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Abstract We show that the fourth order accurate finite difference implemen-
tation of continuous finite element method with tensor product of quadratic
polynomial basis is monotone thus satisfies the discrete maximum principle
for solving a scalar variable coefficient equation −∇ · (a∇u) + cu = f under a
suitable mesh constraint.

1 Introduction

1.1 Monotonicity and discrete maximum principle

Consider a Poisson equation with variable coefficients and Dirichlet boundary
conditions on a two dimensional rectangular domain Ω = (0, 1)× (0, 1):

Lu ≡ −∇ · (a∇u) + cu = 0 on Ω,

u = g on ∂Ω,
(1)

where a(x, y) ∈ C1(Ω̄), c(x, y) ∈ C0(Ω̄) with 0 < amin ≤ a(x, y) ≤ amax and
c(x, y) ≥ 0. For a smooth function u ∈ C2(Ω) ∩ C(Ω̄), maximum principle
holds [12]: Lu ≤ 0 in Ω =⇒ maxΩ̄ u ≤ max {0,max∂Ω u} , and in particular,

Lu = 0 in Ω =⇒ |u(x, y)| ≤ max
∂Ω
|u|, ∀(x, y) ∈ Ω. (2)
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For various purposes, it is desired to have numerical schemes to satisfy
(2) in the discrete sense. A linear approximation to L can be represented as
a matrix Lh. The matrix Lh is called monotone if its inverse has nonnega-
tive entries, i.e., L−1

h ≥ 0. All matrix inequalities in this paper are entrywise
inequalities. One sufficient condition for the discrete maximum principle is
the monotonicity of the scheme, which was also used to prove convergence of
numerical schemes, e.g., [4,10,1,13].

In this paper, we will discuss the monotonicity and discrete maximum prin-
ciple of the simplest finite difference implementation of the continuous finite
element method with Q2 basis (i.e., tensor product of quadratic polynomial)
for (1), which is a fourth order accurate scheme [20].

1.2 Second order schemes and M-matrices

The second order centered difference u′′ ≈ ui−1−2ui+ui+1

∆x2 for solving −u′′(x) =
f(x), u(0) = u(1) = 0 results in a tridiagonal (−1, 2,−1) matrix, which is
an M-matrix. Nonsingular M-matrices are inverse-positive matrices and it is
the most convenient tool for constructing inverse-positive matrices. There are
many equivalent definitions or characterizations of M-matrices, see [24]. One
convenient characterization of nonsingular M-matrices are nonsingular matri-
ces with nonpositive off-diagonal entries and positive diagonal entries, and all
row sums are non-negative with at least one row sum is positive.

The continuous finite element method with piecewise linear basis forms
an M-matrix for the variable coefficient problem (1) on triangular meshes un-
der reasonable mesh constraints [33]. The M-matrix structure in linear finite
element method also holds for a nonlinear elliptic equation [15]. For solving
−∆u = f on regular triangular meshes, linear finite element method reduces
to the 5-point discrete Laplacian. Linear finite element method or the 5-point
discrete Laplacian is the most popular method in the literature for construct-
ing schemes satisfying a discrete maximum principle and bound-preserving
properties.

Almost all high order accurate schemes result in positive off-diagonal en-
tries in Lh for solving −∆u = f thus Lh is no longer an M-matrix. The only
known exceptions are the fourth order accurate 9-point discrete Laplacian and
the fourth order accurate compact finite difference scheme.

1.3 Existing high order accurate monotone methods for two-dimensional
Laplacian

There are at least three kinds of high order accurate schemes which have been
proven to satisfy L−1

h ≥ 0 for the Laplacian operator Lu = −∆u:

1. Both the fourth order accurate 9-point discrete Laplacian scheme [4,6]
and the fourth order accurate compact finite difference scheme [18,19] for
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−∆u = f can be written as Su = W f with S being an M-matrix and
W ≥ 0, thus L−1

h = S−1M ≥ 0.
2. In [5,7], Bramble and Hubbard constructed a fourth order accurate finite

difference discrete Laplacian operator for which Lh is not an M-matrix
but monotonicity L−1

h ≥ 0 is ensured through an M-matrix factorization
Lh = M1M2, i.e., Lh is a product of two M-matrices.

3. Finite element method with quadratic polynomial (P2 FEM) basis on a
regular triangular mesh can be implemented as a finite difference scheme
defined at vertices and edge centers of triangles [31]. The error estimate
of P2 FEM is third order in L2-norm. The error at at vertices and edge
centers are fourth order accurate in l2-norm due to superconvergence. The
stiffness matrix is not an M-matrix but its monotonicity was proven in [22].

For discrete maximum principle to hold in P2 FEM on a generic triangular
mesh, it was proven in [14] that it is necessary and sufficient to require a very
strong mesh constraint, which essentially gives either regular triangulation
or equilateral triangulation. Thus, the discrete maximum principle holds in
P2 FEM on a regular triangulation or an equilateral triangulation. For finite
element method with cubic and higher order polynomials on regular triangular
meshes, it was shown that the discrete maximum principle fails in [28].

1.4 Other known results regarding discrete maximum principle

For one-dimensional Laplacian, discrete maximum principle was proven for
arbitrarily high order finite element method using discrete Green’s function in
[30]. The discrete Green’s function was also used to analyze P1 FEM in two
dimensions [11]. Discontinuous coefficients were considered and a nonlinear
scheme was constructed in [21]. Piecewise constant coefficient in one dimen-
sion was considered in [29]. A numerical study for high order FEM with very
accurate Gauss quadrature in two dimensions showed that DMP was violated
on non-uniform unstructured meshes for variable coefficients in [23]. A more
general operator ∇(a∇u) with matrix coefficients a was considered for linear
FEM in [16]. See [17] for an anisotropic computational example.

1.5 Existing inverse-positive approaches when Lh is not an M-matrix

In this paper, we will focus on the finite difference implementation of continu-
ous finite element method with Q2 basis (Q2 FEM), which will be reviewed in
Section 2. The matrix Lh in such a scheme is not an M-matrix due to its off-
diagonal positive entries. There are at least three methods to study whether
L−1
h ≥ 0 holds when M-matrix structure is lost:

1. An M-matrix factorization of the form Lh = M1M2 was shown in [7] and
[2]. In Appendix 6, we will demonstrate an M-matrix factorization for the
finite difference implementation of Q2 FEM solving −∆u = f .
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2. Perturbation of M-matrices by positive off-diagonal entries without losing
monotonicity was discussed in [3].

3. In [22], Lorenz proposed a sufficient condition for ensuring Lh = M1M2.
Lorenz’s condition will be reviewed in Section 3.3.

The main result of this paper is to prove that L−1
h ≥ 0 and a discrete maximum

principle holds under some mesh constraint in the fourth order accurate finite
difference implementation of Q2 FEM solving (1) by verifying the Lorenz’s
condition.

1.6 Extensions to the discrete maximum principle for parabolic equations

Classical solutions to the parabolic equation ut = ∇·(a∇u) satisfy a maximum
principle [12]. With suitable boundary conditions and initial value u(x, y, 0)
such as periodic or homogeneous Dirichlet boundary conditions and initial
minimum min

Ω
u(x, y, 0) = 0, the solution to the initial value problem satisfies

the following maximum principle:

min
(x,y)

u(x, y, 0) ≤ u(x, y, t) ≤ max
(x,y)

u(x, y, 0). (3)

Now consider solving ut = ∇ · (a∇u) with backward Euler time discretiza-
tion, then Un+1 satisfies an elliptic equation of the form (1):

−∇ · (a∇Un+1) +
1

∆t
Un+1 =

1

∆t
Un. (4)

If Sh denotes spatial discretization for −∇· (a∇u), then the numerical scheme

can be written as Un+1 = (I + ∆tSh)−1Un. Let 1 =
[
1 1 · · · 1

]T
. Then for

suitable boundary conditions usually we have Sh1 = 0 since Sh approximates
a differential operator. So we have (I+∆tSh)1 = 1 thus (I+∆tSh)−11 = 1. If
we further have the monotonicity (I+∆tSh)−1 ≥ 0, then each row of the (I+
∆tSh)−1 has nonnegative entries and sums to one, thus the discrete maximum
principle holds minj U

n
j ≤ Un+1

j ≤ maxj U
n
j , which is a desired and useful

property in many applications. For instance, second order centered difference
or P1 finite element method has been used to construct schemes satisfying
the discrete maximum principle in solving phase field equations [27,26,32]. In
the rest of the paper, we will only focus on discussing the equation (1), even
though all discussions can be extended to solving the parabolic equation with
backward Euler time discretization.

1.7 Contributions and organization of the paper

To the best of our knowledge, this is the first time that a high order accurate
scheme under suitable mesh constraints is proven to be monotone in the sense
L−1
h ≥ 0 for solving a variable coefficient a(x) in (1) in two dimensions. For
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simplicity, we only discuss an uniform mesh in this paper, even though the
main results can be extended to non-uniform meshes. However, an additional
mesh constraint is expected for the discrete maximum principle to hold. See
such a mesh constraint of non-uniform meshes for Q1 FEM in [8] and P2 FEM
for one-dimensional problem in [30].

This paper is organized as follows. In Section 2, we describe the fourth or-
der accurate finite difference implementation of C0-Q2 finite element method.
In Section 3, we review the sufficient conditions to ensure monotonicity and
discrete maximum principle. In Section 4, we prove that the fourth order
accurate finite difference implementation of C0-Q2 finite element method is
monotone under some mesh constraints. Numerical tests are given in Section
5. Concluding remarks are given in Section 6.

2 Finite difference implementation of C0-Q2 finite element method

Consider solving the following elliptic equation on Ω = (0, 1) × (0, 1) with
Dirichlet boundary conditions:

Lu ≡ −∇ · (a∇u) + cu = f on Ω,

u = g on ∂Ω.
(5)

Assume there is a function ḡ ∈ H1(Ω) as an extension of g so that ḡ|∂Ω = g.
The variational form of (1) is to find ũ = u− ḡ ∈ H1

0 (Ω) satisfying

A(ũ, v) = (f, v)−A(ḡ, v), ∀v ∈ H1
0 (Ω), (6)

where A(u, v) =
∫∫
Ω
a∇u · ∇vdxdy +

∫∫
Ω
cuvdxdy, (f, v) =

∫∫
Ω
fvdxdy.

(a) The quadrature points and a FEM
mesh

(b) The corresponding finite differ-
ence grid

Fig. 1 An illustration of Q2 element and the 3 × 3 Gauss-Lobatto quadrature.

Let h be the mesh size of the rectangular mesh and V h0 ⊆ H1
0 (Ω) be the

continuous finite element space consisting of piecewise Q2 polynomials (i.e.,
tensor product of piecewise quadratic polynomials), then the most convenient
implementation of C0-Q2 finite element method is to use 3× 3 Gauss-Lobatto
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quadrature rule for all the integrals, see Figure 1. Such a numerical scheme
can be defined as: find uh ∈ V h0 satisfying

Ah(uh, vh) = 〈f, vh〉h −Ah(gI , vh), ∀vh ∈ V h0 , (7)

where Ah(uh, vh) and 〈f, vh〉h denote using tensor product of 3-point Gauss-
Lobatto quadrature for integrals A(uh, vh) and (f, vh) respectively, and gI is
the piecewise Q2 Lagrangian interpolation polynomial at the 3×3 quadrature
points shown in Figure 1 of the following function:

g(x, y) =

{
0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y), if (x, y) ∈ ∂Ω.

Then ūh = uh+gI is the numerical solution for the problem (5). We emphasize
that (7) is not a straightforward approximation to (6) since ḡ is never used. It
was proven in [20] that the scheme (7) is fourth order accurate if coefficients
and exact solutions are smooth. Notice that ūh satisfies:

Ah(ūh, vh) = 〈f, vh〉h, ∀vh ∈ V h0 . (8)

See [20] for the detailed finite difference implementation and proof of fourth
order accuracy for the scheme (7).

2.1 One-dimensional case

Now consider the one-dimensional Dirichlet boundary value problem:

−(au′)′ + cu =f on (0, 1),

u(0) = σ0, u(1) = σ1.

Consider a uniform mesh xi = ih, i = 0, 1, . . . , n+1, h = 1
n+1 . Assume n is

odd and let M = n+1
2 . Define intervals Ik = [x2k, x2k+2] for k = 0, . . . ,M − 1

as a finite element mesh for P 2 basis. Define

V h = {v ∈ C0([0, 1]) : v ∈ P 2(Ik), k = 0, . . . ,M − 1}.

Let {φi}n+1
i=0 ⊂ V h be a basis for V h so that φi(xj) = δij , i, j = 0, 1, . . . , n+ 1.

Let u0 = σ0, ui = uh(xi) and un+1 = σ1, then uh, ūh ∈ V h can be represented
as

uh(x) =

n∑
i=1

uiφi(x), ūh(x) =

n+1∑
i=0

uiφi(x).

Let fj = f(xj), then (8) becomes

〈au′h, φ′i〉h + 〈cuh, φi〉h = 〈f, φi〉h, i = 1, . . . , n;u0 = σ0, un+1 = σ1,
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which are

n+1∑
j=0

uj
(
〈aφ′j , φ′i〉h + 〈cφj , φi〉h

)
=

n+1∑
j=0

fj〈φj , φi〉h, i = 1, . . . , n;

u0 = σ0, un+1 = σ1.

The matrix form is Sū = M f̄ where

ū =
[
u0 u1 u2 · · · un un+1

]T
, f̄ =

[
σ0 f1 f2 · · · fn σ1

]T
.

The scheme can be written as Lh(ū) = f̄ . The linear operator Lh has the
matrix representation Lh = M−1S.

For the Laplacian Lu = −u′′, we have

Lh(ū)0 = u0 = σ0, Lh(ū)n+1 = un+1 = σ1, (9a)

if i is odd, i.e., xi is a cell center, (9b)

Lh(ū)i =
−ui−1 + 2ui − ui+1

h2
= fi, (9c)

if i is even, i.e., xi is a cell end, (9d)

Lh(ū)i =
ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2

4h2
= fi. (9e)

For the variable coefficient operator Lu = −(au′)′ + cu, we have

Lh(ū)0 = u0 = σ0, Lh(ū)n+1 = un+1 = σ1, (10a)

and if xi is a cell center, we have

Lh(ū)i = −(3ai−1+ai+1)ui−1+4(ai−1+ai+1)ui−(ai−1+3ai+1)ui+1

4h2 + ciui = fi;
(10b)

and if xi is a cell end, then

Lh(ū)i =
(3ai−2 − 4ai−1 + 3ai)ui−2 − (4ai−2 + 12ai)ui−1

8h2

+
(ai−2 + 4ai−1 + 18ai + 4ai+1 + ai+2)ui

8h2

+
−(12ai + 4ai+2)ui+1 + (3ai+2 − 4ai+1 + 3ai)ui+2

8h2
+ ciui = fi. (10c)

2.2 Two-dimensional case

Consider a uniform grid (xi, yj) for a rectangular domain [0, 1] × [0, 1] where
xi = ih, i = 0, 1, . . . , n+ 1 and yj = jh, j = 0, 1, . . . , n+ 1, h = 1

n+1 , where n
must be odd. Let uij denote the numerical solution at (xi, yj). Let u denote an
abstract vector consisting of uij for i, j = 1, 2, · · · , n. Let ū denote an abstract
vector consisting of uij for i, j = 0, 1, 2, · · · , n, n+ 1. Let f̄ denote an abstract
vector consisting of fij for i, j = 1, 2, · · · , n and the boundary condition g at
the boundary grid points.

The scheme (8) for solving (5) can still be written as Lh(ū) = f̄ .
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Fig. 2 Three types of interior grid points: red cell center, blue knots and black edge centers
for a finite element cell.

2.2.1 Two-dimensional Laplacian

For the Laplacian Lu = −∆u, Lh(ū) can be expressed as the following. If
(xi, yj) ∈ ∂Ω, then

Lh(ū)i,j = ui,j = gi,j .

If (xi, yj) is an interior grid point and a cell center , Lh(ū)i,j is equal to

−ui−1,j − ui+1,j + 4ui,j − ui,j+1 − ui+1,j

h2
= fi,j . (11a)

For interior grid points, there are three types: cell center, edge center and
knots. See Figure 2.2.1. If (xi, yj) is an interior grid point and an edge center
for an edge parallel to x-axis, Lh(ū)i,j is equal to

−ui−1,j+2ui,j−ui+1,j

h2 +
ui,j−2−8ui,j−1+14ui,j−8ui,j+1+ui,j+2

4h2 = fi,j .
(11b)

If (xi, yj) is an interior grid point and an edge center for an edge parallel to
y-axis, Lh(ū)i,j is similarly defined as above. If (xi, yj) is an interior grid point
and a knot (xi, yj), Lh(ū)i,j is equal to

ui−2,j − 8ui−1,j + 14ui,j − 8ui+1,j + ui+2,j

4h2

+
ui,j−2 − 8ui,j−1 + 14ui,j − 8ui,j+1 + ui,j+2

4h2
= fi,j . (11c)

If ignoring the denominator h2, then the stencil of the operator Lh at
interior grid points can be represented as:

cell center
−1

−1 4 −1
−1

knots

1
4
−2

1
4 −2 7 −2 1

4
−2
1
4

edge center (edge parallel to y-axis)
−1

1
4 −2 11

2 −2 1
4

−1



Discrete Maximum Principle of C0-Q2 FEM 9

edge center (edge parallel to x-axis)

1
4
−2

−1 11
2 −1
−2
1
4

2.3 Two-dimensional variable coefficient case

For Lu = −∇ · (a∇u) + cu, Lh(ū) will have exactly the same stencil size as
the Laplacian case. At boundary points (xi, yj) ∈ ∂Ω, Lh(ū) = f̄ becomes

Lh(ū)i,j = ui,j = gi,j . (12a)

If (xi, yj) is an interior grid point and a cell center, Lh(ū)i,j is equal to

−(3ai−1,j+ai+1,j)ui−1,j+4(ai−1,j+ai+1,j)ui,j−(ai−1,j+3ai+1,j)ui+1,j

4h2 (12b)

+
−(3ai,j−1+ai,j+1)ui,j−1+4(ai,j−1+ai,j+1)ui,j−(ai,j−1+3ai,j+1)ui,j+1

4h2 + cijuij .

If (xi, yj) is an interior grid point and a knot, Lh(ū)i,j is equal to

(3ai−2,j − 4ai−1,j + 3ai,j)ui−2,j − (4ai−2,j + 12ai,j)ui−1,j

8h2

+
(ai−2,j + 4ai−1,j + 18ai,j + 4ai+1,j + ai+2,j)ui,j

8h2

+
−(12ai,j + 4ai+2,j)ui+1,j + (3ai+2,j − 4ai+1,j + 3ai,j)ui+2,j

8h2

+
(3ai,j−2 − 4ai,j−1 + 3ai,j)ui,j−2 − (4ai,j−2 + 12ai,j)ui,j−1

8h2

+
(ai,j−2 + 4ai,j−1 + 18ai,j + 4ai,j+1 + ai,j+2)ui,j

8h2
(12c)

+
−(12ai,j + 4ai,j+2)ui,j+1 + (3ai,j+2 − 4ai,j+1 + 3ai,j)ui,j+2

8h2
+ cijuij .

If (xi, yj) is an interior grid point and an edge center for an edge parallel
to y-axis, Lh(ū)i,j is equal to

(3ai−2,j − 4ai−1,j + 3ai,j)ui−2,j − (4ai−2,j + 12ai,j)ui−1,j

8h2

+
(ai−2,j + 4ai−1,j + 18ai,j + 4ai+1,j + ai+2,j)ui,j

8h2

+
−(12ai,j + 4ai+2,j)ui+1,j + (3ai+2,j − 4ai+1,j + 3ai,j)ui+2,j

8h2
(12d)

+
−(3ai,j−1 + ai,j+1)ui,j−1 + 4(ai,j−1 + ai,j+1)ui,j − (ai,j−1 + 3ai,j+1)ui,j+1

4h2
+ cijuij .
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If (xi, yj) is an interior grid point and an edge center for an edge parallel to
x-axis, Lh(ū)i,j is equal to

(3ai,j−2 − 4ai,j−1 + 3ai,j)ui,j−2 − (4ai,j−2 + 12ai,j)ui,j−1

8h2

+
(ai,j−2 + 4ai,j−1 + 18ai,j + 4ai,j+1 + ai,j+2)ui,j

8h2

+
−(12ai,j + 4ai,j+2)ui,j+1 + (3ai,j+2 − 4ai,j+1 + 3ai,j)ui,j+2

8h2
(12e)

+
−(3ai−1,j + ai+1,j)ui−1,j + 4(ai−1,j + ai+1,j)ui,j − (ai−1,j + 3ai+1,j)ui+1,j

4h2
+ cijuij .

3 Sufficient conditions for monotonicity and discrete maximum
principle

3.1 Discrete maximum principle

Assume there are N grid points in the domain Ω and N∂ grid points on ∂Ω.
Define

u =
(
u1 u2 · · · uN

)T
, u∂ =

(
u∂1 u

∂
2 · · · u∂N∂

)T
,

ũ =
(
u1 u2 · · · uN u∂1 u

∂
2 · · · u∂N∂

)T
.

A finite difference scheme can be written as

Lh(ũ)i =

N∑
j=1

bijuj +

N∂∑
j=1

b∂iju
∂
j =fi, 1 ≤ i ≤ N,

u∂i =gi, 1 ≤ i ≤ N∂ .

The matrix form is

L̃hũ = f̃ , L̃h =

(
Lh B

∂

0 I

)
, ũ =

(
u
u∂

)
, f̃ =

(
f
g

)
.

The discrete maximum principle is

Lh(ũ)i ≤ 0, 1 ≤ i ≤ N =⇒ max
i
ui ≤ max{0,max

i
u∂i } (13)

which implies

Lh(ũ)i = 0, 1 ≤ i ≤ N =⇒ |ui| ≤ max
i
|u∂i |.

The following result was proven in [9]:

Theorem 1 A finite difference operator Lh satisfies the discrete maximum
principle (13) if L̃−1

h ≥ 0 and all row sums of L̃h are non-negative.



Discrete Maximum Principle of C0-Q2 FEM 11

Let ū and f̄ be the same vectors as defined in Section 2. For the same finite
difference scheme, the matrix form can also be written as

L̄hū = f̄ .

Notice that there exist two permutation matrices P1 and P2 such that ū = P1ũ
and f̄ = P2f̃ . Since the matrix vector form of the same scheme is also L̃hũ = f̃ ,
we obtain P−1

2 L̄hP1 = L̃h. Notice that a permutation matrix P is inverse-
positive and the signs of row sums will not be altered after multiplying P to
L̃h. Thus we have

Theorem 2 If L̄h is inverse-positive and row sums of L̄h are non-negative,
then Lh satisfies the discrete maximum principle (13).

Notice that L̃−1
h =

(
L−1
h −L

−1
h B∂

0 I

)
, thus we have

Theorem 3 If L̄−1
h ≥ 0, then L̃−1

h ≥ 0 and thus L−1
h ≥ 0.

Let 1 denote a vector of suitable size with 1 as entries, then for all schemes
in Section 2, Lh(1) ≥ 0, which implies the row sums of L̄h are non-negative.
Thus from now on, we only need to discuss the monotonicity of the matrix
L̄h.

3.2 Characterizations of nonsingular M-matrices

M-matrices belong to the set of Z-matrices which are matrices with nonpositive
off-diagonal entries. Nonsingular M-matrices are always inverse-positive. See
[24] for the definition and various characterization of nonsingular M-matrices.
The following is a convenient sufficient condition to characterize nonsingular
M-matrices:

Theorem 4 For a real square matrix A with positive diagonal entries and
non-positive off-diagonal entries, A is a nonsingular M-matrix if and only if
all the row sums of A are non-negative and at least one row sum is positive.

Proof By condition C10 in [24], A is a nonsingular M-matrix if and only if
A+aI is nonsingular for any a ≥ 0. Since all the row sums of A are non-negative
and at least one row sum is positive, the matrix A is irreducibly diagonally
dominant thus nonsingular, and A + aI is strictly diagonally dominant thus
nonsingular for any a > 0.

Definition 1 Let N = {1, 2, . . . , n}. For N1,N2 ⊂ N , we say a matrix A of
size n× n connects N1 with N2 if

∀i0 ∈ N1,∃ir ∈ N2,∃i1, . . . , ir−1 ∈ N s.t. aik−1ik 6= 0, k = 1, · · · , r.
(14)

If perceiving A as a directed graph adjacency matrix of vertices labeled by N ,
then (14) simply means that there exists a directed path from any vertex in
N1 to at least one vertex in N2. In particular, if N1 = ∅, then any matrix A
connects N1 with N2.
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Given a square matrix A and a column vector x, we define

N 0(Ax) = {i : (Ax)i = 0}, N+(Ax) = {i : (Ax)i > 0}.

By condition L36 in [24], we have the following characterization of nonsin-
gular M-matrices:

Theorem 5 For a real square matrix A with non-positive off-diagonal entries,
if there is a vector x > 0 with Ax ≥ 0 s.t. A connects N 0(Ax) with N+(Ax),
then A is a nonsingular M-matrix thus A−1 ≥ 0.

3.3 Lorenz’s sufficient condition for monotonicity

All results in this subsection were first shown in [22]. For completeness, we
include a detailed proof.

Given a matrix A = [aij ] ∈ Rn×n, define its diagonal, positive and negative
off-diagonal parts as n× n matrices Ad, Aa, A+

a , A−a :

(Ad)ij =

{
aii, if i = j

0, if i 6= j
, Aa = A−Ad,

(A+
a )ij =

{
aij , if aij > 0, i 6= j

0, otherwise.
, A−a = Aa −A+

a .

Lemma 1 If A is monotone, then for any two matrices B ≥ C, A−1B ≥
A−1C.

Proof For any two column vectors b ≥ c, we have

b− c ≥ 0⇒ A−1(b− c) ≥ 0⇒ A−1b ≥ Ac.

By considering b and c as column vectors of B and C, we get A−1B ≥ A−1C.

Lemma 2 If A is an M-matrix, then Ad ≥ A and A−1 ≥ A−1
d .

Proof Ad ≥ A is trivial. A is monotone, thus

Ad ≥ A⇒ A−1Ad ≥ A−1A = I.

And A−1
d ≥ 0 implies

A−1Ad ≥ I ⇒ A−1AdA
−1
d ≥ IA

−1
d ⇒ A−1 ≥ A−1

d .

Theorem 6 If Aa ≤ 0 and there exists a nonzero vector e ∈ Rn such that
e ≥ 0 and Ae ≥ 0. Moreover, A connects N 0(Ae) with N+(Ae). Then the
following hold:

– e > 0.
– aii > 0, ∀i ∈ N .
– A is a M-matrix and A−1 ≥ 0.
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Proof Assume there is one index i such that ei = 0, then

0 ≤ (Ae)i =
∑
j 6=i

aijej ≤ 0⇒ (Ae)i = 0⇒
∑
j 6=i

aijej = 0⇒ aijej = 0,∀j.

Thus if aij < 0, then ej = 0, which implies (Ae)j = 0 by the same argument
as above. Therefore, A has no off-diagonal nonzero entry akl such that k ∈
N 0(Ae) and l ∈ N+(Ae). In other words, if A represents the graph adjacency
matrix for a directed graph of vertices indexed by 1, 2, · · · , n, then any edge
starting from a vertex i ∈ N 0(Ae) points to vertices in N 0(Ae), thus there is
no directed path from i ∈ N 0(Ae) to any vertex in N+(Ae), which contradicts
to the assumption that A connects N 0(Ae) with N+(Ae). With e > 0, the
rest is proven by following Theorem 5.

Corollary 1 If A is a nonsingular M-matrix, f ∈ Rn is a nonzero vector with
f ≥ 0 and A connects N 0(f) with N+(f), then A−1f > 0.

Proof By using e = A−1f ≥ 0 in Theorem 6, we get A−1f > 0.

Theorem 7 If A ≤ M1M2 · · ·MkL where M1, · · · ,Mk are nonsingular M-
matrices and La ≤ 0, and there exists a nonzero vector e ≥ 0 such that one
of the matrices M1, · · · ,Mk, L connects N 0(Ae) with N+(Ae). Then A is a
product of k + 1 nonsingular M-matrices thus A−1 ≥ 0.

Proof Let M = M1M2 · · ·Mk, then M is monotone. By Lemma 1, we get

M−1A ≤ L, (15)

thus
(M−1A)a ≤ 0. (16)

For each Mi, i = 1, . . . , k, by Lemma 2, we have

(Mi)
−1 ≥ ((Mi)d)

−1 ⇒M−1 ≥ (Mk)−1
d · · · (M1)−1

d , (17)

which implies
M−1Ae ≥ cAe, (18)

for some positive number c.
If L connects N 0(Ae) with N+(Ae), then M−1A also connects N 0(Ae)

with N+(Ae) because (15) implies that (M−1A)ij 6= 0 whenever Lij 6= 0 for
any i 6= j. By (18), N+(Ae) ⊂ N+(M−1Ae) and N 0(M−1Ae) ⊂ N 0(Ae),
thus M−1A also connects N 0(M−1Ae) with N+(M−1Ae). With (16), by
Theorem 6, M−1A is a nonsingular M-matrix thus A is a product of k + 1
M-matrices which implies A is monotone.

If Mi connects N 0(Ae) with N+(Ae) for some 1 ≤ i ≤ k. Let M ′ =
M1 . . .Mi−1. Similar to (17) and (18), we get

(M ′)−1Ae ≥ c2Ae, c2 > 0, (19)

which implies thatMi connectsN 0((M ′)−1Ae) withN+((M ′)−1Ae). By Corol-
lary 1, we know M−1

i (M ′)−1Ae > 0, thus M−1Ae > 0. With (16), through
Theorem 6 we find M−1A is a M-matrix thus A is a product of k+1 M-matrices
which implies A is monotone.
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Theorem 8 If A−a has a decomposition: A−a = Az + As = (azij) + (asij) with
As ≤ 0 and Az ≤ 0, such that

Ad +Az is a nonsingular M-matrix, (20a)

A+
a ≤ AzA−1

d As or equivalently ∀aij > 0 with i 6= j, aij ≤
n∑
k=1

azika
−1
kk a

s
kj ,

(20b)

∃e ∈ Rn \ {0}, e ≥ 0 with Ae ≥ 0 s.t. Az or As connects N 0(Ae) with N+(Ae).
(20c)

Then A is a product of two nonsingular M-matrices thus A−1 ≥ 0.

Proof By (20b), we have

A = Ad +Az +As +A+
a ≤ (Ad +Az)(I +A−1

d As). (21)

By (20c), either Ad + Az or I + A−1
d As connects N 0(Ae) with N+(Ae). By

applying Theorem 7 for the case k = 1, M1 = Ad + Az and L = I + A−1
d As,

we get A−1 ≥ 0.

4 The main result

For a general matrix, conditions (20) in Theorem 8 can be difficult to verify.
We will first derive a simplified version of Theorem 8 then verify it for the
schemes in Section 2.

4.1 A simplified sufficient condition for monotonicity

We will take advantage of the directed graph described by the 5-point discrete
Laplacian, i.e., the second order centered difference scheme, which has similar
off-diagonal negative entry patterns as the schemes in Section 2.

For the one-dimensional problem −u′′ = f, x ∈ (0, 1) with u(0) = u(1),
the scheme can be written as u0 = σ0, un+1 = σ1,

−ui−1+2ui−ui+1

h2 = fi, i =
1, · · · , n. The matrix vector form is Kū = f̄ where

K =
1

h2


h2

−1 2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

h2

, (22)

which described the directed graph illustrated in Figure 3. Let 1 denote a

vector of suitable size with each entry as 1, then (K1)i =

{
0, i = 1, · · · , n
1, i = 0, n+ 1

.

By Figure 3, it is easy to see that K connects N 0(K1) with N+(K1).
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(a) Grid points. (b) The directed graph.

Fig. 3 An illustration of the directed graph described by off-diagonal entries of the matrix
in (22): the domain [0, 1] is discretized by a uniform 5-point grid; the black points are interior
grid points and the blue ones are the boundary grid points. There is a directed path from
any interior grid point to at least one of the boundary points.

(a) Grid points. (b) The directed graph.

Fig. 4 An illustration of the directed graph described by off-diagonal entries in the 5-point
discrete Laplacian matrix: the domain [0, 1]× [0, 1] is discretized by a uniform 5×5 grid; the
black points are interior grid points and the blue ones are the boundary grid points. There
is a directed path from any interior grid point to at least one of the boundary grid points.

Next we consider the second order accurate 5-point discrete Laplacian
scheme for solving −∆u = f on Ω = (0, 1)×(0, 1) with homogeneous Dirichlet
boundary conditions:

ui,j = 0, (xi, yj) ∈ ∂Ω;

−ui−1,j − ui+1,j + 4ui,j − ui,j+1 − ui+1,j

h2
= fij , (xi, yj) ∈ Ω.

See Figure 4 for the directed graph described by its matrix representation. Let
K be the matrix representation of the 5-point discrete Laplacian scheme, then

(K1)i,j =

{
1, if (xi, yj) ∈ ∂Ω,
0, if (xi, yj) ∈ Ω.

By Figure 4, it is easy to see that K connects N 0(K1) with N+(K1).
Let A := L̄h denote the matrix representation of any scheme in Section 2.

Then

(A1)i,j =

{
1, if (xi, yj) ∈ ∂Ω,
cij ≥ 0, if (xi, yj) ∈ Ω.

Therefore, N+(K1) ⊂ N+(A1) implies N 0(A1) ⊂ N 0(K1), thus K also
connects N 0(A1) with N+(A1). Notice that indices of nonzero off-diagonal
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entries in K is a subset of indices of nonzero entries in A−a , thus A−a also
connects N 0(A1) with N+(A1). So the vector e can be set as 1 in (20c). If
assuming c(x, y) > 0, then A1 > 0 thus the condition (20c) is trivially satisfied.

By Theorem 4, for any decomposition of off-diagonal negative entries A−a =
Az + As, Ad + Az is an M-matrix if (Ad + Az)1 6= 0 and (Ad + Az)1 ≥ 0. So
Theorem 8 for the schemes (10) and (12) can be simplified as

Theorem 9 Let A denote the matrix representation of the schemes solving
−∇ · (a∇)u + cu = f in Section 2. Assume A−a has a decomposition A−a =
Az +As with As ≤ 0 and Az ≤ 0. Then A−1 ≥ 0 if the following are satisfied:

1. (Ad +Az)1 6= 0 and (Ad +Az)1 ≥ 0;
2. A+

a ≤ AzA−1
d As;

3. For c(x, y) ≥ 0, either Az or As has the same sparsity pattern as A−a . If
c(x, y) > 0, then this condition can be removed.

4.2 One-dimensional Laplacian case

As a demonstration of how to apply Theorem 9, we first consider the scheme
(9). Let A be the matrix representation of the linear operator Lh in the scheme
(9). Let Ad and A±a be linear operators corresponding to the matrices Ad and
A±a respectively.

Consider the following decomposition of A−a = Az + As with Az = As =
1
2A
−
a :

Az(ū)0 = As(ū)0 = 0, Az(ū)n+1 = As(ū)n+1 = 0,

Az(ū)i = As(ū)i =
−ui−1 − ui+1

2h2
, if xi is a cell center,

Az(ū)i = As(ū)i =
−8ui−1 − 8ui+1

8h2
, if xi is an interior cell end.

The operator Ad and A+
a are given as:

Ad(ū)0 = u0, Ad(ū)n+1 = un+1,

Ad(ū)i =
2ui
h2

, if xi is a cell center,

Ad(ū)i =
14ui
4h2

, if xi is an interior cell end.

A+
a (ū)0 = 0, A+

a (ū)n+1 = 0,

A+
a (ū)i = 0, if xi is a cell center,

A+
a (ū)i =

ui−2 + ui+2

4h2
, if xi is an interior cell end.

Obviously, Az and As both have have the same sparsity pattern as A−a . It is
straightforward to verify [Ad+Az](1) is a non-negative nonzero vector. So we
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only need to verify A+
a ≤ AzA−1

d As to apply Theorem 9. Since AzA−1
d As ≥ 0,

we only need to compare nonzero coefficients in A+
a (ū)i and Az

(
A−1
d [As(ū)]

)
i
.

When xi is an interior cell end, xi±1 are cell centers, and we have

As(ū)i−1 =
−ui−2 − ui

2h2
, A−1

d [As(ū)]i−1 =
h2As(ū)i−2

2
,

Az(A−1
d [As(ū)])i =

−A−1
d [−As(ū)]i−1 −A−1

d [As(ū)]i+1

h2
=
ui−2 + 2ui + ui+2

4h2
.

We can verify A+
a ≤ AzA−1

d As by comparing only the coefficients of ui±2 in
A+
a (ū)i and Az

(
A−1
d [As(ū)]

)
i

because AzA−1
d As ≥ 0. By Theorem 9, we get

A−1 ≥ 0.

4.3 One-dimensional variable coefficient case

As we have seen in the previous discussion, all the operators are either zero
or identity at the boundary points thus do not affect the discussion verifying
the condition (20b). For the sake of simplicity, we only consider the interior
grid points for the linear operators. With the positive and negative parts for
a number f defined as:

f+ =
|f |+ f

2
, f− =

|f | − f
2

,

the linear operators Ad, A±a are

if xi is a cell center, Ad(ū)i =

(
ai−1 + ai+1

h2
+ ci

)
ui;

if xi is an interior cell end,

Ad(ū)i =

(
ai−2 + 4ai−1 + 18ai + 4ai+1 + ai+2

8h2
+ ci

)
ui.

if xi is a cell center, A+
a (ū)i = 0;

if xi is an interior cell end,

A+
a (ū)i =

(3ai−2 − 4ai−1 + 3ai)
+ui−2 + (3ai+2 − 4ai+1 + 3ai)

+ui+2

8h2
.

If xi is a cell center, A−a (ū)i =
−(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
;

If xi is an interior cell end, A−a (ū)i =
−(3ai−2 − 4ai−1 + 3ai)

−ui−2

8h2

+
−(4ai−2 + 12ai)ui−1 − (12ai + 4ai+2)ui+1 − (3ai − 4ai+1 + 3ai+2)−ui+2

8h2
.
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We can easily verify that (Ad +Az)1 ≥ 0 for the following Az:

if xi is a cell center, Az(ū)i = ε
−(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
,

if xi is an interior cell end, Az(ū)i =

−(3ai−2 − 4ai−1 + 3ai)
−ui−2 − [4ai−2 + 12ai − (3ai−2 − 4ai−1 + 3ai)

+]ui−1

8h2

+
−[12ai + 4ai+2 − (3ai − 4ai+1 + 3ai+2)+]ui+1 − (3ai − 4ai+1 + 3ai+2)−ui+2

8h2
,

where ε > 0 is a small number. Moreover, Az has the same sparsity pattern as
A−a for any ε > 0. For ε < 1 we can verify that As = A−a −Az ≤ 0:

If xi is a cell center, As(ū)i = (1− ε)−(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
,

If xi is an interior cell end,

As(ū)i =
−(3ai−2 − 4ai−1 + 3ai)

+ui−1 − (3ai − 4ai+1 + 3ai+2)+ui+1

8h2
.

Now we only need to compare nonzero coefficients inA+
a (ū)i andAz

(
A−1
d [As(ū)]

)
i

for xi being an interior cell end. When xi is an interior cell end, xi±1 are cell
centers, and we have

As(ū)i−1 = (1− ε)−(3ai−2 + ai)ui−2 − (ai−2 + 3ai)ui
4h2

,

As(ū)i−2 =
−(3ai−4 − 4ai−3 + 3ai−2)+ui−3 − (3ai−2 − 4ai−1 + 3ai)

+ui−1

8h2
,

A−1
d [As(ū)]i−1 = h2As(ū)i−1

(ai−2+ai+h2ci−1) = (1− ε)−(3ai−2+ai)ui−2−(ai−2+3ai)ui

4(ai−2+ai+h2ci−1) .

It suffices to focus on the coefficient of ui−2 in Az(A−1
d [As(ū)])i and the

discussion for the coefficient of ui+2 is similar. Notice that A−1
d [As(ū)]i−2

will contribute nothing to the coefficient of ui−2. So the coefficient of ui−2 in
Az(A−1

d [As(ū)])i is

(1− ε) (3ai−2 + ai)(4ai−2 + 12ai − (3ai−2 − 4ai−1 + 3ai)
+)

32h2(ai−2 + ai + h2ci−1)
.

Thus to ensure A+
a ≤ AzA−d A

s, it suffices to have the following holds for any
interior cell end xi:

(1− ε) (3ai−2+ai)(4ai−2+12ai−(3ai−2−4ai−1+3ai)
+)

32h2(ai−2+ai+h2ci−1) ≥ (3ai−2−4ai−1+3ai)
+

8h2 .

Equivalently, we need the following inequality holds for any cell center xi:

(1− ε) (3ai−1+ai+1)(4ai−1+12ai+1−(3ai−1−4ai+3ai+1)+)
32h2(ai−1+ai+1+h2ci)

≥ (3ai−1−4ai+3ai+1)+

8h2 .

(23)
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Notice that ε can be any fixed number in [0, 1) so that Ad + Az is an M-
matrix and As ≤ 0. And ε must be strictly positive so that Az has the same
sparsity pattern as A−a . Thus if there is one fixed ε ∈ (0, 1) so that (23) holds
for any cell center xi, then by Theorem 9, A−1 ≥ 0. A sufficient condition for
(23) to hold for any cell center xi with some fixed ε ∈ (0, 1) is to have the
following inequality for any cell center xi:

(3ai−1+ai+1)(4ai−1+12ai+1−(3ai−1−4ai+3ai+1)+)
32h2(ai−1+ai+1+h2ci)

> (3ai−1−4ai+3ai+1)+

8h2 .

(24)
If 3ai−1−4ai+3ai+1 ≤ 0, then (24) holds trivially. We only need to discuss

the case 3ai−1 − 4ai + 3ai+1 > 0, for which (24) becomes

(3ai−1 + ai+1)(ai−1 + 4ai + 9ai+1) > 4(ai−1 + ai+1 + h2ci)(3ai−1 − 4ai + 3ai+1).

(25)
So we have proven the first result for the variable coefficient case:

Theorem 10 For the scheme (10) solving −(au′)′ + cu = f with a(x) > 0
and c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if (25) holds
for any cell center xi.

The constraint (25) will be satisfied for small enough h. The proof of the
following two theorems are included in the Appendix 6.

Theorem 11 For the scheme (10) solving −(au′)′ + cu = f with a(x) > 0
and c(x) ≥ 0 on a uniform mesh, its matrix representation A = L̄h satisfies
A−1 ≥ 0 if any of the following constraints is satisfied for each finite element
cell Ii = [xi−1, xi+1]:

– There exists some λ ∈ ( 3
13 , 1) such that

h2ci <
13(1− λ) min

Ii
a2(x)

6 max
Ii

a(x)− 4 min
Ii

a(x)
, h

max
x∈Ii
|a′(x)|

min
x∈Ii

a(x)
<

√
39λ− 3

6
.

– 2hmax
Ii
|a′(x)|+ h2ci

(
1− 2

3

min
Ii

a(x)

max
Ii

a(x)

)
< 5

3

min
Ii

a2(x)

max
Ii

a(x) .

– If c(x) ≡ 0, then we only need h
max
x∈Ii
|a′(x)|

min
x∈Ii

a(x) <
√

39−3
6 .

– If a(x) ≡ a > 0, then we only need h2ci < 5a.

Theorem 12 For the scheme (10) solving −(au′)′+cu = f with a(x) > 0 and
c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if the following
mesh constraint is achieved for all cell centers xi:

h2

(
3

2
ci + max

x∈(xi−1,xi+1)
a′′(x)

)
<

74

45
min{ai−1, ai, ai+1}. (26a)

If a(x) is a concave function, then (26a) can be replaced by

h2ci < 3 min{ai−1, ai, ai+1}. (26b)



20 H. Li and X. Zhang

Remark 1 For solving heat equation with backward Euler time discretization
(4), the mesh constraints in Theorem 11 and Theorem 12 imply that a lower
bound for ∆t

h2 is a sufficient condition for ensuring monotonicity. Numerical

tests suggest that a lower bound on ∆t
h2 is also a necessary condition, see Section

5. A lower bound constraint on the time step is common for high order accurate
spatial discretizations with backward Euler to satisfy monotonicity, e.g., [25].

4.4 Two-dimensional variable coefficient case

Next we apply Theorem 9 to the scheme (12). The splitting A−a = Az +As is
quite similar to one-dimensional case due to its stencil pattern.

Let A := L̄h be the matrix representation of the linear operator Lh in the
scheme (12). We only consider interior grid points since Lh is identity operator
on boundary points which do not affect applying Theorem 9. We first have

if xij is a cell center, Ad(ū)ij =

(
ai−1,j + ai+1,j + ai,j−1 + ai,j+1

h2
+ cij

)
uij ;

if xij is an edge center for an edge parallel to y-axis,

Ad(ū)ij =
(

(ai−2,j+4ai−1,j+18aij+4ai+1,j+ai+2,j)+8(ai,j−1+ai,j+1)
8h2 + cij

)
uij ;

if xij is an edge center for an edge parallel to x-axis,

Ad(ū)ij =
(

(ai,j−2+4ai,j−1+18aij+4ai,j+1+ai,j+2)+8(ai−1,j+ai+1,j)
8h2 + cij

)
uij ;

if xij is a knot,

Ad(ū)ij =

(
ai−2,j + 4ai−1,j + 18aij + 4ai+1,j + ai+2,j

8h2

+
(ai,j−2 + 4ai,j−1 + 18aij + 4ai,j+1 + ai,j+2)

8h2
+ cij

)
uij .

For the operator A+
a , it is given as

if xij is a cell center, A+
a (ū)ij = 0;

if xij is an edge center for an edge parallel to y-axis,

A+
a (ū)ij =

(3ai−2,j − 4ai−1,j + 3ai,j)
+ui−2,j + (3ai+2,j − 4ai+1,j + 3ai,j)

+ui+2,j

8h2
;

if xij is an edge center for an edge parallel to x-axis,

A+
a (ū)ij =

(3ai,j−2 − 4ai,j−1 + 3ai,j)
+ui,j−2 + (3ai,j+2 − 4ai,j+1 + 3ai,j)

+ui,j+2

8h2
;

if xij is a knot, A+
a (ū)ij =

(3ai−2,j − 4ai−1,j + 3ai,j)
+ui−2,j + (3ai+2,j − 4ai+1,j + 3ai,j)

+ui+2,j

8h2

+
(3ai,j−2 − 4ai,j−1 + 3ai,j)

+ui,j−2 + (3ai,j+2 − 4ai,j+1 + 3ai,j)
+ui,j+2

8h2
.
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Let ε ∈ (0, 1) be a fixed number. We consider the following Az ≤ 0 so that
(Ad +Az)1 ≥ 0:

if xij is a cell center, Az(ū)ij = −ε (3ai−1,j+ai+1,j)ui−1,j

4h2

− ε (ai−1,j+3ai+1,j)ui+1,j+(3ai,j−1+ai,j+1)ui,j−1+(ai,j−1+3ai,j+1)ui,j+1

4h2 ;

if xij is an edge center for an edge parallel to y-axis, Az(ū)ij =

−(3ai−2,j−4ai−1,j+3ai,j)−ui−2,j−[4ai−2,j+12ai,j−(3ai−2,j−4ai−1,j+3ai,j)+]ui−1,j

8h2

+
−[12ai,j+4ai+2,j−(3ai+2,j−4ai+1,j+3ai,j)+]ui+1,j−(3ai+2,j−4ai+1,j+3ai,j)−ui+2,j

8h2

+ε
−(3ai,j−1+ai,j+1)ui,j−1−(ai,j−1+3ai,j+1)ui,j+1

4h2 ;

if xij is an edge center for an edge parallel to x-axis, Az(ū)ij =

−(3ai,j−2−4ai,j−1+3ai,j)−ui,j−2−[4ai,j−2+12ai,j−(3ai,j−2−4ai,j−1+3ai,j)+]ui,j−1

8h2

+
−[12ai,j+4ai,j+2−(3ai,j+2−4ai,j+1+3ai,j)+]ui,j+1−(3ai,j+2−4ai,j+1+3ai,j)−ui,j+2

8h2

+ε
−(3ai−1,j+ai+1,j)ui−1,j−(ai−1,j+3ai+1,j)ui+1,j

4h2 ;

if xij is a knot, Az(ū)ij =

−(3ai−2,j−4ai−1,j+3ai,j)−ui−2,j−[4ai−2,j+12ai,j−(3ai−2,j−4ai−1,j+3ai,j)+]ui−1,j

8h2

+
−[12ai,j+4ai+2,j−(3ai+2,j−4ai+1,j+3ai,j)+]ui+1,j−(3ai+2,j−4ai+1,j+3ai,j)−ui+2,j

8h2

+
−(3ai,j−2−4ai,j−1+3ai,j)−ui,j−2−[4ai,j−2+12ai,j−(3ai,j−2−4ai,j−1+3ai,j)+]ui,j−1

8h2

+
−[12ai,j+4ai,j+2−(3ai,j+2−4ai,j+1+3ai,j)+]ui,j+1−(3ai,j+2−4ai,j+1+3ai,j)−ui,j+2

8h2 ;

Then As = A−a −Az is given as:

if xi is a cell center, As(ū)ij =

− (1− ε) (3ai−1,j + ai+1,j)ui−1,j + (ai−1,j + 3ai+1,j)ui+1,j

4h2

− (1− ε) (3ai,j−1 + ai,j+1)ui,j−1 + (ai,j−1 + 3ai,j+1)ui,j+1

4h2
;

if xij is an edge center for an edge parallel to y-axis, As(ū)ij =

−(3ai−2,j − 4ai−1,j + 3ai,j)
+ui−1,j − (3ai+2,j − 4ai+1,j + 3ai,j)

+ui+1,j

8h2

+ (1− ε)−(3ai,j−1 + ai,j+1)ui,j−1 − (ai,j−1 + 3ai,j+1)ui,j+1

4h2
;
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if xij is an edge center for an edge parallel to x-axis, As(ū)ij =

−(3ai,j−2 − 4ai,j−1 + 3ai,j)
+ui,j−1 − (3ai,j+2 − 4ai,j+1 + 3ai,j)

+ui,j+1

8h2

+ (1− ε)−(3ai−1,j + ai+1,j)ui−1,j − (ai−1,j + 3ai+1,j)ui+1,j

4h2
;

if xij is a knot, As(ū)ij =

−(3ai−2,j − 4ai−1,j + 3ai,j)
+ui−1,j − (3ai+2,j − 4ai+1,j + 3ai,j)

+ui+1,j

8h2

+
−(3ai,j−2 − 4ai,j−1 + 3ai,j)

+ui,j−1 − (3ai,j+2 − 4ai,j+1 + 3ai,j)
+ui,j+1

8h2
;

For the positive off-diagonal entries, A+
a (ū)ij is nonzero only for xij being

an edge center or a cell center. Thus to verify A+
a ≤ AzA−1

d As, it suffices to
compare Az

[
A−1
d (As(ū))

]
ij

with A+
a (ū)ij for xij being an edge center or a

cell center.
If xij is an edge center for an edge parallel to y-axis, then xi±1,j are cell

centers. Since everything here has a symmetric structure, we only need to
compare the coefficients of ui−2,j in Az

[
A−1
d (As(ū))

]
ij

and A+
a (ū)ij , and the

comparison for the coefficients of ui+2,j will be similar.

As(ū)i−1,j = −(1− ε) (3ai−2,j + aij)ui−2,j + (ai−2,j + 3ai,j)ui,j
4h2

−(1− ε) (3ai−1,j−1 + ai−1,j+1)ui−1,j−1 + (ai−1,j−1 + 3ai−1,j+1)ui−1,j+1

4h2
,

A−1
d [As(ū)]i−1,j = −(1− ε) (3ai−2,j + aij)ui−2,j + (ai−2,j + 3aij)ui,j

4(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)

− (1− ε) (3ai−1,j−1 + ai−1,j+1)ui−1,j−1 + (ai−1,j−1 + 3ai−1,j+1)ui−1,j+1

4(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)
.

Since the coefficient of ui−2,j in A+
a (ū)ij is (3ai−2,j−4ai−1,j+3aij)

+/(8h2),
we only need to discuss the case 3ai−2,j − 4ai−1,j + 3aij > 0, for which the
coefficient of ui−2,j in Az

[
A−1
d (As(ū))

]
ij

becomes

ai−2,j + 4ai−1,j + 9aij
8h2

(1− ε)(3ai−2,j + aij)

4(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)
.

To ensure the coefficient of ui−2,j in Az
[
A−1
d (As(ū))

]
ij

is no less than the

coefficient of ui−2,j in A+
a (ū)ij , we need

(1− ε)(ai−2,j + 4ai−1,j + 9aij)(3ai−2,j + aij)

32h2(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)
≥ 3ai−2,j − 4ai−1,j + 3aij

8h2
.

Similar to the one-dimensional case, it suffices to require

(ai−2,j + 4ai−1,j + 9aij)(3ai−2,j + aij)

4(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)
> 3ai−2,j − 4ai−1,j + 3aij .
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Equivalently, we need the following inequality holds for any cell center xij :

(ai−1,j + 4ai,j + 9ai+1,j)(3ai−1,j + ai+1,j)

4(ai−1,j + ai+1,j + ai,j+1 + ai,j−1 + h2ci,j)
> 3ai−1,j − 4ai,j + 3ai+1,j .

(27a)

Notice that (27a) was derived for comparing Az
[
A−1
d (As(ū))

]
ij

and A+
a (ū)ij

for xij being an edge center of an edge parallel to y-axis. If xij is an edge
center of an edge parallel to x-axis, then we can derive a similar constraint:

(ai,j−1 + 4ai,j + 9ai,j+1)(3ai,j−1 + ai,j+1)

4(ai,j−1 + ai,j+1 + ai+1,j + ai−1,j + h2ci,j)
> 3ai,j−1 − 4ai,j + 3ai,j+1.

(27b)

If xij is a knot, then xi±1,j are edge centers for an edge parallel to x-axis.
Since everything here has a symmetric structure, we only need to compare the
coefficients of ui−2,j in Az

[
A−1
d (As(ū))

]
ij

and A+
a (ū)ij , and the comparison

for the coefficients of ui+2,j , ui,j−2 and ui,j+2 will be similar.

As(ū)i−1,j = (1− ε)−(3ai−2,j+ai,j)ui−2,j−(ai−2,j+3ai,j)ui,j

4h2

+
−(3ai−1,j−2−4ai−1,j−1+3ai−1,j)+ui−1,j−1−(3ai−1,j+2−4ai−1,j+1+3ai−1,j)+ui−1,j+1

8h2

A−1
d [As(ū)]i−1,j =

(1− ε) −(3ai−2,j+ai,j)ui−2,j−(ai−2,j+3ai,j)ui,j
1
2 (ai−1,j−2+4ai−1,j−1+18ai−1,j+4ai−1,j+1+ai−1,j+2)+4(ai−2,j+ai,j)+4h2ci−1,j

+
−(3ai−1,j−2−4ai−1,j−1+3ai−1,j)+ui−1,j−1−(3ai−1,j+2−4ai−1,j+1+3ai−1,j)+ui−1,j+1

(ai−1,j−2+4ai−1,j−1+18ai−1,j+4ai−1,j+1+ai−1,j+2)+8(ai−2,j+ai,j)+8h2ci−1,j
.

For the same reason as above we still only consider the case where 3ai−2,j −
4ai−1,j + 3aij > 0. So the coefficient of ui−2,j in Az

[
A−1
d (As(ū))

]
ij

is

1
4h2

(1−ε)(ai−2,j+4ai−1,j+9aij)(3ai−2,j+ai,j)
(ai−1,j−2+4ai−1,j−1+18ai−1,j+4ai−1,j+1+ai−1,j+2)+8(ai−2,j+ai,j)+8ci−1,jh2 .

To ensure the coefficient of ui−2,j in Az
[
A−1
d (As(ū))

]
ij

is no less than the

coefficient of ui−2,j in A+
a (ū)ij , we only need

2(ai−2,j+4ai−1,j+9aij)(3ai−2,j+ai,j)
(ai−1,j−2+4ai−1,j−1+18ai−1,j+4ai−1,j+1+ai−1,j+2)+8(ai−2,j+ai,j)+8ci−1,jh2

> 3ai−2,j − 4ai−1,j + 3aij .

Equivalently, we need the following inequality holds for any edge center xij
for an edge parallel to x-axis:

2(ai−1,j + 4ai,j + 9ai+1,j)(3ai−1,j + ai+1,j)

(ai,j−2 + 4ai,j−1 + 18ai,j + 4ai,j+1 + ai,j+2) + 8(ai−1,j + ai+1,j) + 8ci,jh2

> 3ai−1,j − 4ai,j + 3ai+1,j .
(28a)
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We also need the following inequality holds for any edge center xij for an edge
parallel to y-axis:

2(ai,j−1 + 4ai,j + 9ai,j+1)(3ai,j−1 + ai,j−1)

(ai−2,j + 4ai−1,j + 18ai,j + 4ai+1,j + ai+2,j) + 8(ai,j−1 + ai,j+1) + 8ci,jh2

> 3ai,j−1 − 4ai,j + 3ai,j+1.
(28b)

We have similar result to the one-dimensional case as following:

Theorem 13 For the scheme (12) solving −∇· (a∇u)+cu = f with a(x) > 0
and c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if (27)
holds for any cell center xij, (28a) holds for xij being any edge center of an
edge parallel to x-axis and (28b) holds for xij being any edge center of an edge
parallel to y-axis.

The constraints (27), (28a) and (28b) can be satisfied for small h.

Theorem 14 For the scheme (12) solving −∇(a(x)∇u)+cu = f with a(x) >
0 and c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if the
following mesh constraint is achieved for all edge centers xij:

min
Jij

a(x)2 >
49

61
max
Jij

a(x)2 +
8

61

(
3 max
Jij

a(x)− 2 min
Jij

a(x)

)
h2cij ,

where Jij is the union of two finite element cells: if xij is an edge center of an
edge parallel to x-axis, then Jij = [xi−1, xi+1] × [yj−2, yj+2]; if xij is an edge
center of an edge parallel to y-axis, then Jij = [xi−2, xi+2]× [yj−1, yj+1].

Theorem 15 For the scheme (12) solving −∇· (a∇u)+cu = f with a(x) > 0
and c(x) ≥ 0 on a uniform mesh, its matrix representation A = L̄h satisfies
A−1 ≥ 0 if any of the following mesh constraints is satisfied for any edge center
xij:

– There exists some λ ∈ ( 49
61 , 1) such that

h2cij <

61(1− λ) min
Jij

a2(x)

8

(
3 max
Jij

a(x)− 2 min
Jij

a(x)

) , h

max
x∈Jij

|∇a(x)|

min
x∈Jij

a(x)
<

√
122λ− 7

√
2

28
.

– 49
√

2
3 hmax

Jij
|∇a(x)|+ 2h2cij

(
1− 2

3

min
Jij

a(x)

max
Jij

a(x)

)
<

min
Jij

a2(x)

max
Jij

a(x) .

– If c(x) ≡ 0, then we only need h
max
x∈Jij

|∇a(x)|

min
x∈Jij

a(x) <
√

122−7
√

2
28 .

– If a(x) ≡ a > 0, then we only need h2cij <
3
2a.

Here the definition of Jij is the same as in Theorem 14.
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The proof of Theorem 14 is included in the Appendix 6. The proof of Theorem
15 is very similar to the proof of Theorem 11 thus omitted. Since the two-
dimensional case is more complicated, it does not seem possible to derive
a similar mesh constraint involving second order derivatives of a(x, y) as in
Theorem 12. For instance, by Theorem 12, if a(x) > 0 is concave and c(x) ≡ 0,
then the one-dimensional scheme (10) satisfies L̄−1

h ≥ 0 without any mesh
constraint. For the two-dimensional scheme (12), even if assuming a(x, y) > 0
is concave and c(x, y) ≡ 0, constraints (27), (28a) and (28b) are not all satisfied
for any h.

5 Numerical tests

In this section we show some numerical tests of scheme (12) on an uni-
form rectangular mesh and verify the inverse non-negativity of Lh. See [20]
for numerical tests on the fourth order accuracy of this scheme. In order
to minimize round-off errors, we redefine (12a) to its equivalent expression
Lh(ū)i,j = 1

h2ui,j = 1
h2 gi,j so that all nonzero entries in L̄h have similar mag-

nitudes. By Theorem 3, we have L−1
h ≥ 0 whenever L̄−1

h ≥ 0. Even though
L−1
h ≥ 0 is not sufficient to ensure the discrete maximum principle, in practice

only L−1
h is used directly thus its positivity is also important.

We first consider the following equation with purely Dirichlet conditions:

−∇ · (a∇u) + cu = f on [0, 1]× [0, 2] (29)

where c(x) ≡ 10 and a(x, y) = 1+d cos(πx) cos(πy) with d = 0.5, 0.9, and 0.99.
The smallest entries in L−1

h and L̄−1
h are listed in Table 5, in which −10−18

should be regarded as the numerical zero. As we can see, L−1
h ≥ 0 and L̄−1

h ≥ 0
are achieved when h is small enough.

Table 1 Minimum of entries in L̄−1
h and L−1

h for Poisson equation (29) with smooth coef-
ficients.

Finite Element Mesh
d = 0.5 d = 0.9 d = 0.99

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2 × 4 −7.32E − 18 7.48E − 06 −3.90E − 04 6.37E − 06 −7.41E − 04 6.14E − 06

4 × 8 −1.31E − 18 1.23E − 07 −4.02E − 19 9.95E − 08 −1.65E − 04 9.44E − 08

8 × 16 −3.96E − 19 1.91E − 09 −4.91E − 19 1.52E − 09 −1.77E − 05 1.44E − 09

16 × 32 −1.92E − 19 2.98E − 11 −7.60E − 19 2.35E − 11 −1.06E − 18 2.22E − 11

Next we consider (12) solving (29) with c(x, y) ≡ 0 and aij being random
uniformly distributed random numbers in the interval (d, d + 1). Notice that

the larger d is, the smaller
max
ij
{aij}

min
ij
{aij} is. When d = 10, we have

max
ij
{aij}

min
ij
{aij} <

√
61
49 ,

thus L−1
h ≥ 0 and L̄−1

h ≥ 0 are guaranteed by Theorem 14. In Table 5 we can

see that the upper bound on
max
ij
{aij}

min
ij
{aij} is indeed a necessary condition to have
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L̄−1
h ≥ 0, even though constraints in Theorem 14 may not be sharp since we

still have the positivity when d = 1. We have tested d = 0.3 many times and
never observed negative entries in L̄−1

h and L−1
h .

Table 2 Minimum of all entries of L̄−1
h and L−1

h for a(x, y) being random coefficients

Finite Element Mesh
d = 0.1 d = 1 d = 10

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2 × 4 −1.00E − 03 6.60E − 05 −8.15E − 18 4.73E − 05 −1.98E − 16 6.74E − 06

4 × 8 −2.14E − 04 3.22E − 06 −3.46E − 18 9.95E − 07 −5.10E − 17 1.35E − 07

8 × 16 −6.73E − 05 2.88E − 08 −5.24E − 19 1.65E − 08 −1.81E − 17 2.21E − 09

16 × 32 −2.34E − 05 3.61E − 10 −9.01E − 19 2.02E − 10 −8.37E − 18 3.56E − 11

Last we consider solving the heat equation ut = ∆u on [0, 1] × [0, 2] with
backward Euler time discretization −∆un+1 + 1

∆tu
n+1 = un

∆t , corresponding

to (29) with a(x, y) ≡ 1 and c = 1
∆t . By Theorem 15, ∆t

h2 > 2
3 , is a sufficient

condition to ensure L̄−1
h ≥ 0 and L−1

h ≥ 0. In Table 5, we can see that it is
necessary to have a lower bound constraint on ∆t

h2 but ∆t
h2 >

2
3 is not sharp at

all. In Figure 5, we can see the minimum of entries in L̄−1
h and L−1

h decreases
for smaller ∆t

h2 . The lower bound to ensure the inverse non-negativity of L̄−1
h

and L−1
h seems to be near ∆t

h2 = 1
3.6 .

Table 3 Minimum of all entries of L̄−1
h and L−1

h for solving heat equation with backward
Euler.

Finite Element Mesh
∆t = 3h2

2
∆t = h2

2
∆t = h2

4

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2 × 4 0 7.95E − 06 0 3.21E − 07 −9.14E − 05 −5.34E − 07

4 × 8 0 1.01E − 09 0 1.93E − 13 −2.28E − 05 −1.00E − 07

8 × 16 0 7.74E − 17 0 2.58E − 25 −5.71E − 06 −2.51E − 08

16 × 32 0 2.63E − 30 0 2.73E − 48 −1.43E − 06 −6.27E − 09

6 Concluding remarks

In this paper we have proven that the simplest fourth order accurate finite
difference implementation of C0-Q2 finite element method is monotone thus
satisfies a discrete maximum principle for solving a variable coefficient problem
−∇·(a(x, y)∇u)+c(x, y)u = f under some suitable mesh constraints. The main
results in this paper can be used to construct high order spatial discretization
preserving positivity or maximum principle for solving time-dependent diffu-
sion problems implicitly by backward Euler time discretization.
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(b) Minimum of entries in L−1
h

Fig. 5 Minimum of all entries of L̄−1
h and L−1

h on 16 × 32 mesh with different time steps.

Appendix A: M-Matrix factorization for discrete Laplacian

The matrix form of (9) can be written as 1
h2 L̄hū = f̄ . As an example, if there

are seven interior grid points in the mesh for (0, 1), then the matrix L̄h is given
by

L̄h =


1
−1 2 −1
1
4 −2 7

2 −2 1
4

−1 2 −1
1
4 −2 7

2 −2 1
4

−1 2 −1
1
4 −2 7

2 −2 1
4

−1 2 −1
1


The matrix L̄h can be written as a product of two nonsingular M-matrices
L̄h = M1M2 where

M1 =


1

1
− 1

4 1 − 1
4

1
− 1

4 1 − 1
4

1
− 1

4 1 − 1
4

1
1

,M2 =


1
−1 2 −1
− 3

2 3 − 3
2

−1 2 −1
− 3

2 3 − 3
2

−1 2 −1
− 3

2 3 − 3
2

−1 2 −1
1

.

Such a factorization is not unique and it does not seem to have further physical
or geometrical meanings.

For the scheme (11), we can find two linear operators A1 and A2 are with
their matrix representations A1 and A2 being nonsingular M-matrices, such
that Lh(ū) = A2(A1(ū)).

Definition of A1 is given as
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– At boundary points:

vi,j = A1(ū)i,j = ui,j := gij .

– At interior knots:
vi,j = A1(ū)i,j = ui,j .

– At interior cell center:

vi,j = A1(ū)i,j = 2ui,j −
1

4
ui−1,j −

1

4
ui+1,j −

1

4
ui,j−1 −

1

4
ui,j+1.

– At interior edge center (an edge parallel to x-axis):

vi,j = A1(ū)i,j = −1

6
ui−1,j +

4

3
ui,j −

1

6
ui+1,j .

– At interior edge center (an edge parallel to y-axis):

vi,j = A1(ū)i,j = −1

6
ui,j−1 +

4

3
ui,j −

1

6
ui,j+1.

Definition of A2 is given as:

– At boundary points:
A2(v̄)i,j = vi,j .

– At an interior knot:

A2(v̄)i,j = −3

2
vi−1,j + 3vi,j −

3

2
vi+1,j −

3

2
vi,j−1 + 3vi,j −

3

2
vi,j+1

– At an interior cell center:

A2(v̄)i,j =2vi,j −
3

8
vi−1,j −

3

8
vi+1,j −

3

8
vi,j−1 −

3

8
vi,j+1

−1

8
vi−1,j+1 −

1

8
vi+1,j+1 −

1

8
vi−1,j−1 −

1

8
vi+1,j+1.

– At an interior edge center (an edge parallel to x-axis):

A2(v̄)i,j = − 7
16vi−1,j + 15

4 vi,j −
7
16vi+1,j − vi,j+1 − vi,j−1 − 3

16vi−1,j−1 − 3
16vi+1,j−1

− 3
16vi−1,j+1 − 3

16vi+1,j+1 − 1
32vi−1,j+2 − 1

32vi+1,j+2 − 1
32vi−1,j−2 − 1

32vi+1,j−2.

– At an interior edge center (an edge parallel to y-axis):

A2(v̄)i,j = − 7
16vi,j−1 + 15

4 vi,j −
7
16vi,j+1 − vi+1,j − vi−1,j − 3

16vi−1,j−1 − 3
16vi−1,j+1

− 3
16vi+1,j−1 − 3

16vi+1,j+1 − 1
32vi+2,j−1 − 1

32vi+2,j+1 − 1
32vi−2,j−1 − 1

32vi−2,j+1.

It is straightforward to verify that Lh(ū) = A2(v̄) where v̄ = A1(ū). Ob-
viously, matrices of A1 and A2 have positive diagonal entries and nonpositive
off-diagonal entries. Moreover, A1(1) ≥ 0 and A2(1) ≥ 0 thus A1 and A2 sat-
isfy the row sum conditions in Theorem 4. So A1 and A2 are both nonsingular
M -matrices and the matrix representation of Lh is A2A1. However, this kind
of M-matrix factorization cannot be extended to the variable coefficient case.
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Appendix B

Proof (Proof of Theorem 11) If c(x) ≡ 0, then (25) reduces to

(28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2
i−1 + 3a2

i+1.

A convenient sufficient condition is to require

52 min{a2
i−1, a

2
i , a

2
i+1} > 12 max{a2

i−1, a
2
i , a

2
i+1},

which is equivalent to

max{ai−1, ai, ai+1}
min{ai−1, ai, ai+1}

<

√
13

3
.

Let a(x1) = max{ai−1, ai, ai+1} and a(x2) = min{ai−1, ai, ai+1}. Then the
inequality above is equivalent to

a(x1)− a(x2)

a(x2)
<

√
39− 3

3
.

By the Mean Value Theorem, there is some ξ ∈ (xi−1, xi+1) such that a(x1)−
a(x2) = a′(ξ)(x2 − x1). Since |x2 − x1| ≤ 2h, we have

|a(x1)− a(x2)| ≤ max
x∈(xi−1,xi+1)

|a′(x)| 2h.

Thus a sufficient condition is to require

h

max
x∈(xi−1,xi+1)

|a′(x)|

min
x∈(xi−1,xi+1)

a(x)
<

√
39− 3

6
.

For c(x) ≥ 0, (25) reduces to

(28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2
i−1 + 3a2

i+1 + 4h2ci(3ai−1− 4ai + 3ai+1),

for which a sufficient condition is

13 min
Ii

a2(x) > 3 max
Ii

a2(x) + h2ci(6 max
Ii

a(x)− 4 min
Ii

a(x)). (30)

One sufficient condition for (30) is to have

∃λ ∈ (0, 1), h2ci(6 max
Ii

a(x)− 4 min
Ii

a(x)) <13(1− λ) min
Ii

a2(x),

3 max
Ii

a2(x) <13λmin
Ii

a2(x).

By similar discussions above, a sufficient condition for 3 max
Ii

a2(x) < 13λmin
Ii

a2(x)

is to have λ > 3
13 and

h
max
x∈Ii
|a′(x)|

min
x∈Ii

a(x)
<

√
39λ− 3

6
.
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The inequality (30) is also equivalent to

10 min
Ii

a2(x) > 3(max
Ii

a2(x)−min
Ii

a2(x)) + h2ci(6 max
Ii

a(x)− 4 min
Ii

a(x)).

Let a2(x1) = max
Ii

a2(x) and a2(x2) = min
Ii

a2(x), then by the Mean Value

Theorem on the function a2(x), there is some ξ ∈ (xi−1, xi+1) such that

a2(x1)− a2(x1) = 2a(ξ)a′(ξ)(x1 − x2) ≤ 4hmax
Ii

a(x) max
Ii
|a′(x)|.

So it suffices to have

10 min
Ii

a2(x) > 12hmax
Ii

a(x) max
Ii
|a′(x)|+ h2ci(6 max

Ii
a(x)− 4 min

Ii
a(x)),

which can be simplified to

2hmax
Ii
|a′(x)|+ h2ci(1−

2

3

min
Ii

a(x)

max
Ii

a(x)
) <

5

3

min
Ii

a2(x)

max
Ii

a(x)
.

If a(x) ≡ a > 0, it is straightforward to verify that (25) is equivalent to
hci < 5a.

Proof (of Theorem 12) For a smooth coefficient a(x), by Taylor’s Theorem,

a(x+ h) = a(x) + ha′(x) +
1

2
h2a′′(ξ1), ξ1 ∈ [x, x+ h],

a(x− h) = a(x)− ha′(x) +
1

2
h2a′′(ξ2), ξ2 ∈ [x− h, x].

With the Intermediate Value Theorem for a′′(x), we get

a(x) =
1

2
[a(x+ h) + a(x− h)− h2a′′(ξ)], ξ ∈ (ξ2, ξ1) ⊂ [x− h, x+ h].

Thus we can rewrite ai as ai = 1
2 (ai−1 + ai+1 − dih2) where

di :=
ai−1 + ai+1 − 2ai

h2
= a′′(ξ), for some ξ ∈ (xi−1, xi+1).

If c(x) ≡ 0, then (25) reduces to (28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2
i−1 +

3a2
i+1. Introducing an arbitrary number λ ∈ (0, 2], it is equivalent to

4ai+1ai−1 + (4− 2λ)ai(7ai−1 + 5ai+1) + 2λai(7ai−1 + 5ai+1) > 9a2
i−1 + 3a2

i+1,

(12λ+ 4)ai+1ai−1 + (4− 2λ)ai(7ai−1 + 5ai+1) + (7λ− 9)a2
i−1 + (5λ− 3)a2

i+1

> λh2di(7ai−1 + 5ai+1),

(
4

λ
− 2)ai + ai−1

(5λ− 3)θ2 + (12λ+ 4)θ + (7λ− 9)

λ(5θ + 7)
> h2di, θ =

ai+1

ai−1
,(

4

λ
− 2

)
ai +

( 41
5 θ − 9

λ(5θ + 7)
+ 1

)
ai−1 +

(
1− 3

5λ

)
ai+1 > h2di.
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Notice that
41
5 θ−9

5θ+7 > − 9
7 . By taking 9

7 ≤ λ ≤ 2, it suffices to require

(1− 9

7λ
)ai−1 + (

4

λ
− 2)ai + (1− 3

5λ
)ai+1 > h2di, (31)

as a sufficient condition of the above inequalities. If a(x) is a concave function,
then it satisfies a(xi) = a(xi−1+xi−1

2 ) ≥ 1
2a(xi−1) + 1

2a(xi+1), which implies
ai−1 +ai+1−2ai ≤ 0, thus (31) holds trivially. Otherwise, (31) holds for λ = 9

7
if the following mesh constraint is satisfied:

h2 max
x∈(xi−1,xi+1)

a′′(x) <
74

45
min{ai−1, ai, ai+1}.

If c(x) ≥ 0, for any λ ∈ (0, 2], (25) is equivalent to

(12λ+ 4)ai+1ai−1 + (4− 2λ)ai(7ai−1 + 5ai+1) + (7λ− 9)a2
i−1 + (5λ− 3)a2

i+1

> λh2di(7ai−1 + 5ai+1) + 4h2ci(ai−1 + ai+1 + 2dih
2).

(32)

If assuming dih
2 ≤ 74

45 min{ai−1, ai, ai+1}, then dih
2 ≤ λ1ai−1 + λ2ai+1 for

any two positive numbers λ1, λ2 satisfying λ1 + λ2 = 74
45 . In particular, for

λ1 = 563
540 , we get dih

2 ≤ 563
540ai−1 + 65

108ai+1, which implies

ai−1 + ai+1 + 2dih
2 ≤ 119

270
(7ai−1 + 5ai+1).

By replacing ai−1 + ai+1 + 2dih
2 by the inequality above in (32), we get a

sufficient condition for (32) as following:

(12λ+ 4)ai+1ai−1 + (4− 2λ)ai(7ai−1 + 5ai+1) + (7λ− 9)a2
i−1 + (5λ− 3)a2

i+1

> λh2di(7ai−1 + 5ai+1) + 4h2ci
119

270
(7ai−1 + 5ai+1).

(33)

Similar to the derivation of (31), we can derive a sufficient condition of (33)
as

h2

(
1.5ci + max

x∈(xi−1,xi+1)
a′′(x)

)
<

74

45
min{ai−1, ai, ai+1}.

If di ≤ 0, then a sufficient condition for (32) is

(12λ+4)ai+1ai−1+(4−2λ)ai(7ai−1+5ai+1)+(7λ−9)a2i−1+(5λ−3)a2i+1

ai−1+ai+1
> 4h2ci,

from which we can derive a sufficient condition as

4h2ci < (7λ− 9)ai−1 + (5− 5

2
λ)ai + (5λ− 3)ai+1,

for which a sufficient condition by setting λ = 2 is h2ci < 3 min{ai−1, ai, ai+1}.



32 H. Li and X. Zhang

Proof (of Theorem 14) Since (27a) and (28a) are equivalent to

4(7ai−1,j + 5ai+1,j)aij + 4ai−1,jai+1,j + 16aij(ai,j−1 + ai,j+1)

> 9a2
i−1,j + 3a2

i+1,j + 12(ai−1,j + ai+1,j)(ai,j−1 + ai,j+1) + 4(3ai−1,j − 4aij + 3ai+1,j)h
2cij

and

8ai−1,jai+1,j + 2aijai−1,j + 4aij(ai,j−2 + 4ai,j−1 + 18ai,j + 4ai,j+1 + ai,j+2) > 18a2
i−1,j + 6a2

i+1,j

+14aijai+1,j + 3(ai−1,j + ai+1,j)(ai,j−2 + 4ai,j−1 + 4ai,j+1 + ai,j+2) + 8(3ai−1,j − 4aij + 3ai+1,j)h
2cij .

A sufficient condition is to require

7 min
Iij

a(x)2 > 5 max
Iij

a(x)2 +
2

3
(3 max

Iij
a(x)− 2 min

Iij
a(x))h2cij (34)

for all cell centers xij of cell Iij = [xi−1, xi+1]× [yi−1, yi+1], and the following
mesh constraints for all edge centers xij :

61 min
Jij

a(x)2 > 49 max
Jij

a(x)2 + 8(3 max
Jij

a(x)− 2 min
Jij

a(x))h2cij , (35)

where we Jij is the union of two cells: if xij is an edge center of an edge
parallel to x-axis, then Jij = Ii,j−1 ∪ Ii,j+1; if xij is an edge center of an edge
parallel to y-axis, then Jij = Ii−1,j ∪ Ii+1,j . Notice that (35) implies (34), thus
it suffices to have (35) only.
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