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Abstract. The spectral element method constructed by the Qk (k ≥ 2) continuous finite4
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1. Introduction. Accurate and efficient approximations of solutions to partial15

differential equations are important to numerous applications arising in engineering16

and the sciences. In particular for problems whose solutions are of wave type, high17

order accurate methods are favored as they can control the dispersive errors in wave18

forms that propagate over vast distances.19

For wave equations and other hyperbolic problems, the two key insights that20

a numerical analyst can provide to a practitioner comparing methods are: a) if the21

method is guaranteed to be stable, and b) if the numerical method is guaranteed to be22

accurate. The first condition is most conveniently guaranteed by selecting a method23

that is based on a variational formulation such as spectral elements, summation-by-24

parts s and continuous and discontinuous Galerkin finite element methods.25

In recent years many such stable and high order accurate methods for wave equa-26

tions have been developed. These include discontinuous Galerkin methods for first27

order hyperbolic systems [17, 31, 7, 8, 18, 40, 30] and wave equations in second or-28

der form [32, 15, 6, 2], and finite differences with summation by parts operators29

[27, 29, 28, 36, 1, 38, 39], as well as spectral elements for wave equations [21, 20].30

In this paper we are mainly concerned with the second topic, to provide rigorous31

estimates on the errors for a method. In particular, we study the rates of convergence32

of the error, as measured in norms over nodes for all degree of freedoms, for the spectral33

element method applied to linear wave and parabolic, and Schrödinger equations.34

These three types of equations are fundamentally different, but all of them contain35

the same second order operator, which can be discretized by the same spectral element36

method.37

To be precise, we consider the Lagrangian Qk (k ≥ 2) continuous finite element38

method for solving linear evolution PDEs with a second order operator ∇ · (a(x)∇u)39

on rectangular meshes implemented by (k + 1)-point Gauss-Lobatto quadrature for40
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2 H. LI, D. APPELÖ, AND X. ZHANG

all integrals. This is often referred to as the spectral element method in the literature41

and this is the notation we will use here.42

For the Qk spectral element method, it is well known that the standard finite43

element error estimates still hold [26], i.e., the error in H1-norm is k-th order and the44

error in L2-norm is (k + 1)-th order. It is also well known that the Lagrangian Qk45

(k ≥ 2) continuous finite element method is (k+2)-th order accurate in the discrete 2-46

norm over all (k+1)-point Gauss-Lobatto quadrature points [37, 25, 3]. If using a very47

accurate quadrature in the finite element method for a variable coefficient operator48

∇ · (a(x)∇u), then (k + 2)-th order superconvergence at Gauss-Lobatto points holds49

trivially. However, for the efficiency of having a diagonal mass matrix and for the50

convenience of implementation, the most popular method for wave equations is the51

simplest choice of quadrature, i.e. using (k + 1)-point Gauss-Lobatto quadrature for52

Qk elements in all integrals for both mass and stiffness matrices. In particular in the53

seismic community, where highly efficient simulation of the elastic wave equation is54

of important, the spectral method has become the method of choice, [21, 20].55

When using this (k+1)-point Gauss-Lobatto quadrature for Lagrangian Qk finite56

element method, the quadrature nodes coincide with the nodes defining the degrees57

of freedom, and the resulting method becomes the so-called spectral element method.58

Thus the spectral element method can also be regarded as a finite difference scheme59

at all Gauss-Lobatto points. For instance, consider solving utt = uxx on the interval60

[0, 1] with homogeneous Dirichlet boundary conditions. Introduce the uniform grid61

0 = x0 < x1 < · · · < xN < xN+1 = 1 with spacing h = 1/(N + 1) and N being62

odd. This grid gives a uniform partition of the interval [0, 1] into uniform intervals63

Ik = [x2k, x2k+2] (k = 0, · · · , N−1
2 ). Then all 3-point Gauss-Lobatto quadrature64

points for intervals Ik = [x2k, x2k+2] coincide with the grid points xi. The Q2 spectral65

element method on intervals Ik = [x2k, x2k+2] (k = 0, · · · , N−1
2 ) is equivalent to the66

following semi-discrete finite difference scheme [9, 24]:67

d2

dt2
ui =

ui−1 − 2ui + ui+1

h2
, if i is odd;(1.1a)68

d2

dt2
ui =

−ui−2 + 8ui−1 − 14ui + 8ui+1 − ui+2

4h2
, if i is even.(1.1b)69

70

While the truncation error of (1.1) is only second order yet the dispersion error is71

fourth order, see Section 11 in [9]. Although the dispersion error results can in prin-72

ciple be extended to any order, the derivation and expressions become increasingly73

cumbersome. Further the dispersion error results are limited to unbounded or periodic74

domains and do not produce error estimates in the form of a norm of the error. Other75

than spectral element methods, other high order schemes can also be interpreted as76

a finite difference scheme, such as the Fourier pseudo-spectral method [5, 13, 4].77

In fact, as we have shown in [24], it is nontrivial and requires new analysis tools78

to establish the (k+ 2)-th order superconvergence when (k+ 1)-point Gauss-Lobatto79

quadrature is used. In [24], (k + 2)-th order accuracy at all Gauss-Lobatto points of80

Qk spectral element method was proven for elliptic equations with Dirichlet boundary81

conditions. In this paper, we extend those results and will prove that the Qk spectral82

element method is a (k + 2)-th order accurate scheme for linear wave, parabolic and83

Schrödinger equations with Dirichlet boundary conditions. For Neumann boundary84

conditions, if a(x) is diagonal, i.e., there are no mixed second order derivatives in85

∇ · (a(x)∇u), (k + 2)-th order accuracy in discrete 2-norm can be proven. When86

mixed second order derivatives are involved, only (k + 3
2 )-th order can be proven for87
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Neumann boundary conditions, and we indeed observe some order loss in numerical88

tests.89

The main contribution of this paper is to explain the order of accuracy of Qk90

spectral element method, when the errors are measured only at nodes of degree of91

freedoms. As mentioned above we consider the case of rectangular elements and92

a smooth coefficient a(x) in the term ∇ · (a(x)∇u). We note that this does include93

discretizations on regular meshes of curvilinear domains that can be smoothly mapped94

to rectangular meshes for the unit cube, e.g., the spectral element method for ∆u on95

such a mesh for a curvilinear domain is equivalent to the spectral element method for96

∇·(a(x)∇u)+b(x) ·∇u on a reference uniform rectangular mesh where a(x) and b(x)97

emerge from the mapping between the curvilinear domain and the unit cube. It does98

however not include problems on unstructured quadrilateral meshes where the metric99

terms typically are non-smooth at element interfaces but we note that the numerical100

examples that we present indicate that such meshes may still exhibit larger rates than101

k+ 1. We only consider the semi-discrete schemes for linear equations in this paper.102

In general, it is straightforward to extend the error estimates to a fully discrete scheme103

for simple time discretizations, e.g., [41]. Even though superconvergence in Qk finite104

element method without any quadrature can be established for nonlinear equations105

[3], the result in this paper may no longer hold for generic nonlinear equations since106

the simplest (k + 1)-point Gauss-Lobatto quadrature are not accurate enough for107

nonlinear terms.108

This paper is organized as follows. In Section 2, we introduce notation and109

assumptions. In Section 3, we review a few standard quadrature estimates. In Section110

4, the superconvergence of elliptic projection is analyzed, which is parallel to the classic111

error estimation for hyperbolic and parabolic equations by involving elliptic projection112

of the corresponding elliptic operator, see [41, 33, 11]. We then prove the main113

result for homogeneous Dirichlet boundary conditions in Section 5, for the second-114

order wave equation in Section 5.1, parabolic equations in Section 5.2 and linear115

Schrödinger equation in Section 5.3. Neumann boundary conditions can be discussed116

similarly as summarized in Section 5.4. For problems with nonhomogeneous Dirichlet117

boundary conditions, a convenient implementation which maintains the (k + 2)-th118

order of accuracy is given in Section 6. Numerical tests verifying the estimates are119

given in Section 7. Concluding remarks are given in Section 8120

2. Equations, notation, and assumptions.121

2.1. Problem setup. Let L be a linear second order differential operator with122

time dependent coefficients:123

Lu = −∇ · (a(x, t)∇u) + b(x, t) · ∇u+ c(x, t)u,124125

where a(x, t) = (aij(x, t)) is a positive symmetric definite operator for t ∈ [0, T ],126

i.e. there exist constants α, β > 0 such that α|ξ|2 ≤ ξTa(x, t)ξ ≤ β|ξ|2, for all127

(x, t) ∈ Ω× [0, T ], ξ ∈ Rn. Consider the following two initial-boundary value problems128

with smooth enough coefficients on a rectangular domain Ω = (0, 1) × (0, 1) with its129

boundary ∂Ω:130

Given 0 < T <∞, find u(x, t) on Ω̄× [0, T ] satisfying131

(2.1)

ut =− Lu+ f(x, t) in Ω× (0, T ],

u(x, t) =0 on ∂Ω× [0, T ],

u(x, 0) =u0(x) on Ω.

132
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Given 0 < T <∞, find u(x, t) on Ω̄× [0, T ] satisfying133

(2.2)

utt =− Lu+ f(x, t) in Ω× (0, T ],

u(x, t) =0 on ∂Ω× [0, T ],

u(x, 0) =u0(x), ut(x, 0) = u1(x) on Ω× {t = 0}.
134

We use A(·) to denote the bilinear form: for u, v ∈ H1(Ω),135

A(u, v) =

∫
Ω

∇uTa(x, t)∇v + b(x, t) · ∇u+ c(x, t)uv dx.(2.3)136
137

For convenience, we assume Ωh is a uniform rectangular mesh for Ω̄ and e = [xe−138

h, xe+h]×[ye−h, ye+h] denotes any cell in Ωh with cell center (xe, ye). Though we only139

discuss uniform meshes, the main result can be easily extended to nonuniform rectan-140

gular meshes with smoothly varying cells. Let Qk(e) =

{
p(x, y) =

k∑
i=0

k∑
j=0

pijx
iyj , (x, y) ∈ e

}
,141

denote the set of tensor product of polynomials of degree k on an element e. Then142

we use V h = {p(x, y) ∈ C0(Ωh) : p|e ∈ Qk(e), ∀e ∈ Ωh} to denote the continu-143

ous piecewise Qk finite element space on Ωh and V h0 = {vh ∈ V h : vh|∂Ω = 0}. Let144

(u, v) =
∫

Ω
uvdx and let 〈·, ·〉h and Ah(·, ·) denote approximation of the integrals by145

(k + 1)-point Gauss-Lobatto quadrature for each spatial variable in each cell. Also,146

u(i) will denote the i-th time derivative of the function u(x, t).147

For the equations that we are interested in, assume the exact solution u(x, t) ∈148

H1
0 (Ω) ∩H2(Ω) for any t, and define its discrete elliptic projection Rhu ∈ V h0 as149

(2.4) Ah(Rhu, vh) = 〈−Lu, vh〉h, ∀vh ∈ V h0 , 0 ≤ t ≤ T.150

Also, let uI ∈ V h denote the piecewise Lagrangian Qk interpolation polynomial of151

function u at (k + 1)× (k + 1) Gauss-Lobatto points in each rectangular cell.152

We consider semi-discrete spectral element schemes whose initial conditions are153

defined by the elliptic projection and the Lagrange interpolant of the continuous initial154

data.155

For problem (2.1) the scheme is to find uh(x, t) ∈ V h0 satisfying156

(2.5)
〈u(1)
h , vh〉h +Ah(uh, vh) =〈f, vh〉h, ∀vh ∈ V h0 ,

uh(0) =Rhu0.
157

We consider the semi-discrete spectral element scheme for problem (2.2) with158

special initial conditions: solve for uh(t) ∈ V h0 satisfying159

(2.6)
〈u(2)
h , vh〉h +Ah(uh, vh) =〈f, vh〉h, ∀vh ∈ V h0 ,

uh(0) = Rhu0, u
(1)
h (0) =(u1)I .

160

2.2. Notation and basic tools. We will use the same notation as in [23, 24].161

The norm and semi-norms for W k,p(Ω) and 1 ≤ p < +∞, with standard modifi-
cation for p = +∞ can be defined as follows,

‖u‖k,p,Ω =

 ∑
i+j≤k

∫∫
Ω

|∂ix∂jyu(x, y)|pdxdy

1/p

,
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|u|k,p,Ω =

 ∑
i+j=k

∫∫
Ω

|∂ix∂jyu(x, y)|pdxdy

1/p

.

When there is no confusion, for simplicity, sometimes we may use ‖u‖k and |u|k as162

norm and semi-norm for Hk(Ω) = W k,2(Ω) respectively.163

For any vh ∈ V h, 1 ≤ p < +∞, and k ≥ 1, we define the broken broken Sobolev
norms and seminorms by the following symbols,

‖vh‖k,p,Ω :=

(∑
e

‖vh‖pk,p,e

) 1
p

, |vh|k,p,Ω :=

(∑
e

|vh|pk,p,e

) 1
p

.

Let Z0,e denote the set of (k + 1) × (k + 1) Gauss-Lobatto points of the cell e164

and Z0 =
⋃
e Z0,e denote all Gauss-Lobatto points in the mesh Ωh. Let ‖u‖l2(Ω) and165

‖u‖l∞(Ω) denote the discrete 2-norm and the maximum norm over Z0 respectively as166

‖u‖l2(Ω) =

h2
∑

(x,y)∈Z0

|u(x, y)|2
 1

2

, ‖u‖l∞(Ω) = max
(x,y)∈Z0

|u(x, y)|.167

When there is no confusion, for simplicity, sometimes we may use ‖u‖l2 and |u|l∞168

to denote ‖u‖l2(Ω) and ‖u‖l∞(Ω) respectively. For a continuous function f(x, y), let169

fI(x, y) denote its piecewise Qk Lagrange interpolant at Z0,e on each cell e, i.e.,170

fI ∈ V h satisfies:171

f(x, y) = fI(x, y), ∀(x, y) ∈ Z0.172

Let (f, v)e denote the inner product in L2(e) and (f, v) denotes the inner product173

in L2(Ω) as174

(f, v)e =

∫∫
e

fv dxdy, (f, v) =

∫∫
Ω

fv dxdy =
∑
e

(f, v)e.175

Let 〈f, v〉h denote the approximation to (f, v) by using (k+ 1)× (k+ 1)-point Gauss-176

Lobatto quadrature for integration over each cell e. Then for k ≥ 2, the (k+1)×(k+1)177

Gauss-Lobatto quadrature is exact for integration of tensor product polynomials of178

degree 2k − 1 ≥ k + 1 on K̂.179

We denote A∗(·, ·) as the adjoint bilinear form of A(·, ·) such that180

A∗(v, u) = A(u, v) = (a∇u,∇v) + (b · ∇u, v) + (cu, v).181

Let superscript (i) denote i-th time derivatives for coefficients a,b, and c. For the182

time dependent operators L and A, the symbols L(i) and A(i) are defined as taking183

time derivatives only for coefficients:184

L(i)u = −∇ · (a(i)∇u) + b(i) · ∇u+ c(i)u,185

and186

A(i)(u, v) =

∫
Ω

∇uTa(i)∇v + b(i) · ∇u+ c(i)uvdx.187

The symbol A
(i)
h is similarly defined as taking time derivatives only for coefficients in

Ah. With this notation, for u(x, t) and time independent test function v(x), we have
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Leibniz rule

(Lu)(m) =

m∑
j=0

(
m

j

)
L(m−j)u(j), [A(u, v)]

(m)
=

m∑
j=0

(
m

j

)
A(m−j)(u(j), v).

By integration by parts, it is straightforward to verify188

(2.7) (L(m−j)u(j), v) = A(m−j)(u(j), v), ∀v ∈ H1
0 (Ω).189

There exist constants Ci (i = 1, 2, 3, 4) independent of h such that l2-norm and190

L2-norm are equivalent for V h:191

(2.8)
C1‖vh‖l2 ≤ ‖vh‖0 ≤ C2‖vh‖l2 , ∀v ∈ V h,

C3〈vh, vh〉h ≤ ‖vh‖20 ≤ C4〈vh, vh〉h, ∀v ∈ V h.
192

We have the inverse inequality for polynomials as193

(2.9) ‖vh‖k+1,e ≤ Ch−1‖vh‖k,e, ∀vh ∈ V h, k ≥ 0.194

2.3. Assumption on the coercivity and the elliptic regularity. For the195

operator A(u, v) :=
∫

Ω
[∇uTa∇v+(b·∇u)v+cuv] dx where a =

(
a11 a12

a21 a22

)
is positive196

definite and b = [b1 b2], assume the coefficients aij , bj , c ∈ Cm1 ([0, T ];Wm2,∞(Ω))197

for m1, m2 large enough. Thus for t ∈ [0, T ], A(u, v) ≤ C‖u‖1‖v‖1 for any u, v ∈198

H1
0 (Ω). As discussed in [24], if we assume λa has a positive lower bound and∇·b ≤ 2c,199

where λa as the smallest eigenvalues of a, the coercivity of the bilinear form can200

be easily achieved. For the V h-ellipticity, as pointed out in Lemma 5.2 of [24], if201

4λac > |b|2, for t ∈ [0, T ],202

(2.10) C‖vh‖21 ≤ Ah(vh, vh), ∀vh ∈ V h,203

can be proven. In the rest of this paper, we assume coercivity for the bilinear forms204

A, A∗, and Ah. We assume the elliptic regularity ‖w‖2 ≤ C‖f‖0 holds for the exact205

dual problem of finding w ∈ H1
0 (Ω) satisfying A∗(w, v) = (f, v), ∀v ∈ H1

0 (Ω). See206

[34, 14] for the elliptic regularity with Lipschitz continuous coefficients on a Lipschitz207

domain.208

We remark that in the case of the wave equation we also assume finite speed of209

propagation i.e. that there is an upper bound on the eigenvalues of a.210

3. Quadrature error estimates. For any continuous function u(x, t0) with211

fixed time t0, its M-type projection on spatial variables is a continuous piecewise Qk212

polynomial of x, denoted as up(x, t0) ∈ V h. The M-type projection was used to213

analyze superconvergence [3]. Detailed definition and some useful properties about214

the M-type projection can be also found in [23, 24]. For m ≥ 0, (up)
(m)

=
(
u(m)

)
p
,215

thus there is no ambiguity to use the notation u
(m)
p . The M-type projection has the216

following properties. See Theorem 3.2 in [23] for the detailed proof.217

Theorem 3.1. For k ≥ 2,218

‖u− up‖l2(Ω) = O(hk+2)‖u‖k+2, ∀u ∈ Hk+2(Ω).219

220
‖u− up‖l∞(Ω) = O(hk+2)‖u‖k+2,∞, ∀u ∈W k+2,∞(Ω).221
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By applying Bramble-Hilbert Lemma, we have the following standard quadrature222

estimates. See [23] for the detailed proof.223

Lemma 3.2. For f(x), if f(x) ∈ Hk+2(Ω), then we have

(f, vh)− 〈f, vh〉h = O(hk+2)‖f‖k+2‖vh‖2, ∀vh ∈ V h.

The next lemma shows the superconvergence of the bilinear form with Gauss-224

Lobatto quadrature Ah, and it collects the results of Lemma 4.5 - Lemma 4.8 of225

[24].226

Lemma 3.3. For i, j ≥ 0 and any fixed t ∈ [0, T ], assuming sufficiently smooth227

coefficients a,b, c and function u(x, t) ∈ H(k+3)(Ω), we have228

A
(i)
h ((u− up)(j), vh) =

{
O(hk+2)‖u(j)(t)‖k+3‖vh‖2, if vh ∈ V h0 or a is diagonal;

O(hk+ 3
2 )‖u(j)(t)‖k+3‖vh‖2, otherwise.

(3.1)

229

230

The following results are Lemma 3.5, Theorem 3.6, Theorem 3.7 in [24].231

Lemma 3.4. If f ∈ H2(Ω) or f ∈ V h, we have

(f, vh)− 〈f, vh〉h = O(h2)|f |2‖vh‖0, ∀vh ∈ V h.

Lemma 3.5. Assume all coefficients of (2.3) are in L∞
(
[0, T ];W 2,∞(Ω)

)
. We232

have233

A(zh, vh)−Ah(zh, vh) = O(h)‖vh‖2‖zh‖1, ∀vh, zh ∈ V h.234

Lemma 3.6. For the differential operator L and any fixed t ∈ [0, T ], assume235

aij(x, t), bi(x, t), c(x, t) ∈ L∞
(
[0, T ];W k+2,∞(Ω)

)
and u(x, t) ∈ Hk+3(Ω). For k ≥ 2,236

we have237

A(u, vh)−Ah(u, vh) =

{
O(hk+2)‖u(t)‖k+3‖vh‖2, if vh ∈ V h0 or (a∇u) · n = 0 on ∂Ω

O(hk+ 3
2 )‖u(t)‖k+3‖vh‖2, otherwise

,

(3.2)

238
239

where n denotes the unit vector normal to the domain boundary ∂Ω.240

Remark 3.7. There is half order loss in (3.1), only when using v ∈ V h for non-241

diagonal a, i.e., when solving second order equations containing mixed second order242

derivatives with homogeneous Neumann boundary conditions. See [22] for detailed243

proof of (3.2) for the homogeneous Neumann boundary condition case, i.e., (a∇u)·n =244

0 along the domain boundary.245

We have the Gronwall’s inequality in integral form as follows:246

Lemma 3.8. Let ξ(t) be continuous on [0, T ] and247

ξ(t) ≤ C1

∫ t

0

ξ(s)ds+ α(t)248

for constant C1 ≥ 0 and α(t) ≥ 0 nondescreasing in t. Then ξ(t) ≤ α(t)eC1t thus249

ξ(t) ≤ α(t)eC1T = Cα(t) for all 0 ≤ t ≤ T .250
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4. Error estimates for the elliptic projection. Let uh(x, t) denote the solu-
tion of the semi-discrete numerical scheme. Let e(x, t) = uh(x, t)− up(x, t), then we
can write

e = θh + ρh,

where θh := uh −Rhu ∈ V h0 and ρh := Rhu− up ∈ V h0 .251

In this section, we will establish the superconvergence result for the elliptic projec-252

tion, which is an important step for proving the superconvergence of function values.253

We have the following superconvergence result for ‖ρ(m)
h (t)‖, m ≥ 0, t ∈ [0, T ].254

Lemma 4.1. If aij, bj, c ∈ Cm
(
[0, T ];W k+2,∞(Ω)

)
, u ∈ Cm

(
[0, T ];Hk+4(Ω)

)
,255

then we have256

‖ρ(m)
h (t)‖1 ≤Chk+1

m∑
j=0

(‖u(j)(t)‖k+3 + ‖(Lu)(j)(t)‖k+2),(4.1)257

‖ρ(m)
h ‖L2([0,T ];L2(Ω)) ≤Chk+2

m∑
j=0

(‖u(j)‖L2([0,T ];Hk+3(Ω)) + ‖(Lu)(j)‖L2([0,T ];Hk+2(Ω))),

(4.2)

258

259
260

(4.3)

‖ρ(m)
h ‖L∞([0,T ];L2(Ω)) ≤ Chk+2

∑m
j=0(‖u(j)‖L∞([0,T ];Hk+3(Ω)) + ‖(Lu)(j)‖L∞([0,T ];Hk+2(Ω)))261

where C is independent of h, u, f , and time t.262

Proof. First we prove (4.1), with which we then prove (4.2) and (4.3) by the dual263

argument.264

From the definition of the discrete elliptic projection (2.4) we have265

Ah(ρh, vh) = ε(vh), ∀vh ∈ V h0 .(4.4)266267

where268

ε(vh) = 〈−Lu, vh〉h −Ah(up, vh).269

Note that vh is time independent. Taking m time derivatives of (4.4) yields270

(4.5) (Ah(ρh, vh))
(m)

=

m∑
j=0

(
m

j

)
A

(m−j)
h (ρ

(j)
h , vh) = ε(m)(vh).271

The term ε(m)(vh) can be rewritten as follows:272

ε(m)(vh) = 〈(Lu)(m), vh〉h − (Ah(up, vh))(m)

=
[
((Lu)(m), vh)− (A(u, vh))(m)

]
−
[
((Lu)(m), vh)− 〈(Lu)(m), vh〉h

]
+
[
(A(u, vh))(m) − (Ah(u, vh))(m)

]
+ (Ah(u− up, vh))

(m)
.

273

By Leibniz rule and (2.7), we have274

((Lu)(m), vh)− (A(u, vh))(m) =

m∑
j=0

(
m

j

)[
(L(m−j)u(j), vh)−A(m−j)(u(j), vh)

]
= 0.275

By Lemma 3.2,276

((Lu)(m), vh)− 〈(Lu)(m), vh〉h = O(hk+2)‖(Lu)(m)(t)‖k+2‖vh‖2.277
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By Leibniz rule and Lemma 3.6,278

(A(u, vh))(m) − (Ah(u, vh))(m) =

m∑
j=0

(
m

j

)[
A(m−j)(u(j), vh)−A(m−j)

h (u(j), vh)
]

279

= O(hk+2)

m∑
j=0

(
m

j

)
‖u(j)(t)‖k+3‖vh‖2.280

281

Now, Lemma 3.3 implies282

(Ah(u− up, vh))
(m)

=

m∑
j=0

(
m

j

)
A

(m−j)
h

(
(u− up)(j), vh

)
283

=O(hk+2)

m∑
j=0

(
m

j

)
‖u(j)(t)‖k+3‖vh‖2.284

285

Thus we have286

(4.6) ε(m)(vh) = O(hk+2)

 m∑
j=0

‖u(j)(t)‖k+3 + ‖(Lu)(m)(t)‖k+2

 ‖vh‖2.287

For i ≥ 0, by the Vh-ellipticity (2.10), (4.5), and (4.6) we have288

C‖ρ(i)
h (t)‖21 ≤ Ah(ρ

(i)
h , ρ

(i)
h )

=

i∑
j=0

(
i

j

)
A

(i−j)
h (ρ

(j)
h , ρ

(i)
h )−

i−1∑
j=0

(
i

j

)
A

(i−j)
h (ρ

(j)
h , ρ

(i)
h )

=ε(i)(ρ
(i)
h )−

i−1∑
j=0

(
i

j

)
A

(i−j)
h (ρ

(j)
h , ρ

(i)
h )

≤O(hk+1)

 i∑
j=0

‖u(j)‖k+3 + ‖(Lu)(i)‖k+2

h‖ρ(i)
h ‖2 + C

i−1∑
j=0

‖ρ(j)
h (t)‖1‖ρ(i)

h (t)‖1

≤

O(hk+1)

 i∑
j=0

‖u(j)‖k+3 + ‖(Lu)(i)‖k+2

+ C

i−1∑
j=0

‖ρ(j)
h (t)‖1

 ‖ρ(i)
h (t)‖1,

289

the last inequality follows from an application of an inverse estimate. Thus290

(4.7) ‖ρ(i)
h (t)‖1 ≤ O(hk+1)

 i∑
j=0

‖u(j)‖k+3 + ‖(Lu)(i)‖k+2

+ C

i−1∑
j=0

‖ρ(j)
h (t)‖1.291

Now (4.1) can be proven by induction as follows. First, set i = 0 in (4.7) to obtain292

(4.1) with m = 0. Second, assume (4.7) holds for m = i − 1, then (4.7) implies that293

(4.1) also holds for m = i.294

For fixed t ∈ [0, T ], to estimate ρ
(m)
h in L2-norm, we consider the dual problem:295

find φh ∈ V h0 satisfying: for i ≥ 0,296

(4.8) A∗(φh, vh) = (ρ
(i)
h (t), vh), ∀vh ∈ V h0 .297
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Based on Theorem 5.3 in [24], by assuming the elliptic regularity and V h ellipticity,298

problem (4.8) has a unique solution satisfying299

(4.9) ‖φh‖2 ≤ C‖ρ(i)
h (t)‖0.300

Take vh = ρ
(i)
h in (4.8) then we have301

‖ρ(i)
h (t)‖20302

=A∗(φh, ρ
(i)
h ) = A(ρ

(i)
h , φh)303

=

i∑
j=0

(
i

j

)
A(i−j)(ρ

(j)
h , φh)−

i−1∑
j=0

(
i

j

)
A(i−j)(ρ

(j)
h , φh)304

=

i∑
j=0

(
i

j

)(
A

(i−j)
h (ρ

(j)
h , φh) + E

(
A(i−j)(ρ

(j)
h , φh)

))
−

i−1∑
j=0

(
i

j

)(
ρ

(j)
h , (L∗)(i−j)φh

)
.305

306

Note that ∀χ ∈ V h0 , with (4.5) and (4.6),307

(4.10)
i∑

j=0

(
i

j

)
A

(i−j)
h (ρ

(j)
h , φh)

=

i∑
j=0

(
i

j

)
A

(i−j)
h (ρ

(j)
h , φh − χ) +

i∑
j=0

(
i

j

)
A

(i−j)
h (ρ

(j)
h , χ)

=
i∑

j=0

(
i

j

)
A

(i−j)
h (ρ

(j)
h , φh − χ) + ε(i)(χ)

≤C
i∑

j=0

‖ρ(j)
h (t)‖1‖φh − χ‖1 +O(hk+2)

 i∑
j=0

‖u(j)(t)‖k+3 + ‖(Lu)(i)(t)‖k+2

 ‖χ‖2.

308

Let χ = Π1φh where Π1 is the L2 projection to functions in the continuous309

piecewise Q1 polynomial space, see [24]. Then we have ‖φh − χ‖1 ≤ Ch‖φh‖2 and310

‖χ‖2 ≤ C‖φh‖2. Inserting (4.1) and (4.9) into (4.10), we have311

(4.11)
i∑

j=0

(
i

j

)
A

(i−j)
h (ρ

(j)
h , φh) = O(hk+2)

 i∑
j=0

(‖u(j)t)‖k+3 + ‖(Lu)(i)(t)‖k+2

 ‖φh‖2.312
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Thus with (4.11), Lemma 3.6, and inverse inequality we have313

(4.12)

‖ρ(i)
h (t)‖20

≤O(hk+2)

 i∑
j=0

‖u(j)(t)‖k+3 + ‖(Lu)(i)(t)‖k+2

 ‖φh‖2
+O(hk+2)

i∑
j=0

‖ρ(j)
h (t)‖k+2‖φh‖2 + C

i−1∑
j=0

‖ρ(j)
h (t)‖0‖φh‖2

=

O(hk+2)

 i∑
j=0

‖u(j)‖k+3 + ‖(Lu)(i)‖k+2

+ C

i−1∑
j=0

‖ρ(j)
h (t)‖0

 ‖φh‖2
≤

O(hk+2)

 i∑
j=0

‖u(j)‖k+3 + ‖(Lu)(i)‖k+2

+ C

i−1∑
j=0

‖ρ(j)
h (t)‖0

 ‖ρ(i)
h (t)‖0,

314

where (4.9) is applied in the last inequality.315

With similar induction arguments as above, (4.12) implies316

(4.13) ‖ρ(i)
h (t)‖0 ≤ O(hk+2)

i∑
j=0

(‖u(j)(t)‖k+3 + ‖(Lu)(j)(t)‖k+2).317

Take the square for both sides of (4.13) then integrate from 0 to T and take the318

square root for both sides, we can get (4.2). Take the maximum of the right hand319

side then the left hand side of (4.13) for t ∈ [0, T ], we can get (4.3).320

5. Accuracy of the semi-discrete schemes. In this section, we will prove321

the (k + 2)-th order of accuracy of Qk spectral element method, when the errors are322

measured only at nodes of degree of freedoms, which is a superconvergence result of323

function values.324

Throughout this section the generic constant C is independent of h. Although in325

principle it may depend on t though the coefficients aij(t), bj(t), c(t), we also treat326

it as independent of time since its time dependent version can always be replaced by327

a time independent constant after taking maximum over the ime interval [0, T ]. In328

what follows we will state and prove the main theorems for wave, parabolic and the329

Schrödinger equations.330

5.1. The hyperbolic problem. The main result for the wave equation can be331

stated as the following theorem.332

Theorem 5.1. If aij, bj, c ∈ C2
(
[0, T ];W k+2,∞(Ω)

)
, u ∈ C2

(
[0, T ];Hk+4(Ω)

)
,333

then for the semi-discrete scheme (2.6) for the problem (2.2), we have334

‖uh − u‖L2([0,T ];l2(Ω)) ≤Chk+2

 2∑
j=0

(‖u(j)‖L2([0,T ];Hk+3(Ω)) + ‖(Lu)(j)‖L2([0,T ];Hk+2(Ω)))

+

1∑
j=0

(‖u(j)(0)‖k+3 + ‖(Lu)(j)(0)‖k+2)

 ,

‖uh − u‖L∞([0,T ];l2(Ω)) ≤Chk+2
2∑
j=0

(‖u(j)‖L∞([0,T ];Hk+3(Ω)) + ‖(Lu)(j)‖L∞([0,T ];Hk+2(Ω))),

335
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where C is independent of t, h, u, and f .336

Proof. Note that for the numerical solution uh we have337

(5.1) 〈u(2)
h , vh〉h +Ah(uh, vh) = 〈f, vh〉h, ∀vh ∈ V h0 .338

The exact solution u satisfies utt = −Lu+ f thus the elliptic projection (2.4) satisfies339

Ah(Rhu, vh) = 〈u(2) − f, vh〉h, ∀vh ∈ V h0 .340

Subtracting the two equations above, we get θh = uh −Rhu, which satisfies341

(5.2) 〈θ(2)
h , vh〉h +Ah(θh, vh) = −〈ρ(2)

h , vh〉h + 〈u(2) − u(2)
p , vh〉, ∀vh ∈ V h0 .342

Note that343

d

dt
Ah(θh, θh) = A

(1)
h (θh, θh) + 2Ah(θh, θ

(1)
h )− 〈b · ∇θh, θ(1)

h 〉h + 〈b · ∇θ(1)
h , θh〉h.

(5.3)

344
345

Thus by Lemma 3.4 and (2.8), we have346

(5.4)

〈b · ∇θ(1)
h , θh〉h =(b · ∇θ(1)

h , θh) +O(h2)|bθh|2‖∇θ(1)
h ‖0

≤(b · ∇θ(1)
h , θh) + C‖θ(1)

h ‖0‖θh‖1
=(∇ · (bθh), θ

(1)
h ) + C‖θ(1)

h ‖0‖θh‖1
≤C‖θ(1)

h ‖0‖θh‖1 ≤ C‖θ
(1)
h ‖l2‖θh‖1,

347

where an inverse inequality was applied to the first inequality and integration by parts348

in θh ∈ V h0 yields the last equation.349

Next we estimate ‖θ(1)
h (s)‖20 + ‖θh(s)‖21. Take vh = θ

(1)
h in (5.2) and integrate350

with respect to t from 0 to s. With (5.3), we have351

(5.5)∫ s

0

d

dt

(
1

2
〈θ(1)
h , θ

(1)
h 〉h +

1

2
Ah(θh, θh)

)
dt

=
1

2

∫ s

0

A
(1)
h (θh, θh)− 〈b · ∇θh, θ(1)

h 〉h + 〈b · ∇θ(1)
h , θh〉h − 2〈ρ(2)

h , θ
(1)
h 〉h + 2〈u(2) − u(2)

p , θ
(1)
h 〉hdt.

352

With θh(0) = 0 and (5.4), this implies353

(5.6)

1

2
(‖θ(1)

h (s)‖2l2 +Ah(θh(s), θh(s)))− 1

2
‖θ(1)
h (0)‖2l2

≤C
∫ s

0

(‖θh‖21 + ‖θ(1)
h ‖0‖θh‖1)dt+ C

∫ s

0

‖ρ(2)
h ‖0‖θ

(1)
h ‖0dt

+ C

∫ s

0

‖u(2) − u(2)
p ‖l2‖θ

(1)
h ‖0dt

≤C
∫ s

0

(‖θ(1)
h ‖

2
0 + ‖θh‖21)dt+ C

∫ s

0

(‖ρ(2)
h ‖

2
0 + ‖u(2) − u(2)

p ‖2l2)dt,

354

where Cauchy-Schwarz inequality was used in the last inequality.355

Thus with (2.8), (2.10), and (5.6) we have356

(5.7)

‖θ(1)
h (s)‖20 + ‖θh(s)‖21 ≤ C‖θ

(1)
h (s)‖2l2 + CAh(θh(s), θh(s))

≤C‖θ(1)
h (0)‖2l2 + C

∫ s

0

(‖θ(1)
h ‖

2
0 + ‖θh‖21)dt+ C

∫ s

0

(‖ρ(2)
h ‖

2
0 + ‖u(2) − u(2)

p ‖2l2)dt.
357
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With the Gronwall inequality (3.8) we can eliminate the second term to find358

‖θ(1)
h (s)‖20 + ‖θh(s)‖21 ≤ C‖θ

(1)
h (0)‖2l2 + C

∫ s

0

‖ρ(2)
h ‖

2
0 + ‖u(2) − u(2)

p ‖2l2dt.359
360

With (4.3) and Theorem 3.1 we have361

‖θ(1)
h (s)‖20 + ‖θh(s)‖21 ≤ C‖θ

(1)
h (0)‖2l2 +O(h2k+4)

∫ s

0

2∑
j=0

(‖u(j)‖k+3 + ‖(Lu)(j)‖k+2)2dt,362

i.e.363

(5.8)

‖θ(1)
h (s)‖0 + ‖θh(s)‖1 ≤ C‖θ(1)

h (0)‖l2 +O(hk+2)

∫ s

0

2∑
j=0

(‖u(j)‖k+3 + ‖(Lu)(j)‖k+2)dt.364

To estimate ‖θ(1)
h (0)‖l2 we use Theorem 3.1, (4.3), and (2.8),365

‖θ(1)
h (0)‖l2 =‖(u1)I − (Rhu)(1)(0)‖l2366

=‖(u1)I − (u1)p + (u1)p − (Rhu)(1)(0)‖l2367

≤‖(u1)I − (u1)p‖l2 + ‖(u1)p − (Rhu)(1)(0)‖l2368

=‖u1 − (u1)p‖l2 + ‖(u1)p −Rh(u(1)(0))‖l2369

=‖u1 − (u1)p‖l2 + ‖(u1)p −Rh(u1)‖l2370

=O(hk+2)(‖u1‖k+3 + ‖Lu1‖k+2).371372

Then we have373

(5.9)

‖θ(1)
h ‖0 + ‖θh‖1

≤O(hk+2)

‖u1‖k+3 + ‖Lu1‖k+2 +

∫ s

0

2∑
j=0

(‖u(j)‖k+3 + ‖(Lu)(j)‖k+2)dt

 .
374

Now with (4.2), (4.3), and Theorem 3.1, the proof is concluded.375

5.2. The parabolic problem. We now present the main result for the parabolic376

problem.377

Theorem 5.2. If aij, bj, c ∈ C1([0, T ];W k+1,∞(Ω)), u ∈ C1([0, T ];Hk+4(Ω)),378

then for the semi-discrete scheme (2.5) for problem (2.1), we have379

‖uh − u‖L2([0,T ];l2(Ω)) ≤Chk+2
1∑
j=0

(‖u(j)‖L2([0,T ];Hk+3(Ω)) + ‖(Lu)(j)‖L2([0,T ];Hk+2(Ω))),

‖uh − u‖L∞([0,T ];l2(Ω)) ≤Chk+2
1∑
j=0

(‖u(j)‖L∞([0,T ];Hk+3(Ω)) + ‖(Lu)(j)‖L∞([0,T ];Hk+2(Ω))),

380

where C is independent of t, h, u, and f .381

Proof. By our semi-discrete numerical scheme (2.5) and the definition of the el-382

liptic projection (2.4), we have383

(5.10) 〈θ(1)
h , vh〉h +Ah(θh, vh) = −〈ρ(1)

h , vh〉h + 〈u(1) − u(1)
p , vh〉, ∀vh ∈ V h0 .384
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Take vh = θ
(1)
h in (5.10) and integrate with respect to t from 0 to s,385

(5.11)∫ s

0

〈θ(1)
h , θ

(1)
h 〉h +

1

2

d

dt
Ah(θh, θh)dt

=
1

2

∫ s

0

A
(1)
h (θh, θh)− 〈b · ∇θh, θ(1)

h 〉h + 〈b · ∇θ(1)
h , θh〉h − 2〈ρ(1)

h , θ
(1)
h 〉h + 2〈u(1) − u(1)

p , θ
(1)
h 〉hdt.

386

Note that θh(0) = 0, then with (2.8), (5.4), and (5.11) we have387 ∫ s

0

〈θ(1)
h , θ

(1)
h 〉hdt+ ‖θh(s)‖21 ≤

∫ s

0

〈θ(1)
h , θ

(1)
h 〉hdt+ CAh(θh(s), θh(s))

≤C
∫ s

0

‖θh‖21dt+ C

∫ s

0

‖θ(1)
h ‖l2‖θh‖1dt+ C

∫ s

0

‖ρ(1)
h ‖l2‖θ

(1)
h ‖l2dt

+ C

∫ s

0

‖u(1) − u(1)
p ‖l2‖θ

(1)
h ‖l2dt

≤C
∫ s

0

‖θh‖21dt+

∫ s

0

ε〈θ(1)
h , θ

(1)
h 〉h +

C

4ε
‖θh‖21dt+

∫ s

0

ε〈θ(1)
h , θ

(1)
h 〉h +

C

4ε
‖ρ(1)
h ‖

2
0dt

+

∫ s

0

ε〈θ(1)
h , θ

(1)
h 〉h +

C

4ε
‖u(1) − u(1)

p ‖2l2dt,

388

where Cauchy-Schwartz inequality was applied in the last inequality. Thus we have389

(1− 3ε)

∫ s

0

〈θ(1)
h , θ

(1)
h 〉hdt+ ‖θh(s)‖21 ≤C(1 +

1

4ε
)

∫ s

0

‖θh‖21dt+
C

4ε

∫ s

0

‖ρ(1)
h ‖

2
0dt

+
C

4ε

∫ s

0

‖u(1) − u(1)
p ‖2l2dt.

390

Now take ε small enough to make 1− 3ε ≥ 1
2 then391

(5.12)
1

2

∫ s

0

〈θ(1)
h (s), θ

(1)
h 〉h(s)dt+ ‖θh(s)‖21 ≤ C

∫ s

0

‖ρ(1)
h ‖

2
0dt+ C

∫ s

0

‖u(1) − u(1)
p ‖2l2dt

+C

∫ s

0

(
‖θh(t)‖21 +

1

2

∫ t

0

〈θ(1)
h (η), θ

(1)
h (η)〉hdη

)
dt.

392

Next, apply Gronwall’s inequality to eliminate the last term of the right hand side of393

(5.12) to find394

1

2

∫ s

0

〈θ(1)
h , θ

(1)
h 〉hdt+ ‖θh‖21 ≤ C

∫ s

0

‖ρ(1)
h ‖

2
0dt+ C

∫ s

0

‖u(1) − u(1)
p ‖2l2dt.395

Using (4.2), (4.3), and Theorem 3.1 we have396

1

2

∫ s

0

〈θ(1)
h , θ

(1)
h 〉hdt+ ‖θh‖21 ≤ O(hk+2)

∫ s

0

1∑
j=0

(‖u(j)‖k+3 + ‖(Lu)(j)‖k+2)dt,397

398

concluding the proof.399

5.3. The linear Schrödinger equation. Consider the problem400

(5.13)

 iut = −∆u+ V u+ f, in Ω× [0, T ],
u(x, t) = 0, on ∂Ω× [0, T ],
u(x, 0) = u0(x), in Ω,

401
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where Ω ∈ R2 is a rectangular domain, the functions u0(x), f(x, t), and the solution402

u(x, t) are complex-valued while the potential function V (x, t) is real-valued, non-403

negative, and bounded for all (x, t) ∈ Ω× [0, T ].404

In this subsection we work with complex-valued functions and the definition of
inner product and the induced norms are modified accordingly. For instance, for
complex-valued v, w ∈ L2(Ω), the inner product is defined as

(v, w) :=

∫
Ω

vw̄dx.

We assume all the functions of the function spaces defined previously are complex-405

valued for this subsection, such as Hk(Ω), Hk
0 (Ω), V h0 , etc.406

The variational form of (5.13) is: for t ∈ [0, T ], find u(t) ∈ H1
0 (Ω) satisfying:407

(5.14)

{
i (ut, v)− (∇u,∇v)− (V u, v) = (f, v), ∀v ∈ H1

0 (Ω),
u(0) = u0, ∀v ∈ H1

0 (Ω).
408

The semi-discrete numerical scheme discretizing (5.14) is to find uh ∈ V h0 satisfying409

(5.15)

{
i〈(uh)t, vh〉h − 〈∇uh,∇vh〉h − 〈V uh, vh〉h = 〈f, vh〉h, ∀vh ∈ V h0 ,
uh(0) = (u0)I ,

410

and the elliptic projection Rhu ∈ V h0 is defined as411

(5.16) 〈∇Rhu,∇vh〉h + 〈V Rhu, vh〉h = 〈−∆u+ V u, vh〉h, ∀vh ∈ V h0 .412

As in Section 4, we split the error into two parts

e = θh + ρh,

where θh = uh −Rhu ∈ V h0 and ρh = Rhu− up ∈ V h0 . The estimates for ρ
(m)
h , m ≥ 0413

from Lemma 4.1 are still valid.414

Theorem 5.3. If u ∈ C1([0, T ];Hk+4(Ω)), then for the semi-discrete scheme415

(5.15) for problem (5.13), we have416

‖uh − u‖L2([0,T ];l2(Ω)) ≤Chk+2
1∑
j=0

(‖u(j)‖L2([0,T ];Hk+3(Ω)) + ‖(Lu)(j)‖L2([0,T ];Hk+2(Ω))),

‖uh − u‖L∞([0,T ];l2(Ω)) ≤Chk+2
1∑
j=0

(‖u(j)‖L∞([0,T ];Hk+3(Ω)) + ‖(Lu)(j)‖L∞([0,T ];Hk+2(Ω))),

417

where C is independent of t, h, u, and f .418

Proof. As in the parabolic case we start by estimating θh.419

(5.17)

〈θ(1)
h , vh〉h+i〈∇θh,∇vh〉h+i〈V θh, vh〉h = −〈ρ(1)

h , vh〉h+〈u(1)−u(1)
p , vh〉h, ∀vh ∈ V h0 .420

Taking vh = θh in (5.17) and taking real part,421

d

dt
‖θh‖2l2(Ω) =

d

dt
〈θh, θh〉h =2Re

(
−〈ρ(1)

h , θh〉h + 〈u(1) − u(1)
p , θh〉h

)
422

≤2
(
‖ρ(1)
h ‖l2(Ω) + ‖u(1) − u(1)

p ‖l2(Ω)

)
‖θh‖l2(Ω).423

424
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16 H. LI, D. APPELÖ, AND X. ZHANG

Since d
dt‖θh‖

2
l2(Ω) = 2‖θh‖l2(Ω)

d
dt‖θh‖l2(Ω), it impilies425

d

dt
‖θh‖l2(Ω) ≤ ‖ρ

(1)
h ‖l2(Ω) + ‖u(1) − u(1)

p ‖l2(Ω).426
427

Upon integrating this inequality with respect to t from 0 to s we have428

‖θh(s)‖l2(Ω) ≤ ‖θh(0)‖l2(Ω) +

∫ s

0

(‖ρ(1)
h ‖l2(Ω) + ‖u(1) − u(1)

p ‖l2(Ω))dt.429
430

Now, using Theorem 3.1, (4.3), and (2.8) we have431

‖θh(0)‖l2 =‖(u0)I − (Rhu)(0)‖l2432

=‖(u0)I − (u0)p + (u0)p − (Rhu)(0)‖l2433

≤‖(u0)I − (u0)p‖l2 + ‖(u0)p − (Rhu)(0)‖l2434

=‖u0 − (u0)p‖l2 + ‖(u0)p −Rhu0‖l2435

=O(hk+2)(‖u0‖k+3 + ‖Lu0‖k+2).436437

With this result in concert with (4.2), (4.3), and Theorem 3.1 we note438

‖θh(s)‖l2(Ω) ≤ O(hk+2)

‖u0‖k+3 + ‖Lu0‖k+2 +

∫ s

0

1∑
j=0

(‖u(j)‖k+3 + ‖(Lu)(j)‖k+2)dt

 .439

Together with (4.2), (4.3), and Theorem 3.1, proof is concluded.440

5.4. Neumann boundary conditions and `∞-norm estimate. For homo-441

geneous Neumann type boundary conditions, due to Lemma 3.3, in general we can442

only prove (k+ 3
2 )-th order accuracy for the hyperbolic equation, parabolic equation,443

and linear Schrödinger equation. As explained in Remark 3.7, the half order loss444

happens for homogeneous Neumann boundary condition only when the second order445

operator coefficient a is not diagonal, e.g., when the PDE contains second order mixed446

derivatives. If a is diagonal, then all results of (k+ 2)-th order in `2 norm in this Sec-447

tion can be easily extended to the homogeneous Neumann boundary conditions. See448

Section 2.8 in [22] for a detailed discussion of nonhomogeneous Neumann boundary449

conditions.450

For Lagrangian Qk finite element method without any quadrature solving the451

elliptic equation with Dirichlet boundary conditions, the best superconvergence order452

in max norm of function values at Gauss-Lobatto that one can prove is O(| log h|hk+2)453

in two dimensions, see [24] and references therein. Thus we do not expect better results454

can be proven in the Qk spectral element method in `∞ norm over all nodes of degree455

of freedoms.456

6. The implementation for nonhomogeneous Dirichlet boundary con-457

ditions. Consider the hyperbolic problem on Ω = (0, 1)2 with compatible nonhomo-458

geneous Dirichlet boundary condition and initial value459

(6.1)

utt =− Lu+ f(x, t) in Ω× (0, T ],

u(x, t) =g on ∂Ω× [0, T ],

u(x, 0) =u0(x), ut(x, 0) = u1(x) on Ω× {t = 0}.
460

As in [12, 24], by abusing notation, we define461

g(x, y, t) =

{
0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y, t), if (x, y) ∈ ∂Ω,
462
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and define gI ∈ V h as the Qk Lagrange interpolation at (k + 1) × (k + 1) Gauss-463

Lobatto points for each cell on Ω of g(x, y, t). Namely, gI ∈ V h is the piecewise Qk464

interpolant of g along ∂Ω at the boundary grid points and gI = 0 at the interior grid465

points. Then the semi-discrete scheme for problem (6.1) is as follows: for t ∈ [0, T ],466

find ũh ∈ V h0 such that467

(6.2)
〈ũ(2)
h , vh〉h +Ah(ũh, vh) =〈f, vh〉h −Ah(gI , vh), ∀vh ∈ V h0 ,

ũh(0) = Rhu0, ũ
(1)
h (0) =(u1)I .

468

Then469

(6.3) uh := ũh + gI ,470

is the desired numerical solution. Notice that uh and ũh are the same at all interior471

grid points.472

For the initial value of numerical solution, instead of using discrete elliptic pro-473

jection, we can also use ũh(0) = u(x, y, 0)I in (6.2) where u(x, y, 0)I is the piecewise474

Lagrangian Qk interpolation of u(x, y, 0). In all numerical tests in Section 7, (k+2)-th475

order accuracy is still observed for the initial condition ũh(0) = u(x, y, 0)I .476

The treatment for nonhomogeneous Dirichlet boundary condition above can be477

extended naturally to the parabolic equation and linear Schrödinger equation,478

Remark 6.1. For the (k + 2)-th order accuracy of the scheme (6.2), it can be479

shown analogously as in [24], and in Section 4 and Section 5 by defining discrete480

elliptic projection as481

(6.4) Rhu := R̃hu+ gI ,482

where R̃hu ∈ V h0 satisfying483

Ah(R̃hu, vh) = 〈−Lu, vh〉h −Ah(gI , vh), ∀vh ∈ V h0 , 0 ≤ t ≤ T.484

7. Numerical examples. In this section we present numerical examples for the485

wave equation, a parabolic equation and the Schrödinger equation.486

7.1. Numerical examples for the wave equation.487

7.1.1. Timestepping. The so called modified equation technique, [10, 35, 16,488

19], is an attractive option for timestepping the scalar wave equation. After semidis-489

cretization the method (2.6) can be written as490

d2uh
dt2

= Quh,491

where uh is a vector containing all the degrees of freedom and Q is a matrix. To492

evolve in time we expand the approximate solution around t+ ∆t and t−∆t493

uh(t+∆t)+uh(t−∆t) = 2uh(t)+∆t2
d2uh(t)

dt2
+

∆t4

12

d4uh(t)

dt4
+

∆t6

360

d6uh(t)

dt6
+O(∆t8).494

Replacing the even time derivatives with applications of the matrix Q we obtain, for495

example, a 6th order accurate explicit temporal approximation496

uh(t+ ∆t) + uh(t−∆t) = 2uh(t) + ∆t2Quh(t) +
∆t4

12
Q2uh(t) +

∆t6

360
Q3uh(t).497
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Note that the matrix Q does not need to be explicitly known, and an implicit498

definition through a “matrix-vector multiplication” subroutine will suffice. In that499

case the three last terms on the right hand side of the above equation would be500

computed by repeated application of Q. For example to compute uh(t+∆t) one would501

assign vh = 2uh(t) − uh(t −∆t), uh(t −∆t) = uh(t), followed by three applications502

of Q and updates of vh: (1) wh = Quh(t), vh ← vh + ∆t2wh, uh(t) = wh, (2)503

wh = Quh(t), vh ← vh + ∆t4/12wh, uh(t) = wh, (3) wh = Quh(t), vh ← vh +504

∆t6/360wh. The time update is then finalized by the assignment uh(t) = vh, which505

can conveniently be implemented as a for loop.506

7.1.2. Standing mode with Dirichlet conditions. In this experiment we507

solve the the wave equation utt = uxx + uyy with homogenous Dirichlet boundary508

conditions in the square domain (x, y) ∈ [−π, π]2. We take the initial data to be509

u(x, y, 0) = sin(x) sin(y), ut(x, y, 0) = 0,510

which results in the exact standing mode solution511

u(x, y, 0) = sin(x) sin(y) cos(
√

2t).512

We consider the two cases k = 2 and k = 4 and discretize on three different513

sequences of grids. The first sequence contains only plain Cartesian of increasing re-514

finement. The second sequence consists of the same grids as in the Cartesian sequence515

but with all the interior nodes perturbed by a two dimensional uniform random vari-516

able with each component drawn from [−h/4, h/4]. The nodes of the third sequence517

are518

(x, y) = (ξ + 0.1 sin(ξ) sin(η), η + 0.1 sin(η) sin(ξ)), (ξ, η) = [−π, π]2,519

and this is refined in the same ways as the Cartesian sequence. Typical examples of520

the grids are displayed in Figure 1. Even though the equation contains no coefficients,521

variable coefficients are still involved for the second and the third sequences of grids.522

The variable coefficients are induced by the geometric transformations of the elements523

in the mesh to a reference rectangle element. However, on a randomly perturbed grid,524

the variable coefficients are not smooth across cell interfaces. The variable coefficients525

are smooth in a smoothly perturbed grid.526

We evolve the numerical solution until time 5 by the time stepping discussed in527

Section 7.1.1 of order of accuracy 4 when k = 2 and 6 when k = 4. To get clean528

measurements of the error we report the time integrated errors529 (∫ 5

0

‖u(·, t)− uh(·, t)‖2l2 dt
) 1

2

,

∫ 5

0

‖u(·, t)− uh(·, t)‖l∞ dt,530

for the spatial l2 and l∞ errors respectively.531

The results are displayed in Figure 2. Note that here and in the rest of this section532

the solid lines in the figures are the computed errors, using many different grid sizes,533

and the symbols are indicating the slopes or rates of convergence of the curves. The534

Cartesian grids and smoothly perturbed grids satisfy the assumptions of the theory535

developed in this paper while the second sequence of randomly perturbed grids does536

not. The results confirm the theoretical predictions for smooth variable coefficients as537

the rate of convergence is k + 2 for the l2-norm in the cases of the Cartesian meshes538

and the smoothly perturbed meshes. We also observe the rate k + 2 in the l∞-norm539
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Fig. 1. Two typical grids used in the numerical examples in Section 7.1.2 and 7.1.4.
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Fig. 2. Dirichlet problem in a square. Errors measured in the l2 and the l∞ norms for the
three different sequences of grids. The top row is for k = 2 and the bottom row is for k = 4.

for these cases. For the non-smooth variable coefficients resulting from the randomly540

perturbed grid, which is not covered by our theory, we see a rate of convergence of541

k + 1 in the l2-norm.542

7.1.3. Standing mode in a sector of an annulus with Dirichlet condi-543

tions. In this experiment we solve the wave equation utt = uxx + uyy with homoge-544

nous Dirichlet boundary conditions. The computational domain is the first quadrant545
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Fig. 3. Dirichlet problem in an annular sector. Errors measured in the l2 and the l∞ norms
for the three different sequences of grids. The top row is for k = 2 and the bottom row is for k = 4.
These results are for the annular problem with homogenous Dirichlet boundary conditions.

of the annular region between two circles with radii ri = 7.58834243450380438 and546

ro = 14.37253667161758967, i.e. the domain is described by (x, y) = (r cos θ, r sin θ)547

where548

ri ≤ r ≤ ro, 0 ≤ θ ≤ π/2.549

On this domain the standing mode550

u(r, θ, t) = J4(r) sin(4θ) cos(t),551

is an exact solution and we use this solution to specify the initial conditions and to552

compute errors.553

We consider the two cases k = 2 and k = 4 and discretize on three different554

sequences of grids. The first sequence uses a straight sided approximation of the555

annulus and all internal elements are quadrilaterals with straight sides. The second556

sequence uses curvilinear elements throughout the domain and all internal element557

boundaries conform with the polar coordinate transformation. After the smooth558

mapping to the unit square, smooth variable coefficients emerge due to the geometric559

terms. The metric terms are approximated with numerical differentiation using the560

values at the quadrature points. The third sequence is the same as the second sequence561

but all the internal element edges are straight. The meshes in the last sequence are562

likely close to those that would be provided by most grid generators.563

We evolve the numerical solution until time 1 by the time stepping discussed in564

Section 7.1.1 of order of accuracy 4 when k = 2 and 6 when k = 4. Again, to get565

This manuscript is for review purposes only.



SPECTRAL ELEMENT METHOD FOR WAVE EQUATIONS 21

clean measurements of the error we report the time integrated errors566

(∫ 1

0

‖u(·, t)− uh(·, t)‖2l2 dt
) 1

2

,

∫ 1

0

‖u(·, t)− uh(·, t)‖l∞ dt,567

for the spatial l2 and l∞ errors respectively.568

The results are displayed in Figure 3. Here, as expected, we only observe second569

order accuracy independent of k for the non-geometry-conforming meshes. We observe570

a convergence at the rate of k+ 2 in both the l2-norm and l∞-norm for the geometry-571

conforming meshes. The true curvilinear grids are covered by our theory since the572

variable coefficients due to the geometric transformation are smooth. For the third573

sequence of grids, since internal edges are straightsided, the variable coefficients from574

the geometric transformation are not smooth across edges thus this configuration is575

not covered by our theory. Nonetheless, its convergence rate is still k + 2.576
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Fig. 4. Neumann square problem. Errors measured in the l2 and the l∞ norms for the three
different sequences of grids. The top row is for k = 2 and the bottom row is for k = 4.

7.1.4. Standing mode with Neumann conditions. In this experiment we577

approximate the solution to the wave equation utt = uxx + uyy in the square domain578

(x, y) ∈ [−π, π]2. Then with homogenous Neumann boundary conditions and initial579

data580

u(x, y, 0) = cos(x) cos(y), ut(x, y, 0) = 0,581

the exact standing mode solution is582

u(x, y, 0) = cos(x) cos(y) cos(
√

2t).583
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We consider the two cases k = 2 and k = 4 and discretize on the same three584

sequences of grids as those used in §7.1.2. We evolve the numerical solution until time585

5 as above and we report the time integrated errors as above.586

The results are displayed in Figure 4. For the Cartesian mesh we observe a rate of587

convergence k+ 2 in the `2-norm, confirming our theory. For the smoothly perturbed588

grids, which corresponds to smooth variable coefficients resulting in mixed second589

order derivatives on the reference rectangular mesh, the rate in the l2-norm appears590

to be k+ 5/3. As explained in Section 5.4, only (k+ 3
2 )-th order can be proven when591

both mixed second order derivatives and Neumann boundary conditions are involved.592

As in the Dirichlet case, the randomly perturbed grid yields rates of convergence k+1593

in both norms.594

7.1.5. Standing mode in a sector of an annulus with Neumann con-595

ditions. In this experiment we solve the the wave equation utt = uxx + uyy with596

homogenous Neumann boundary conditions. The computational domain is again597

the first quadrant of the annular region between two circles, now with radii ri =598

5.31755312608399 and ro = 9.28239628524161, to satisfy the boundary conditions.599

On this domain the standing mode600

u(r, θ, t) = J4(r) cos(4θ) cos(t),601

is an exact solution and we use this solution to specify the initial conditions and to602

compute errors.603

As in the previous examples we consider the two cases k = 2 and k = 4 and604

discretize on the same three different sequences of grids as was used in the Dirichlet605

example above. We evolve the numerical solution until time 1 in the same way as606

above and we report the time integrated errors.607

The results are displayed in Figure 5. Here, the only grid satisfying our assump-608

tions is the true curvilinear grid. For this case, the problem is equivalent to solving a609

variable coefficient problem utt = urr + 1
r2uθθ + 1

rur on rectangular meshes for polar610

coordinates (r, θ) ∈ [ri, ro]× [0, π2 ]. Since there are no mixed second order derivatives,611

by our theory as explained in Section 5.4, (k + 2)-th order in the `2-norm can still612

be proven. We can see that the rate for the true curvilinear grid is indeed k + 2 in613

`2-norm, confirming our theory for Neumann boundary conditions.614

7.2. Numerical tests for the parabolic equation. For problem (2.1) on the615

domain Ω = (0, π)2, we set a =

(
a11 a12

a21 a22

)
with616

a11 =

(
3

4
+

1

4
sin(t)

)(
1 + y + y2 + x cos y

)
,

a12 =a21 =

(
3

4
+

1

4
sin(t)

)(
1 +

1

2
(sin(πx) + x3)(sin(πy) + y3) + cos(x4 + y3)

)
,

a22 =

(
3

4
+

1

4
sin(t)

)(
1 + x2

)
,

617

b =

(
b1
b2

)
with618

b1 =

(
3

4
+

1

4
sin(t)

)(
1

5
+ x

)
, b2 =

(
3

4
+

1

4
sin(t)

)(
1

5
− y
)
,619

and c =
(

3
4 + 1

4 sin(t)
) (

10 + x4y3
)
. For time discretization in (2.5), we use the620

third order backward differentiation formula (BDF) method. Let u(x, y, t) = ( 3
4 +621
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Fig. 5. Neumann annular sector problem. Errors measured in the l2 and the l∞ norms for the
three different sequences of grids. The top row is for k = 2 and the bottom row is for k = 4. These
results are for the annular problem with homogenous Neumann conditions.

1
4 sin(t))(− sin(y) cos(y) sin(x)2) and we use a potential function f so that u is the622

exact solution. The time step is set as ∆t = min(∆x
10 ,

∆x
10bM

, fM10 ), where bM =623

maxx∈Ω,i=1,2 |bi(0,x)| and fM = maxx∈Ω |f(0,x)|. The errors at time T = 0.1 are624

listed in Table 1, in which we observe order around k + 2 for the `2-norm.625

Table 1
A two-dimensional parabolic equation with Dirichlet boundary conditions.

Qk polynomial SEM Mesh l2 error order l∞ error order

k = 2

4× 4 8.34E-3 - 4.57E-3 -
8× 8 6.59E-4 3.66 3.16E-4 3.85

16× 16 4.52E-5 3.86 2.36E-5 3.74
32× 32 2.91E-6 3.96 1.53E-6 3.94

k = 3

4× 4 5.88E-4 - 1.71E-4 -
8× 8 2.24E-5 4.71 7.56E-6 4.50

16× 16 7.49E-7 4.90 2.52E-7 4.91
32× 32 2.38E-8 4.97 8.06E-9 4.96

k = 4

4× 4 4.26E-5 - 1.16E-5 -
8× 8 7.62E-7 5.81 2.34E-7 5.63

16× 16 1.26E-8 5.92 4.12E-9 5.83
32× 32 2.00E-10 5.98 6.68E-11 5.95
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7.3. Numerical tests for the linear Schrödinger equation. For problem626

(5.13) on the domain (0, 2)2, a fourth-order explicit Adams-Bashforth as time dis-627

cretization for (5.15). The solution and potential functions are as follows: u(x, y, t) =628

e−ite−
x2+y2

2 , V (x, y) = x2+y2

2 , and f(x, y, t) = 0. The time step is set as ∆t = ∆x2

500 .629

Errors at time T = 0.5 are listed in Table 2, in which we observe order near k+ 2 for630

the `2-norm.631

Table 2
A two-dimensional linear Schrödinger equation with Dirichlet boundary conditions.

Qk polynomial SEM Mesh l2 error order l∞ error order

k = 2

4× 4 9.98E-4 - 6.36E-4 -
8× 8 6.65E-5 3.91 4.01E-5 3.99

16× 16 4.10E-6 4.02 2.77E-6 3.85
32× 32 2.53E-7 4.02 1.79E-7 3.89

k = 3

4× 4 4.06E-5 - 2.12E-5 -
8× 8 1.12E-6 5.18 5.56E-7 5.26

16× 16 3.22E-8 5.12 1.75E-8 4.99
32× 32 1.05E-9 4.94 5.33E-10 5.04

k = 4

4× 4 1.61E-6 - 5.86E-7 -
8× 8 2.65E-8 5.92 9.93E-9 5.88

16× 16 3.95E-10 6.07 1.66E-10 5.90
32× 32 5.30E-12 6.22 2.66E-12 5.97

8. Concluding remarks. We have proven that the Qk (k ≥ 2) spectral element632

method, when regarded as a finite difference scheme, is a (k + 2)-th order accurate633

scheme in the discrete 2-norm for linear hyperbolic, parabolic and Schrödinger equa-634

tions with Dirichlet boundary conditions, under smoothness assumptions of the exact635

solution and the differential operator coefficients. The same result holds for Neumann636

boundary conditions when there are no mixed second order derivatives. This explains637

the observed order of accuracy when the errors of the spectral element method are638

only measured at nodes of degree of freedoms.639
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