05E2 4.46E2 2.35 1.71E1 61.19
6013 1.57E3 6.40E2 2.46 2.35E1 67.09
6513 2.05E3 9.09E2 2.25 3.37E1 60.68
7013 2.63E3 1.11E3 2.37 4.07E1 64.63
7513 3.30E3 1.48E3 2.23 5.31E1 62.19
8013 6.29E3 1.97E3 3.20 6.86E1 91.64
8513 1.13E4 2.55E3 4.45 8.97E1 126.36
9013 2.79E4 3.27E3 8.53 1.14E2 244.19
9513 4.69E4 3.77E3 12.45 1.34E2 349.16

Table 3: Online computation time of solving a 3D Poisson equation two hundred
times on three devices: the time unit is second, and the speed-up is GPU versus
CPU.

Total DoFs 2003 2503 3003 3503 4003 4503

Quadro 1.59E0 1.60E0 1.64E0 1.72E0 1.77E0 1.85E0
A100 3.01E-1 3.19E-1 3.41E-1 3.85E-1 4.36E-1 4.93E-1

Total DoFs 5003 5503 6003 6503 7003 7503

Quadro 1.92E0 2.01E0 2.16E0 2.42E0 2.46E0 2.49E0
A100 5.57E-1 6.30E-1 7.07E-1 8.41E-1 9.61E-1 1.12E0

Total DoFs 8003 8503 9003 9503 10003 10503

Quadro 2.52E0 2.82E0 3.08E0 3.40E0 3.70E0 4.37E0
A100 1.24E0 1.41E0 1.60E0 1.83E0 2.04E0 2.29E0

Table 4: Offline preparation time in MATLAB on GPU for solving a 3D Poisson
equation: the time unit is second.

on Ω = [−16, 16]3 with α = 1,

V (x) = β sin(
π

4
x)2 sin(

π

4
y)2 sin(

π

4
z)2, β > 0, (16)

and an exact solution

u(x) = cos(
π

16
x) cos(

π

16
y) cos(

π

16
z). (17)

The equation (15) is sometimes referred to as a Schrödinger equation, which
emerges in solving more complicated problems originated from the nonlinear

11

Schrödinger equation, e.g., the Gross-Pitaevskii equation [5]. The boundary
conditions can be either periodic or homogeneous Neumann.

Note that 0 ≤ V (x) ≤ β. We use ((α + 1
2β)I − ∆)−1 as a preconditioner

in the preconditioned conjugate gradient (PCG) method inverting the operator
αI − ∆ + V (x) with periodic boundary conditions in the Q5 spectral-element
method, where ((α + 1

2β)I − ∆)−1 is implemented in the same way as in Ta-
ble 1. We emphasize that eigenvectors can not be implemented by
fast Fourier transform (FFT) for high order schemes with periodic
boundary conditions, because the stiffness matrix S for Qk SEM is
a circulant matrix only when k = 1, i.e., FFT can be used to invert
Laplacian only for second order accurate schemes.

Obviously, the performance of such a simple method depends on the condi-
tion number of the operator αI −∆+ V (x), which is affected by the choice of
V (x). By choosing different β in (16), the performance of PCG, e.g., the num-
ber of PCG iterations needed for the PCG iteration residue to reach round-off
errors, would vary. We first list the performance of PCG for the Q5 spectral-
element method on different meshes for different β in Table 5. We can observe
that the performance only depends on V (x) for a fine enough mesh.

Total Number of PCG iterations
DoFs β = 1 10 100 200 400 800 1000 2000 4000 10000
2503 10 35 85 112 149 191 214 288 388 535
3503 10 32 81 108 143 184 202 265 348 522
4503 10 30 80 105 142 181 191 252 333 467
5503 10 28 76 104 129 174 183 239 321 448
6503 10 27 77 100 135 169 182 248 327 465
7503 10 27 76 100 130 173 192 233 320 456
8503 10 27 76 100 134 173 188 233 305 430
9503 10 25 72 98 128 165 180 234 305 428
10003 10 25 72 101 134 172 188 243 305 433

Table 5: Number of PCG iterations needed for PCG with ((α + 1
2β)I − ∆)−1

as the preconditioner to converge for solving a Schrödinger equation by the Q5

SEM on different meshes with different β = 1, 10, 100, 200, · · · , 10000.

The online computational time of using PCG for the Q5 spectral-element
method solving one Schrödinger equation with β = 1 in (16) is listed in both
Figure 3 and Table 6. We can observe a satisfying speed-up. With 10 PCG
iterations, it costs about 20 seconds on A100 for inverting a 3D Schrödinger
operator for a total number of DoFs as large as 10003.

3.4 Robustness of the implementation for very high order
elements

For very high order elements, it is important to have a robust procedure for
finding the eigenvalue decomposition of the matrix H. We test the implementa-

12

(a) Comparison on three devices. (b) Semilogx plot shows the complexity on all de-

vices are O(N
4
3) for problems of proper sizes.

Figure 3: Online computational time of Q5 SEM for a Schrödinger equation
with β = 1 in (16), solved by PCG with (I −∆)−1 as the preconditioner.

Total DoFs 2003 2503 3003 3503 4003 4503

Intel i7-12700 2.99E0 5.50E0 1.09E1 1.81E1 3.27E1 4.83E1
Nvidia Quadro 9.48E-1 1.58E0 3.32E0 6.30E0 1.10E1 1.80E1
Nvidia A100 1.04E-1 1.23E-1 2.21E-1 3.61E-1 5.75E-1 8.86E-1

Total DoFs 5003 5503 6003 6503 7003 7503

Intel i7-12700 6.90E1 9.83E1 2.16E2 5.63E2 1.03E3 1.80E3
Nvidia Quadro 2.38E1 3.55E1 5.11E1 7.23E1 8.78E1 1.18E2
Nvidia A100 1.18E0 1.75E0 2.38E0 3.35E0 4.10E0 5.30E0

Total DoFs 8003 8503 9003 9503 10003

Nvidia Quadro 1.57E2 2.09E2 - - -
Nvidia A100 6.79E0 8.71E0 1.11E1 1.88E1 2.04E1

Table 6: The online computational time (unit is second) of using PCG for the
Q5 SEM solving one Schrödinger equation with β = 1 in (16).

tion in Remark 2.3 for the Q20 spectral-element method solving the Schrödinger
equation. The error in Table 7 and the online computational time in Table 8
validate the robustness of the implementation. In other words, even for Q20

element, the numerical computation of eigenvalue decomposition in Remark 2.3
is still accurate.

3.5 Comparison with FFT on GPU

It is also interesting to compare the implementation in Table 1 with the perfor-
mance of fast Fourier transform (FFT) on GPU. In order to do so, we consider
solving the Poisson type equation(1) and the Schrödinger equation (23) with pe-
riodic boundary conditions using second order finite difference, or equivalently

13

Total DoFs
ℓ∞ error

β = 1 β = 10 β = 100
5003 1.89E-13 1.62E-13 1.29E-13
8003 4.86E-13 4.09E-13 2.97E-13
10003 6.28E-13 5.23E-13 3.76E-13

Table 7: The ℓ∞ error for Q20 SEM solving one Schrödinger equation with
different β in (16).

Total DoFs
β = 1 β = 10 β = 100

Time # PCG Time # PCG Time # PCG
5003 1.23E0 10 2.36E0 23 6.47E0 68
8003 7.13E0 11 3.15E1 56 7.84E1 142
10003 2.04E1 10 4.40E1 23 1.30E2 70

Table 8: Online computational time in seconds for Q20 SEM solving one
Schrödinger equation with different β in (16).

the Q1 spectral-element method, for which the discrete Laplacian can be diago-
nalized by FFT, e.g., the eigenvector matrices T−1 in (14) is the discrete Fourier
transform matrix. In other words, for Q1 element with periodic boundary, the
implementation in Table 1 can be replaced by the following implementation via
FFT in MATLAB:

1 U = fftn(F);
2 U = U./Lambda3D;
3 U = real(ifftn(U));

Table 9: The FFT implementation of a second order scheme for the Poisson
equation with periodic boundary conditions.

We will refer to such an implementation for a second order scheme as FFT
in Figure 4 and Figure 5. On the other hand, even if the Poisson equation has
periodic boundary conditions, the matrices T and T−1 for high order elements
cannot be implemented by FFT. We simply refer to the implementation in
Table 1 for high order elements as SEM in Figure 4 and Figure 5. The detailed
comparison is listed in Figure 4 and Figure 5, as well as Table 10 and Table 11.
We can observe that FFT is faster as expected, on most meshes. However, the
memory cost of performing FFT is more demanding, especially on finer meshes.
For the Schrödinger problem, the performance of FFT deteriorates on finest
meshes.

14

(a) Comparison on one device. (b) Semilogx plot shows the complexity.

Figure 4: Comparison between Q5 SEM implemented in Table 1 and a second
order scheme implemented by FFT in Table 9, for solving a Poisson equation
200 times. On A100, the FFT implementation cannot solve a problem of size
10503 in MATLAB 2023, due to the larger memory cost of FFT.

(a) Comparison on one device. (b) Semilogx plot shows the complexity.

Figure 5: Comparison between Q5 SEM implemented in Table 1 and a second
order scheme implemented by FFT in Table 9 for solving a Schrödinger equation
by PCG. On A100, the FFT implementation cannot solve a problem of size 9503

in MATLAB 2023, due to the larger memory cost of FFT.

3.6 A Cahn–Hilliard equation

We consider solving the Cahn–Hilliard equation [1], which is not only a fourth-
order equation in space, but also incorporates a time derivative. Consider a
domain Ω = [−1, 1]3 with its boundary denoted as ∂Ω. Within this domain, the
Cahn–Hilliard equation with simple boundary conditions is given by{

ϕt = m∆
(
−ϵ∆ϕ+ 1

ϵF
′(ϕ)

)
in Ω,

∂nϕ = 0, ∂n∆ϕ = 0 on ∂Ω,
(18)

15

Total DoFs 2003 2503 3003 3503 4003 4503

Quadro (SEM) 1.03E1 1.91E1 4.10E1 7.82E1 1.36E2 2.25E2
Quadro (FFT) 2.06E0 4.61E0 7.82E0 1.33E1 1.83E1 2.70E1
A100 (SEM) 9.00E-1 1.15E0 2.05E0 3.31E0 5.41E0 8.52E0
A100 (FFT) 4.58E-1 7.50E-1 1.49E0 2.44E0 3.37E0 4.52E0

Total DoFs 5003 5503 6003 6503 7003 7503

Quadro (SEM) 2.96E2 4.46E2 6.40E2 9.09E2 1.11E3 1.48E3
Quadro (FFT) 5.19E1 6.89E1 9.12E1 1.64E2 1.57E2 1.31E2
A100 (SEM) 1.11E1 1.71E1 2.35E1 3.37E1 4.07E1 5.31E1
A100 (FFT) 8.22E0 1.21E1 1.56E1 2.55E1 3.02E1 2.17E1

Total DoFs 8003 8503 9003 9503 10003 10503

Quadro (SEM) 1.97E3 2.55E3 3.27E3 3.77E3 4.656E3 5.79E3
Quadro (FFT) 1.52E2 3.82E2 2.13E2 - - -
A100 (SEM) 6.86E1 8.97E1 1.14E2 1.34E2 1.59E2 2.01E2
A100 (FFT) 3.38E1 5.76E1 3.32E1 8.43E1 7.97E1 -

Total DoFs 11003 11503 12003 12503 13003 13503

A100 (SEM) 2.46E2 2.85E2 3.27E2 4.06E2 - -

Table 10: Online computational time comparison between Q5 SEM implemented
in Table 1 and a second order scheme implemented by FFT in Table 9, for solving
a Poisson equation 200 times. On A100, the FFT implementation cannot solve
a problem of size 10503 in MATLAB 2023, due to the larger memory cost of
FFT. Unit is in seconds.

where ϕ is a phase function with a thin, smooth transitional layer, whose
thickness is proportional to the parameter ϵ, m is the mobility constant, and
F (ϕ) = 1

4 (ϕ
2 − 1)2 is a double-well form function.

Due to the simplicity of the boundary conditions, we can avoid solving a
fourth-order equation directly by reformulating (18) as a system of second-order
equations after introducing the chemical potential µ, which can be expressed as
the variational derivative of the energy functional:

E(ϕ) =

∫
Ω

ϵ

2
|∇ϕ|2 + 1

ϵ
F (ϕ)dx. (19)

Then, the system can be derived as
ϕt −m∆µ = 0 in Ω,

µ = −ϵ∆ϕ+ 1
ϵF

′(ϕ) in Ω,

∂nϕ = 0, ∂nµ = 0 on ∂Ω.

(20)

For the space discretization, we use Q5 spectral-element method. For time
discretization, we implement the second order backward differentiation formula

16

Total DoFs 2003 2503 3003 3503 4003 4503

Quadro (SEM) 9.48E-1 1.58E0 3.32E0 6.30E0 1.10E1 1.80E1
Quadro (FFT) 4.25E-1 8.22E-1 1.60E0 2.91E0 4.76E0 7.60E0
A100 (SEM) 1.04E-1 1.23E-1 2.21E-1 3.61E-1 5.75E-1 8.86E-1
A100 (FFT) 7.55E-2 1.19E-1 2.13E-1 3.41E-1 5.02E-1 7.17E-1

Total DoFs 5003 5503 6003 6503 7003 7503

Quadro (SEM) 2.38E1 3.55E1 5.11E1 7.23E1 8.78E1 1.18E2
Quadro (FFT) 1.09E1 1.58E1 2.24E1 3.36E1 4.16E1 5.14E1
A100 (SEM) 1.18E0 1.75E0 2.38E0 3.35E0 4.10E0 5.30E0
A100 (FFT) 1.09E0 1.57E0 2.05E0 3.04E0 3.89E0 4.66E0

Total DoFs 8003 8503 9003 9503 10003 10503

Quadro (SEM) 1.57E2 2.09E2 - - - -
Quadro (FFT) - - - - - -
A100 (SEM) 6.79E0 8.71E0 1.11E1 1.88E1 2.04E1 -
A100 (FFT) 1.05E1 1.64E1 1.84E1 - - -

Table 11: Online computational time comparison between Q5 SEM implemented
in Table 1 and a second order scheme implemented by FFT in Table 9 for solving
a Schrödinger equation by PCG. On A100, the FFT implementation cannot
solve a problem of size 9503 in MATLAB 2023, due to the larger memory cost
of complex numbers. Unit is in seconds.

(BDF-2) to the system (20):{
aϕn+1−ϕ̂n

δt −m∆µn+1 = 0,

µn+1 = −ϵ∆ϕn+1 +
1
ϵF

′(ϕ̄n),
(21)

where a = 3
2 , ϕ̂n = 2ϕn − 1

2ϕn−1, and ϕ̄n = 2ϕn − ϕn−1. To solve this linear
system, we can write it as[

αI −mδt∆
ϵ∆ I

] [
ϕ
µ

]
=

[
f1
f2

]
, (22)

and its solution is given by[
ϕ
µ

]
=

[
DI D(mδt∆)

D(−ϵ∆) αDI

] [
f1
f2

]
=

[
D(f1 +mδt∆f2)
D(−ϵ∆f1 + αf2)

]
, (23)

where D = (αI +mδtϵ∆2)−1.
Notice that µ and ϕ are already decoupled in (23). Thus for implementing

the scheme (21), we only need to compute ϕ without computing µ:

ϕn+1 = Dϕ̂n +mδt
1

ϵ
D∆F ′(ϕ̄n), (24)

where both D = (αI + mδtϵ∆2)−1 and D∆ = (αI + mδtϵ∆2)−1∆ can be
implemented in the same way as shown in Table 1.

17

Since (αI+mδtϵ∆2)−1 and (αI+mδtϵ∆2)−1∆ share the same eigenvectors,
the implementation of (24) costs slightly less than solving the Poisson type
equation twice. In Table 3, we observe that, the average online computational
time of inverting Laplacian once is approximately 0.8 second for the number
DoFs being 10013. For the same mesh and same DoFs, each time step (24) of
solving the Cahn–Hilliard equation costs about 1.27 seconds in Table 12.

3.6.1 Accuracy test

We first use a manufactured analytical solution of the Cahn–Hilliard equation
to validate the convergence rate of the BDF-2 scheme (21). This solution is in
the domain Ω = [−1, 1]3 with ϵ = 0.2, m = 0.01:

ϕ∗(x) = cos(πx) cos(πy) cos(πz) exp(t), (25)

and the corresponding forcing term can be obtained from the equation (20). We
fix the number of basis function as Nx = Ny = Nz = 51 in Q5 SEM so that the
spatial error is negligible compared with the time discretization error. Figure 6
shows that the scheme (21) achieves the expected second order time accuracy.

10−4 10−3 10−2 10−1

10−12

10−10

10−8

10−6

10−4

δt

E
rr
or

slope 2 line

ℓ2 relative error

Figure 6: The ℓ2 relative error of BDF2 scheme (24) for the Cahn–Hilliard
equation.

3.6.2 Coalescence of two drops

We now study the coalescence of two droplets, as described by the Cahn–Hilliard
equation, within the computational domain Ω = [−1, 1]3. Drawing from param-
eter settings in [2], we select ϵ = 0.02, the mobility constant m = 0.02, and the
time step size δt = 0.001 with an end time T = 10. For stable computation, we
use the same simple stabilization method and stabilization parameter as in [2].
Initially, at time t = 0, the domain is occupied by two neighboring spherical
regions of the first material, while the second material fills the remaining space.

18

As time progresses under the Cahn–Hilliard dynamics, these two spherical re-
gions coalesce to form a singular droplet. More specifically, the initial condition
for the phase function is given by

ϕ0(x) = 1− tanh
|x− x1| −R√

2ϵ
− tanh

|x− x2| −R√
2ϵ

, (26)

where x1 = (x1, y1, z1) = (0, 0, 0.37) and x2 = (x2, y2, z2) = (0, 0,−0.37) are
the centers of the initial spherical regions of the first material, and R = 0.35 is
the radius of these spheres.

Figure 7: Semilogx plot shows the temporal evolution of energy E(ϕ).

Owing to the mass conservation and energy dissipation of the system (20),
the energy E(ϕ) first decreases before stabilizing at a constant value, as shown
in Figure 7. The coalescence dynamics of the two droplets is illustrated through
a series of temporal snapshots in Figure 8. These snapshots capture the evolving
interfaces between the materials, visualized by the level set of ϕ = 0. In Table
12, we enumerate the online computational costs associated with various total
DoFs. As explained above, the online computational time at each time step is
less than solving two Poisson equations.

Total DoFs 5013 5513 6013 6513 7013 7513

Total time 8.46E2 1.29E3 1.79E3 2.53E3 3.10E3 4.02E4
Time for each time step 8.46E-2 1.29E-1 1.79E-1 2.53E-1 3.10E-1 4.02E-1

Total DoFs 8013 8513 9013 9513 10013 10513

Total time 5.41E3 6.79E3 8.84E3 1.03E4 1.27E4 -
Time for each time step 5.41E-1 6.79E-1 8.84E-1 1.03E0 1.27E0 -

Table 12: Online computational time in seconds for Q5 SEM in the BDF2
scheme (24) solving the Cahn–Hilliard equation with 10,000 time steps for com-
puting the solution at T = 10 on Nivida A100. The Total time represents the
online computational time for 10,000 time steps, and the Time for each time
step is average online computational time per time step.

19

t0 = 0 t1 = 0.1 t2 = 0.2 t3 = 0.4

t4 = 0.8 t5 = 1.6 t6 = 3.2 t7 = 10

Figure 8: Snapshots of the zero-isocontour of the phase function ϕ show the
coalescence of two drops at different time instants as indicated. See Table 12
for the computational time.

3.7 Comparison with implementation in Python

For implementing (14) on both CPU and GPU, similar to the implementation
in MATLAB shown in Table 1, (14) can be implemented efficiently using the
function jax.numpy.einsum in the Python package JAX as shown in Table 13.

1 u = jnp.einsum('ijk ,kl ->ijl',f,invTz.transpose ())
2 u = jnp.einsum('ijk ,jl ->ilk',u,invTy.transpose ())
3 u = jnp.einsum('li,ijk ->ljk',invTx ,u)
4 u = u/Eig3D

5 u = jnp.einsum('ijk ,kl ->ijl',u,Tz.transpose ())
6 u = jnp.einsum('ijk ,jl ->ilk',u,Ty.transpose ())
7 u = jnp.einsum('li,ijk ->ljk',Tx,u)

Table 13: The Python script of implementing (14) on both CPU and GPU where
jnp means jax.numpy.

Since both Python and MATLAB allow similar simple implementations of
(14) on GPU, it is interesting to compare them. We compare the performance
of MATLAB with Python under double precision, as well as single precision,
which often depends on specific hardware and their driver versions.

In Table 14, we list the online computational time comparison of similar
implementations in MATLAB and Python on A100 for solving a 3D Poisson
equation 200 times. As we can see in Table 14, for double precision computation

20

and problems with size smaller than 10003, there is no significant difference
in the online computational time between MATLAB and Python on GPUs.
However, on A100 with 80G memory, MATLAB allows a problem size as large
as 12503, for which Python can handle only with single precision computation.

Total DoFs
Python(JAX) MATLAB

Single precision Double precision Single precision Double precision
2003 4.80E-1 6.70E-1 4.72E-1 5.20E-1
2503 5.85E-1 1.17E0 7.32E-1 9.11E-1
3003 7.43E-1 2.10E0 1.54E0 1.80E0
3503 1.39E0 3.47E0 2.56E0 3.04E0
4003 1.51E0 5.47E0 4.63E0 5.07E0
4503 2.89E0 8.74E0 7.05E0 8.09E0
5003 2.92E0 1.20E1 8.92E0 1.07E1
5503 6.07E0 1.82E1 1.45E1 1.65E1
6003 5.41E0 2.40E1 1.97E1 2.28E1
6503 1.02E1 3.35E1 3.02E1 3.32E1
7003 9.76E0 4.24E1 3.55E1 4.04E1
7503 1.66E1 5.66E1 4.57E1 5.22E1
8003 1.45E1 7.14E1 6.32E1 6.89E1
8503 2.66E1 9.28E1 8.01E1 9.05E1
9003 2.37E1 1.15E2 1.05E2 1.15E2
9503 4.10E1 1.37E2 1.20E2 1.35E2
10003 3.17E1 - 1.40E2 1.60E2
10503 6.12E1 - 1.87E2 2.04E2
11003 4.77E1 - 2.16E2 2.51E2
11503 7.96E1 - 2.39E2 2.91E2
12003 6.30E1 - 2.95E2 3.34E2
12503 1.13E2 - 3.45E2 4.13E2

Table 14: Online computational time on one Nvidia A100 80G GPU card of Q5

SEM for solving a 3D Poisson equation 200 times. The time unit is second.
For double precision computation in Python on A100, an out-of-memory error
will emerge for problems with size larger than 9503. MATLAB with single
precision is not significantly faster than MATLAB with double pre-
cision, thus not shown.

As shown in Table 14, for larger problems such as one billion DoFs, the
fastest implementation on GPU is Python with single precision computation,
which might be suitable for some practical simulations. To see how accuracy
is affected by single precision computation, we list some results in Table 15.
In general, the implementation for high order SEM with single precision is not
robust on A100, e.g., computation with SEM for the problem in Figure 8 might
blow up.

On the other hand, the second order finite difference implemented in Python

21

Q5 spectral-element method (single precision on Apple M1 CPU)

FEM Mesh
Dirichlet boundary Neumann boundary

Total DoFs ℓ2 error order Total DoFs ℓ2 error order
23 93 2.27E-1 - 113 4.76E-1 -
43 193 3.91E-3 5.86 213 5.49E-3 6.44
83 393 4.11E-5 6.57 413 4.32E-5 6.99
163 793 1.73E-6 4.57 813 1.54E-6 4.81
323 1593 1.66E-6 0.05 1613 2.07E-6 -0.42

Q5 spectral-element method (single precision with A100)

FEM Mesh
Dirichlet boundary Neumann boundary

Total DoFs ℓ2 error order Total DoFs ℓ2 error order
23 93 2.27E-1 - 113 4.82E-1 -
43 193 3.92E-3 5.86 213 6.60E-3 6.19
83 393 4.12E-5 6.57 413 4.32E-5 7.26
163 793 1.44E-3 -5.13 813 2.46E-3 -5.83
323 1593 1.95E-3 -0.44 1613 2.73E-3 -0.15

Table 15: Accuracy tests under single precision in Python on Apple CPU (M1
chip) and Nvidia GPU A100 for the 3D Poisson equation (1) with α = 1.
The actual accuracy of single precision computation depends very much on the
hardware and version of hardware drivers. For Python, we implement the code
under the environment JAX version 0.4.19 for both Apple CPU (M1 chip) and
Nividia GPU (A100), with Driver Version 535.86.10 and CUDA Version 12.2
for A100. See Table 2 for the results of MATLAB with double precision on
Nvidia GPU A100.

FFT implementation on A100 for periodic boundary

Total DoFs
Single precision Double precision
ℓ2 error order ℓ2 error order

103 5.00E-1 - 5.00E-1 -
203 1.05E-1 2.25 1.05E-1 2.25
403 2.53E-2 2.06 2.53E-2 2.06
803 6.26E-3 2.01 6.26E-3 2.01
1603 1.56E-3 2.01 1.56E-3 2.00
3203 3.88E-4 2.00 3.90E-4 2.00
6403 8.57E-5 2.18 9.75E-5 2.00
9003 5.64E-5 1.23 4.93E-5 2.00
12003 9.32E-5 -1.75 - -

Table 16: Accuracy tests for FFT implementation in Python on Nvidia GPU
A100 for the 3D Poisson equation (1) with u∗ = sin(2πx) sin(3πy) sin(4πz) and
α = 1.

22

Jax with single precision computation could be suitable for certain applications.
For periodic boundary conditions, the eigenvectors of second order finite differ-
ence (i.e., Q1 spectral-element method) can be implemented by FFT as shown
in Table 17. As a demonstration, we include the computation results for the
Cahn-Hilliard equation of Python in single precision on A100 in Figure 9, which
is comparable to the double precision results on A100 in Figure 8.

1 u = jnp.fft.fftn(f)/Eig3D

2 if alpha == 0:

3 u[0,0,0] = 0.

4 u = jnp.real(jnp.fft.ifftn(u))

Table 17: The Python script for FFT implementation of a second order (i.e.,
Q1 spectral-element method) for the Poisson equation with periodic boundary
conditions on both CPU and GPU where jnp means jax.numpy.

t0 = 0 t1 = 0.1 t2 = 0.2 t3 = 0.4

t4 = 0.8 t5 = 1.6 t6 = 3.2 t7 = 10

Figure 9: Snapshots of the same problem in Figure 8, implemented by Python
in single precision on A100 for second order finite difference (i.e., Q1 spectral-
element method) by FFT with total DoFs 8003.

4 Concluding remarks

In this paper, we have discussed a simple MATLAB 2023 implementation for
accelerating high order methods on GPUs. For large enough 3D problems, a
speed-up of at least 60 can be achieved on Nvidia A100. In particular, solving

23

a 3D Poisson type equation with one billion DoFs costs only 0.8 second for
Qk spectral-element method. As examples of applications, We applied this fast
solver to solve a linear (time-independent) Schrödinger equation and a nonlinear
(time-dependent) Cahn-Hilliard equation in three-dimension.

Data availability statements

The authors declare that the data supporting the findings of this study are
available within the paper and its supplementary information files.

Declarations

J. Shen’s research was supported in part by NSFC 12371409, and X. Zhang’s
research was supported by NSF DMS-220815. The authors declare they have
no financial interests.

Appendix

A MATLAB scripts for a 3D Poisson equation

We provide a demonstration in MATLAB 2023 for Qk spectral-element method
solving a Poisson equation in three dimensions, which involves three MATLAB
scripts:

1. Poisson3D.m for solving the Poisson equation on either CPU or GPU;

2. SEGenerator1D.m for generating stiffness and mass matrices in spectral
element method;

3. LegendreD.m for Legendre and Jocaboi polynomials from [9].

Readers can easily reproduce the results in Section 3.1 and Section 3.2 using
these three MATLAB scripts.

24

Poisson3D.m:

% Solving the Poisson equation by Q5 SEM with Neumann b.c.
if gpuDeviceCount('available')<1; Param.device='cpu';
else;Param.device='gpu'; Param.deviceID=1;end % ID=1,2,3,...
Np=5; Param.Np=Np; % polynomial degree Q5
Ncellx=40; Ncelly=40; Ncellz=40; % finite element cell number
% total number of unknowns in each direction
nx=Ncellx*Np+1; ny=Ncelly*Np+1; nz=Ncellz*Np+1;
% the domain is [-Lx, Lx]*[-Ly, Ly]*[-Lz, Lz]
Lx=1; Ly=1; Lz=1; cx=pi; cy=2*pi; cz=3*pi; alpha=1;
Param.Ncellx=Ncellx; Param.Ncelly=Ncelly; Param.Ncellz=Ncellz;
Param.nx = nx; Param.ny = ny; Param.nz = nz;
fprintf('3D Poisson with total DoFs %d by %d by %d \n',nx,ny,nz);
fprintf('Laplacian is Q%d spectral element method \n', Np);
[x,ex,Tx,eigx]=SEGenerator1D('x',Lx,Param);
[y,ey,Ty,eigy]=SEGenerator1D('y',Ly,Param);
[z,ez,Tz,eigz]=SEGenerator1D('z',Lz,Param);
% a smooth solution
u1x=cos(cx*x); u2x=power(1-power(x,2),3);
du2x=30*power(x,4)-36*power(x,2)+6;
u1y=cos(cy*y); u2y=power(1-power(y,2),2);
du2y=4-12*power(y,2);
u1z=cos(cz*z); u2z=power(1-power(z,2),4);
du2z=(8-56*power(z,2)).*power(1-power(z,2),2);
uexact=squeeze(tensorprod(u1x*u1y',u1z)+tensorprod(u2x*u2y',u2z));
f=(cx*cx+cy*cy+cz*cz)*squeeze(tensorprod(u1x*u1y',u1z))+...
squeeze(tensorprod(du2x*u2y',u2z)+tensorprod(u2x*du2y',u2z)+...
tensorprod(u2x*u2y',du2z))+alpha*uexact;

TxInv=pinv(Tx); TyInv=pinv(Ty); TzInv=pinv(Tz);
if strcmp(Param.device,'gpu');Device=gpuDevice(Param.deviceID);

fprintf('GPU computation: starting to load matrices/data \n');
Tx=gpuArray(Tx); Ty=gpuArray(Ty); Tz=gpuArray(Tz);
eigx=gpuArray(eigx);eigy=gpuArray(eigy);eigz=gpuArray(eigz);
ex=gpuArray(ex); ey=gpuArray(ey); ez=gpuArray(ez); f=gpuArray(f);
TxInv=gpuArray(TxInv);TyInv=gpuArray(TyInv);TzInv=gpuArray(TzInv);

end
Lambda3D=squeeze(tensorprod(eigx,ey*ez')+tensorprod(ex,eigy*ez')...

+tensorprod(ex,ey*eigz'));
if strcmp(Param.device,'gpu'); wait(Device);

fprintf('GPU loading finished and computing started \n');
end
tic; % online computation
u = tensorprod(f,TzInv',3,1);
u = pagemtimes(u,TyInv');
u = squeeze(tensorprod(TxInv,u,2,1));
u = u./(Lambda3D + alpha);
u = tensorprod(u,Tz',3,1);
u = pagemtimes(u,Ty');
u = squeeze(tensorprod(Tx,u,2,1));
if strcmp(Param.device,'gpu');wait(Device);end;time=toc;err=u-uexact;
fprintf('The ell infinity norm error is %d \n',norm(err(:),inf));
if strcmp(Param.device,'gpu')

fprintf('The online GPU computation time is %d \n', time);
else

fprintf('The online CPU computation time is %d \n', time);
end

25

SEGenerator1D.m:

function [varargout] = SEGenerator1D(direction,L,Param)
% generate 1D spectral element with Neumann B.C.
switch direction

case 'x'
N=Param.Np; Ncell=Param.Ncellx; n=Param.nx;

case 'y'
N=Param.Np; Ncell=Param.Ncelly; n=Param.ny;

case 'z'
N=Param.Np; Ncell=Param.Ncellz; n=Param.nz;

end
% generate the mesh with Ncell intervals with domain [Left, Right]
[D,r,w] = LegendreD(N); Left = -L; Right = L;
Length = Right - Left; dx = Length/Ncell;
for j = 1:Ncell

cellLeft = Left+dx*(j-1);
localPoints = cellLeft+dx/2+r*dx/2;
if (j==1)
x = localPoints;
else
x = [x;localPoints(2:end)];
end

end
SLocal = D'*diag(w)*D; % local stiffness matrix for each element
S=[]; M=[];
for j = 1:Ncell % global stiffness and lumped mass matrices

S = blkdiag(SLocal,S); M = blkdiag(diag(w),M);
end
% Next step: "glue" the cells
Np = N+1; % number of points in each cell
Glue = sparse(zeros(Ncell*Np-Ncell+1, Ncell*Np));
for j = 1:Ncell

rowStart=(j-1)*Np+2-j; rowEnd=rowStart+Np-1;
colStart=(j-1)*Np+1; colEnd=colStart+Np-1;
Glue(rowStart:rowEnd,colStart:colEnd)=speye(Np);

end
S=Glue*S*Glue'; M=Glue*M*Glue'; H=diag(1./diag(M))*S;
ex=ones(n,1); MHalfInv=diag(1./sqrt(diag(M)));
S1=MHalfInv*S*MHalfInv; S1=(S1+S1')/2;
[U,d]=eig(S1,'vector'); [lambda,indexSort]=sort(d);
T=U(:,indexSort); h=dx/2; lambda=lambda/(h*h);
S1=sparse(S1/(h*h)); M=sparse(M);
% after this step, T is the eigenvector of H
T = MHalfInv*T; H=full(H/(h*h)); S=S/h; M=full(M*h);
varargout{1}=x; varargout{2}=ex; varargout{3}=T; varargout{4}=lambda;
end

26

LegendreD.m:

function [D,r,w] = LegendreD(N)
Np = N+1; r = JacobiGL(0,0,N);
w = (2*N+1)/(N*N+N)./power(JacobiP(r,0,0,N),2);
Distance = r*ones(1,N+1)-ones(N+1,1)*r'+eye(N+1);
omega = prod(Distance,2);
D = diag(omega)*(1./Distance)*diag(1./omega);
D(1:Np+1:end) = 0; D(1:Np+1:end) = -sum(D,2);

end
function [x] = JacobiGL(alpha,beta,N)

x = zeros(N+1,1);
if (N==1); x(1)=-1.0; x(2)=1.0; return; end
[xint,temp] = JacobiGQ(alpha+1,beta+1,N-2);
x = [-1, xint', 1]'; return;

end
function [x,w] = JacobiGQ(alpha,beta,N)

if (N==0)
x(1) = -(alpha-beta)/(alpha+beta+2); w(1) = 2; return;

end
h1 = 2*(0:N)+alpha+beta;
J = diag(-1/2*(alpha*alpha-beta*beta)./(h1+2)./h1) + ...

diag(2./(h1(1:N)+2).*sqrt((1:N).*((1:N)+alpha+beta).*...
((1:N)+alpha).*((1:N)+beta)./(h1(1:N)+1)./(h1(1:N)+3)),1);

if (alpha+beta<10*eps); J(1,1)=0.0; end
J = J + J'; [V,D] = eig(J); x = diag(D);
w = power(V(1,:)',2)*power(2,alpha+beta+1)/(alpha+beta+1)*...

gamma(alpha+1)*gamma(beta+1)/gamma(alpha+beta+1);
end
function [P] = JacobiP(x,alpha,beta,N)

xp = x; dims = size(xp);
if (dims(2)==1); xp = xp'; end
PL = zeros(N+1,length(xp));
gamma0 = power(2,alpha+beta+1)/(alpha+beta+1)*gamma(alpha+1)*...

gamma(beta+1)/gamma(alpha+beta+1);
PL(1,:) = 1.0/sqrt(gamma0);
if (N==0); P = PL'; return; end
gamma1 = (alpha+1)*(beta+1)/(alpha+beta+3)*gamma0;
PL(2,:) = ((alpha+beta+2)*xp/2 + (alpha-beta)/2)/sqrt(gamma1);
if (N==1); P = PL(N+1,:)'; return; end
aold = 2/(2+alpha+beta)*sqrt((alpha+1)*(beta+1)/(alpha+beta+3));
for i = 1:N-1
h1 = 2*i+alpha+beta;
anew = 2/(h1+2)*sqrt((i+1)*(i+1+alpha+beta)*(i+1+alpha)*...

(i+1+beta)/(h1+1)/(h1+3));
bnew = - (alpha*alpha-beta*beta)/h1/(h1+2);
PL(i+2,:) = 1/anew*(-aold*PL(i,:) + (xp-bnew).*PL(i+1,:));
aold = anew;

end
P = PL(N+1,:)';

end

27

References

[1] John W Cahn and John E Hilliard. Free energy of a nonuniform system.
i. interfacial free energy. The Journal of chemical physics, 28(2):258–267,
1958.

[2] Feng Chen and Jie Shen. Efficient spectral-Galerkin methods for systems
of coupled second-order equations and their applications. Journal of Com-
putational Physics, 231(15):5016–5028, 2012.

[3] Feng Chen and Jie Shen. A GPU parallelized spectral method for ellip-
tic equations in rectangular domains. Journal of Computational Physics,
250:555–564, 2013.

[4] Sheng Chen and Jie Shen. An efficient and accurate numerical method for
the spectral fractional Laplacian equation. Journal of Scientific Computing,
82(1):17, 2020.

[5] Ziang Chen, Jianfeng Lu, Yulong Lu, and Xiangxiong Zhang. On the
convergence of Sobolev gradient flow for the Gross–Pitaevskii eigenvalue
problem. SIAM Journal on Numerical Analysis, 62(2):667–691, 2024.

[6] Qiang Du, Lili Ju, Xiao Li, and Zhonghua Qiao. Maximum principle pre-
serving exponential time differencing schemes for the nonlocal Allen–Cahn
equation. SIAM Journal on numerical analysis, 57(2):875–898, 2019.

[7] Jean-Luc Guermond, Peter Minev, and Jie Shen. An overview of projection
methods for incompressible flows. Computer methods in applied mechanics
and engineering, 195(44-47):6011–6045, 2006.

[8] Dale B Haidvogel and Thomas Zang. The accurate solution of Poisson’s
equation by expansion in Chebyshev polynomials. Journal of Computa-
tional Physics, 30(2):167–180, 1979.

[9] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin meth-
ods: algorithms, analysis, and applications. Springer Science & Business
Media, 2007.

[10] Jingwei Hu and Xiangxiong Zhang. Positivity-preserving and energy-
dissipative finite difference schemes for the Fokker–Planck and Keller–Segel
equations. IMA Journal of Numerical Analysis, 43(3):1450–1484, 2023.

[11] A. Klöckner, T. Warburton, J. Bridge, and J.S. Hesthaven. Nodal discontin-
uous Galerkin methods on graphics processors. Journal of Computational
Physics, 228(21):7863–7882, 2009.

[12] Yuen-Yick Kwan and Jie Shen. An efficient direct parallel spectral-element
solver for separable elliptic problems. Journal of Computational Physics,
225(2):1721–1735, 2007.

28

[13] Hao Li, Daniel Appelö, and Xiangxiong Zhang. Accuracy of Spectral El-
ement Method for Wave, Parabolic, and Schrödinger Equations. SIAM
Journal on Numerical Analysis, 60(1):339–363, 2022.

[14] Hao Li and Xiangxiong Zhang. Superconvergence of high order finite differ-
ence schemes based on variational formulation for elliptic equations. Jour-
nal of Scientific Computing, 82(2):36, 2020.

[15] Re Lynch, John R Rice, and Donald H Thomas. Tensor product analysis
of partial difference equations. Bull. Amer. Math. Soc., 70, 1964.

[16] Yvon Maday and Einar M Rønquist. Optimal error analysis of spectral
methods with emphasis on non-constant coefficients and deformed geome-
tries. Computer Methods in Applied Mechanics and Engineering, 80(1-
3):91–115, 1990.

[17] Anthony T Patera. Fast direct poisson solvers for high-order finite ele-
ment discretizations in rectangularly decomposable domains. Journal of
Computational Physics, 65(2):474–480, 1986.

[18] Jie Shen. Efficient spectral-Galerkin method I. Direct solvers of second-
and fourth-order equations using Legendre polynomials. SIAM Journal on
Scientific Computing, 15(6):1489–1505, 1994.

[19] Jie Shen, Jie Xu, and Jiang Yang. A new class of efficient and robust energy
stable schemes for gradient flows. SIAM Review, 61(3):474–506, 2019.

[20] Jie Shen and Xiangxiong Zhang. Discrete maximum principle of a high
order finite difference scheme for a generalized Allen–Cahn equation. Com-
munications in Mathematical Sciences, 20(5):1409–1436, 2022.

29

