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ACCURACY OF SPECTRAL ELEMENT METHOD FOR WAVE,
PARABOLIC AND SCHRODINGER EQUATIONS *

HAO LIT, DANIEL APPELO#, AND XIANGXIONG ZHANGH

Abstract. The spectral element method constructed by the Q¥ (k > 2) continuous finite
element method with (k + 1)-point Gauss-Lobatto quadrature on rectangular meshes is a popular
high order scheme for solving wave equations in various applications. It can also be regarded as a
finite difference scheme on all Gauss-Lobatto points. We prove that this finite difference scheme is
(k + 2)-order accurate in discrete 2-norm for smooth solutions. The same proof can be extended to
the spectral element method solving linear parabolic and Schrédinger equations. The main result
also applies to the spectral element method on curvilinear meshes that can be smoothly mapped to
rectangular meshes on the unit square.

Key words. Spectral element method, Gauss-Lobatto quadrature, superconvergence, the wave
equation, parabolic equations, the linear Schrodinger equation.
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1. Introduction. Accurate and efficient approximations of solutions to partial
differential equations are important to numerous applications arising in engineering
and the sciences. In particular for problems whose solutions are of wave type, high
order accurate methods are favored as they can control the dispersive errors in wave
forms that propagate over vast distances.

For wave equations and other hyperbolic problems, the two key insights that
a numerical analyst can provide to a practitioner comparing methods are: a) if the
method is guaranteed to be stable, and b) if the numerical method is guaranteed to be
accurate. The first condition is most conveniently guaranteed by selecting a method
that is based on a variational formulation such as spectral elements, summation-by-
parts s and continuous and discontinuous Galerkin finite element methods.

In recent years many such stable and high order accurate methods for wave equa-
tions have been developed. These include discontinuous Galerkin methods for first
order hyperbolic systems [17, 31, 7, 8, 18, 40, 30] and wave equations in second or-
der form [32, 15, 6, 2], and finite differences with summation by parts operators
[27, 29, 28, 36, 1, 38, 39], as well as spectral elements for wave equations [21, 20].

In this paper we are mainly concerned with the second topic, to provide rigorous
estimates on the errors for a method. In particular, we study the rates of convergence
of the error, as measured in norms over nodes for all degree of freedoms, for the spectral
element method applied to linear wave and parabolic, and Schrédinger equations.
These three types of equations are fundamentally different, but all of them contain
the same second order operator, which can be discretized by the same spectral element
method.

To be precise, we consider the Lagrangian Q* (k > 2) continuous finite element
method for solving linear evolution PDEs with a second order operator V - (a(x)Vu)
on rectangular meshes implemented by (k 4 1)-point Gauss-Lobatto quadrature for
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2 H. LI, D. APPELO, AND X. ZHANG

all integrals. This is often referred to as the spectral element method in the literature
and this is the notation we will use here.

For the QF spectral element method, it is well known that the standard finite
element error estimates still hold [26], i.e., the error in H!-norm is k-th order and the
error in L2mnorm is (k + 1)-th order. It is also well known that the Lagrangian Q*
(k > 2) continuous finite element method is (k4 2)-th order accurate in the discrete 2-
norm over all (k+1)-point Gauss-Lobatto quadrature points [37, 25, 3]. If using a very
accurate quadrature in the finite element method for a variable coefficient operator
V - (a(x)Vu), then (k + 2)-th order superconvergence at Gauss-Lobatto points holds
trivially. However, for the efficiency of having a diagonal mass matrix and for the
convenience of implementation, the most popular method for wave equations is the
simplest choice of quadrature, i.e. using (k + 1)-point Gauss-Lobatto quadrature for
Q" elements in all integrals for both mass and stiffness matrices. In particular in the
seismic community, where highly efficient simulation of the elastic wave equation is
of important, the spectral method has become the method of choice, [21, 20].

When using this (k+1)-point Gauss-Lobatto quadrature for Lagrangian Q* finite
element method, the quadrature nodes coincide with the nodes defining the degrees
of freedom, and the resulting method becomes the so-called spectral element method.
Thus the spectral element method can also be regarded as a finite difference scheme
at all Gauss-Lobatto points. For instance, consider solving u;; = ug; on the interval
[0,1] with homogeneous Dirichlet boundary conditions. Introduce the uniform grid
0=x9 < w1 < - <2y < xny1 = 1 with spacing h = 1/(N 4+ 1) and N being
odd. This grid gives a uniform partition of the interval [0,1] into uniform intervals

Iy = [xog,Tok42] (K = 0, ,%) Then all 3-point Gauss-Lobatto quadrature
points for intervals Iy, = [xag, Tag42] coincide with the grid points x;. The Q? spectral
element method on intervals I, = [zak, Tokta] (k = 0,---, X=1) is equivalent to the
+ 2

following semi-discrete finite difference scheme [9, 24]:

d? Uj—1 — 22Uy + Uil L. ..
(1.1a) Pl ‘ h; L if g is odd;

d? —Uj_o + u;—1 — 14u; + 8u;p1 — uy
(1.1b) Tl = G 4h2u1 + Suip1 ul+2, if 7 is even.

While the truncation error of (1.1) is only second order yet the dispersion error is
fourth order, see Section 11 in [9]. Although the dispersion error results can in prin-
ciple be extended to any order, the derivation and expressions become increasingly
cumbersome. Further the dispersion error results are limited to unbounded or periodic
domains and do not produce error estimates in the form of a norm of the error. Other
than spectral element methods, other high order schemes can also be interpreted as
a finite difference scheme, such as the Fourier pseudo-spectral method [5, 13, 4].

In fact, as we have shown in [24], it is nontrivial and requires new analysis tools
to establish the (k 4 2)-th order superconvergence when (k + 1)-point Gauss-Lobatto
quadrature is used. In [24], (k + 2)-th order accuracy at all Gauss-Lobatto points of
Q" spectral element method was proven for elliptic equations with Dirichlet boundary
conditions. In this paper, we extend those results and will prove that the Q* spectral
element method is a (k + 2)-th order accurate scheme for linear wave, parabolic and
Schrodinger equations with Dirichlet boundary conditions. For Neumann boundary
conditions, if a(x) is diagonal, i.e., there are no mixed second order derivatives in
V - (a(x)Vu), (k + 2)-th order accuracy in discrete 2-norm can be proven. When
mixed second order derivatives are involved, only (k + %)—th order can be proven for
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SPECTRAL ELEMENT METHOD FOR WAVE EQUATIONS 3

Neumann boundary conditions, and we indeed observe some order loss in numerical
tests.

The main contribution of this paper is to explain the order of accuracy of Q*
spectral element method, when the errors are measured only at nodes of degree of
freedoms. As mentioned above we consider the case of rectangular elements and
a smooth coefficient a(x) in the term V - (a(x)Vu). We note that this does include
discretizations on regular meshes of curvilinear domains that can be smoothly mapped
to rectangular meshes for the unit cube, e.g., the spectral element method for Au on
such a mesh for a curvilinear domain is equivalent to the spectral element method for
V- (a(x)Vu)+b(x)-Vu on a reference uniform rectangular mesh where a(x) and b(x)
emerge from the mapping between the curvilinear domain and the unit cube. It does
however not include problems on unstructured quadrilateral meshes where the metric
terms typically are non-smooth at element interfaces but we note that the numerical
examples that we present indicate that such meshes may still exhibit larger rates than
k+1. We only consider the semi-discrete schemes for linear equations in this paper.
In general, it is straightforward to extend the error estimates to a fully discrete scheme
for simple time discretizations, e.g., [41]. Even though superconvergence in Q* finite
element method without any quadrature can be established for nonlinear equations
[3], the result in this paper may no longer hold for generic nonlinear equations since
the simplest (k + 1)-point Gauss-Lobatto quadrature are not accurate enough for
nonlinear terms.

This paper is organized as follows. In Section 2, we introduce notation and
assumptions. In Section 3, we review a few standard quadrature estimates. In Section
4, the superconvergence of elliptic projection is analyzed, which is parallel to the classic
error estimation for hyperbolic and parabolic equations by involving elliptic projection
of the corresponding elliptic operator, see [41, 33, 11]. We then prove the main
result for homogeneous Dirichlet boundary conditions in Section 5, for the second-
order wave equation in Section 5.1, parabolic equations in Section 5.2 and linear
Schrodinger equation in Section 5.3. Neumann boundary conditions can be discussed
similarly as summarized in Section 5.4. For problems with nonhomogeneous Dirichlet
boundary conditions, a convenient implementation which maintains the (k + 2)-th
order of accuracy is given in Section 6. Numerical tests verifying the estimates are
given in Section 7. Concluding remarks are given in Section 8

2. Equations, notation, and assumptions.

2.1. Problem setup. Let L be a linear second order differential operator with
time dependent coefficients:

Lu = -V - (a(x,t)Vu) + b(x,t) - Vu + c(x, t)u,

where a(x,t) = (a;j(x,t)) is a positive symmetric definite operator for ¢ € [0,77,
i.e. there exist constants a,3 > 0 such that a|¢|? < ¢Ta(x,t)¢ < Bl¢|?, for all
(x,t) € Qx[0,T],£ € R™. Consider the following two initial-boundary value problems
with smooth enough coefficients on a rectangular domain Q = (0,1) x (0,1) with its
boundary 0

Given 0 < T < oo, find u(x,t) on Q x [0, T] satisfying

uy = — Lu+ f(x,1) in 2 x (0,71,
(2.1) u(x,t) =0 on 09 x [0, T,

u(x,0) =up(x) on Q.

This manuscript is for review purposes only.
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4 H. LI, D. APPELO, AND X. ZHANG
Given 0 < T < oo, find u(x,t) on Q x [0, T satisfying

uye = — Lu+ f(x,1) in Q x (0,77,
(2.2) u(x,t) =0 on 0 x [0,T7,
u(x,0) =up(x), wu(x,0) =uq(x) onx{t=0}.

We use A(-) to denote the bilinear form: for u,v € H'(€),
(2.3) A(u,v) = / Vula(x,t)Vo + b(x,t) - Vu + c(x, t)uv dx.
Q

For convenience, we assume 2, is a uniform rectangular mesh for Q and e = [z, —
h, Te+h] X [ye—h, ye+h] denotes any cell in 2y, with cell center (z., y.). Though we only
discuss uniform meshes, the main result can be easily extended to nonuniform rectan-

gular meshes with smoothly varying cells. Let Q*(e) = { p(=,v) = zkj ij pijziy?, (z,y) €ep
i=03j=0

denote the set of tensor product of polynomials of degree k on an element e. Then
we use V" = {p(z,y) € C%(Q) : ple € Q%(e), Ve € Qu} to denote the continu-
ous piecewise Q* finite element space on , and V' = {v), € V" : vp|sq = 0}. Let
(u,v) = [, uvdx and let (-,-); and Ap(-,-) denote approximation of the integrals by
(k + 1)-point Gauss-Lobatto quadrature for each spatial variable in each cell. Also,
u® will denote the i-th time derivative of the function u(x, ).

For the equations that we are interested in, assume the exact solution u(x,t) €
H () N H%(Q) for any ¢, and define its discrete elliptic projection Ryu € V! as

(24) Ah(Rhu,vh) = <—Lu,vh>h, Yoy, € Vbh, 0<t<T.

Also, let u; € V" denote the piecewise Lagrangian Q” interpolation polynomial of
function u at (k+ 1) x (k + 1) Gauss-Lobatto points in each rectangular cell.

We consider semi-discrete spectral element schemes whose initial conditions are
defined by the elliptic projection and the Lagrange interpolant of the continuous initial
data.

For problem (2.1) the scheme is to find uy(x,t) € V{ satisfying
<U§Ll),vh>h + An(un,vn) =(f,vadn, Von € Vi,

(2.5> uh(O) :Rhuo.

We consider the semi-discrete spectral element scheme for problem (2.2) with
special initial conditions: solve for uy(t) € V{* satisfying

(Uf)yvh% + Ap(un,vn) =(f,vn)n,  Von € V7,

2.6
(26) un(0) = Rpug,  ul (0) =(uy);.

2.2. Notation and basic tools. We will use the same notation as in [23, 24].
The norm and semi-norms for W*?(Q) and 1 < p < 400, with standard modifi-
cation for p = 400 can be defined as follows,

1/p

lullkpo=| > / Q|a;agu(x,y)|pdxdy ,

i+j<k

This manuscript is for review purposes only.
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SPECTRAL ELEMENT METHOD FOR WAVE EQUATIONS 5

1/p

o= 3 / 10200 u(z, y)[Pddy

i+j=k

When there is no confusion, for simplicity, sometimes we may use ||u|x and |u|; as
norm and semi-norm for H*(Q2) = W*?2(Q) respectively.

For any v, € V, 1 < p < +00, and k > 1, we define the broken broken Sobolev
norms and seminorms by the following symbols,

5 5
[vnllkp. = (Z Uh||£,p,e> o |onlkpo = <Z Uh|§,p,e> :
€

€

Let Zy. denote the set of (k+ 1) x (k + 1) Gauss-Lobatto points of the cell e
and Zy = |J, Zo,. denote all Gauss-Lobatto points in the mesh Q. Let ||ul|;2(q) and
l|luli 2y denote the discrete 2-norm and the maximum norm over Z respectively as

2

lullioy = |B* D Ju@ )|  lulie@ = max |u(z,y)].
(z,y)EZo
(z,y)EZo

When there is no confusion, for simplicity, sometimes we may use |lul|;2 and |u|;e
to denote [ul|;2(q) and |lul|;~q) respectively. For a continuous function f(x,y), let

f1(z,y) denote its piecewise Q¥ Lagrange interpolant at Z. on each cell e, i.e.,
fr € V! satisfies:

f(x,y):fl(x,y)v V(l’,y)GZO.

Let (f,v). denote the inner product in L?(e) and (f,v) denotes the inner product
in L2(Q) as

/ fodzdy, (f,v) / fvdxdy—Z(f,)

Let (f,v)p denote the approximation to (f,v) by using (k+ 1) x (k4 1)-point Gauss-
Lobatto quadrature for integration over each cell e. Then for k > 2, the (k+1)x (k+1)
Gauss-Lobatto quadrature is exact for integration of tensor product polynomials of
degree 2k —1>k+1on K.

We denote A*(-,-) as the adjoint bilinear form of A(,-) such that

A*(v,u) = A(u,v) = (aVu, Vo) + (b - Vu,v) + (cu,v).

Let superscript (i) denote i-th time derivatives for coefficients a, b, and c¢. For the
time dependent operators L and A, the symbols L) and A are defined as taking
time derivatives only for coefficients:

Ly = -V - (aDVu) +b® . Vu + Dy

and
AW (y,v) = / Vula® Vv 4+ b" . Vu + Duvdx.
Q

The symbol AS) is similarly defined as taking time derivatives only for coefficients in
Ap. With this notation, for u(x,t) and time independent test function v(x), we have
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6 H. LI, D. APPELO, AND X. ZHANG

Leibniz rule

(L) — i <m) LDy, (A, 0)]™ = i (2”) A=) (4D ).

i=o N/ i=0
By integration by parts, it is straightforward to verify
(2.7) (L) ) = A=) (D v), Vo e HHQ).

There exist constants C; (i = 1,2,3,4) independent of h such that /2-norm and
L?-norm are equivalent for V"

Cillvnlliz < llvnllo < Collonlliz, Vv € V",

(2.8) ’ )
Cs(vn, vn)n < |lvnllg < Cafvn, vp)n, Yve V™

We have the inverse inequality for polynomials as
(2.9) th||k+1’e < Ch_IH’Uth)e, Yy, € Vh, k> 0.

2.3. Assumption on the coercivity and the elliptic regularity. For the
12

operator A(u,v) := [,[VuTaVu+(b-Vu)v+cuv] dx where a = 321 222 is positive
definite and b = [b!  b?], assume the coefficients a;;, b;, c € C™ ([0, T]; W™2>°(Q))
for my, mg large enough. Thus for t € [0,7], A(u,v) < Cllu|1||v|l1 for any u,v €
H}(Q). Asdiscussed in [24], if we assume A, has a positive lower bound and V-b < 2c,
where )\, as the smallest eigenvalues of a, the coercivity of the bilinear form can
be easily achieved. For the V"-ellipticity, as pointed out in Lemma 5.2 of [24], if
4)\ac > |b|?, for t € [0,T],

(2.10) Cllonll? < An(vn,vp), Yo, € VP,

can be proven. In the rest of this paper, we assume coercivity for the bilinear forms
A, A*, and A;,. We assume the elliptic regularity ||w||2 < C||f|lo holds for the exact
dual problem of finding w € H}(Q) satisfying A*(w,v) = (f,v), Vv € H}(Q). See
[34, 14] for the elliptic regularity with Lipschitz continuous coefficients on a Lipschitz
domain.

We remark that in the case of the wave equation we also assume finite speed of
propagation i.e. that there is an upper bound on the eigenvalues of a.

3. Quadrature error estimates. For any continuous function u(x,tp) with
fixed time tg, its M-type projection on spatial variables is a continuous piecewise Q¥
polynomial of x, denoted as u,(x,tg) € V", The M-type projection was used to
analyze superconvergence [3]. Detailed definition and some useful properties about
the M-type projection can be also found in [23, 24]. For m > 0, (up)(m) = (u(m))p,

thus there is no ambiguity to use the notation ul(,m). The M-type projection has the

following properties. See Theorem 3.2 in [23] for the detailed proof.
THEOREM 3.1. For k > 2,

lu = upllizie) = OB ) ullirz2,  Yu € H*2(Q).

lu = uplli=(9) = OB ) [ullksz,oo,  Yu€ WHF2(Q).

This manuscript is for review purposes only.
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SPECTRAL ELEMENT METHOD FOR WAVE EQUATIONS 7

By applying Bramble-Hilbert Lemma, we have the following standard quadrature
estimates. See [23] for the detailed proof.

LEMMA 3.2. For f(x), if f(x) € H**2(Q), then we have

(f,on) = (f,on)n = OB 2) | fllszllonllz,  Yon € V.

The next lemma shows the superconvergence of the bilinear form with Gauss-
Lobatto quadrature Ay, and it collects the results of Lemma 4.5 - Lemma 4.8 of
[24].

LEMMA 3.3. Fori,j > 0 and any fized t € [0,T), assuming sufficiently smooth
coefficients a, b, c and function u(x,t) € HF3)(Q), we have

(3.1)

Ag)((u - u;o)(j)avh) = {

O(W*+2) |9 (8) | rasllonlle,  if v € V' or a is diagonal;
O(hk—i-%)Hu(j)(t)||k+3||vh||27 otherwise.

The following results are Lemma 3.5, Theorem 3.6, Theorem 3.7 in [24].
LEMMA 3.4. If f € H%(Q) or f € V", we have

(f,on) = (fron)n = O(B?)|flallvnllo,  Vor € V™.

LEMMA 3.5. Assume all coefficients of (2.3) are in L* ([0,T]; W2>(Q)). We
have

A(Zh,’l)h) — Ah(zh,vh) = O(h)H'UhHQHZhHh Vvh,zh c Vh.

LEMMA 3.6. For the differential operator L and any fixed t € [0,T], assume
aij(x,t), bi(x,t), c(x,t) € L ([0,T]; WF22(Q)) and u(x,t) € H*T3(Q). Fork > 2,
we have

(3.2)

k+2 . ; h .n=
A, 0n) — Ap (1, 00) = {O(h Mu®)llk+sllvnlle, if ve € Vyt or (aVu) -n =0 on 9

O 3) | u(t)||krallonll2,  otherwise ’

where n denotes the unit vector normal to the domain boundary Of).

REMARK 3.7. There is half order loss in (3.1), only when using v € V" for non-
diagonal a, i.e., when solving second order equations containing mized second order
derivatives with homogeneous Neumann boundary conditions. See [22] for detailed
proof of (3.2) for the homogeneous Neumann boundary condition case, i.e., (aVu)-n =
0 along the domain boundary.

We have the Gronwall’s inequality in integral form as follows:

LEMMA 3.8. Let £(t) be continuous on [0,T] and
t
£ <G [ €)ds+al)
0

for constant C1 > 0 and a(t) > 0 nondescreasing in t. Then £(t) < a(t)e“*t thus
£(t) < a(t)e“rT = Ca(t) for all0 <t <T.

This manuscript is for review purposes only.
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4. Error estimates for the elliptic projection. Let uy(x,t) denote the solu-
tion of the semi-discrete numerical scheme. Let e(x,t) = up(x,t) — up(x,t), then we
can write

e =0+ pn,

where 0, := up — Rpu € Voh and pp 1= Rpu —uy, € Voh.

In this section, we will establish the superconvergence result for the elliptic projec-
tion, which is an important step for proving the superconvergence of function values.
We have the following superconvergence result for || pgtm) ()|}, m >0, ¢te[0,T].

LEMMA 4.1. If a;;, b;, ¢ € C™ ([0,T]; WF2>=(Q)), u € C™ ([0,T]; H**(Q)),

then we have

@1 ™ Ol <O ([uD (@) llrss + (L) (0 lir2),
=0

(4.2)

1™ Nl 22 0,7 220y SCRFH? > U oo,y v () + 1) Dl 2o,y m52(0))»
=0

(4.3)
1pS™ | Lo (0.1 22 (02)) < ChFH2 S o (D oo o3 m15+5 2y + 1(Lw) D] Lo 0,7 11542 (52)))

where C' is independent of h, u, f, and time t.

Proof. First we prove (4.1), with which we then prove (4.2) and (4.3) by the dual
argument.
From the definition of the discrete elliptic projection (2.4) we have

(4.4) Ap(pn,vn) = e(v), Yo, € V"

where
€(vn) = (—Lu,vn)n — An(up, vp).

Note that vy, is time independent. Taking m time derivatives of (4.4) yields
m m m — . m
(45) (Anton i)™ = 3 (") A 6 ) = ) o)
§=0

The term €™ (v,) can be rewritten as follows:

€™ (o) = ((Lu) ™, vn)n — (An(up, on)) ™

= (@)™ 0) = (Al 0) ™| = [(20) ), 00) = (L), 00)
(A o)™ = (A, 00)) ] + (An (e = 1, 0) ™

By Leibniz rule and (2.7), we have

(Lw)™ o) — (Alu, o)™ =3 (7;‘) [(L(m*j)u(j),vh) _ A(m*j)(u(j),vh)} -0
=0

By Lemma 3.2,
(La)™, o) = (L) ™ o) = O(RFF2) (L) ™ (8) 2 lvnl2-

This manuscript is for review purposes only.
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SPECTRAL ELEMENT METHOD FOR WAVE EQUATIONS 9

By Leibniz rule and Lemma 3.6,

(At )™ — (A, 00))™ = 3 (m) A= (), 03) = AP WD, 0y)
3=0

m

— o) Y (’7) D) sl

j=0
Now, Lemma 3.3 implies
(An (= 1y v)) ™ =3 ( | )ASJ”“ (=), 0n)

=0 \J
m

—0(?) Y (’]") 149 () sl

Jj=0

Thus we have

(4.6) (o) = O(W?) ZIIU(J (®)llk+3 + (L) ™ )l | Tonllz.

For ¢ > 0, by the Vj-ellipticity (2.10), (4.5), and (4.6) we have

Ol @13 < An(pl! ,psm

e i—j — i i
F Qe 3 (e
7=0 =

i—1 .
=) - Y (j)A“ Dol
=0

7

<O { S D s + 1 (L) Dl hupmzwzw Ol @)l
j=0 7=0

3

< O ST 1[uD s + (L)@ o +02th NG
j=0 7=0

the last inequality follows from an application of an inverse estimate. Thus

¢ i—1
D) e O < OB |3 10D ss + 1) D v | +C D 1ok (#)]1-
J=0 =0

Now (4.1) can be proven by induction as follows. First, set ¢ = 0in (4.7) to obtain
(4.1) with m = 0. Second, assume (4.7) holds for m =i — 1, then (4.7) implies that
(4.1) also holds for m = i.

For fixed ¢ € [0,T], to estimate pglm) in L2-norm, we consider the dual problem:
find ¢y, € V! satisfying: for i > 0,

(4.8) A*(¢novn) = (o)) (8),0n), You € V.

This manuscript is for review purposes only.
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298 Based on Theorem 5.3 in [24], by assuming the elliptic regularity and V" ellipticity,
299  problem (4.8) has a unique solution satisfying

300 (4.9) lnllz < Cllps” (t)llo.

301 Take vy = pg) in (4.8) then we have

302 ||,0§Li)(t)||g
303 =A"(¢n, (Z) (Ph »On)

i—1
304 _Z< >A(l Dpi, én) Z(J) D (o5, én)

j=0

i—1
305 Z( > <A/4(Z 7 p(]) )+E(A(2 ]) (-7) )) < ) (P;(,])a L*)(z J d)h)
306 =0
307 Note that Vx € Vi, with (4.5) and (4.6),
(4.10)

Z()Aé J)(PZJ},%)
=0

A A
=3 (A -0+ X (a6
o\ i=o M

j:
308 i
=3 (A6 00 -0 + 000
=0
<O o Ol llén — Xl + ORF2) {37 [ (1) krs + [1(Lw) D (®)llis2 | Ix]l2-
§=0 §=0
309 Let x = II;¢, where II; is the L? projection to functions in the continuous

310 piecewise Q! polynomial space, see [24]. Then we have ||¢n — x||1 < Chl|¢n|2 and
311 Ixllz2 < Cl|énll2. Inserting (4.1) and (4.9) into (4.10), we have

(4.11)
312 Z(j.)Aé DD o) = O0) [ S0 s + 1L 1) s | o
7=0 j=0
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Thus with (4.11), Lemma 3.6, and inverse inequality we have

s (1))12

SO 2) [ D 11D O)lkss + (L) D @)z | [1dnll2

J=0

O(hF+2) an(” ||k+2||¢h||2+02||p )llollonll2
(4.12) =0

O(h*+?) leu Mlirs + 1 (L)@ |2 +CZHP(” @Ollo]| llonll2

j=0 Jj=0

IN

O(h*+?) Znuu 3 + 1(Z0) P flice +CZ||p<” ®llo | 5 @llo,

j=0 j=0

where (4.9) is applied in the last inequality.
With similar induction arguments as above, (4.12) implies

(4.13) o3 @)l < OBF2) S ([u (1) k45 + | (L) (#)l|i-42).

Jj=0

Take the square for both sides of (4.13) then integrate from 0 to T' and take the
square root for both sides, we can get (4.2). Take the maximum of the right hand
side then the left hand side of (4.13) for ¢ € [0,T], we can get (4.3). |

5. Accuracy of the semi-discrete schemes. In this section, we will prove
the (k + 2)-th order of accuracy of Q¥ spectral element method, when the errors are
measured only at nodes of degree of freedoms, which is a superconvergence result of
function values.

Throughout this section the generic constant C' is independent of h. Although in
principle it may depend on ¢ though the coefficients a;;(t), b;(t), c(t), we also treat
it as independent of time since its time dependent version can always be replaced by
a time independent constant after taking maximum over the ime interval [0,7]. In
what follows we will state and prove the main theorems for wave, parabolic and the
Schrédinger equations.

5.1. The hyperbolic problem. The main result for the wave equation can be
stated as the following theorem.

THEOREM 5.1. If a;j, bj, ¢ € C? ([0, T]; Wr+22°(Q)), u € C?([0,T]; H* (1)),
then for the semi-discrete scheme (2.6) for the problem (2.2), we have

2
S U paqo .y + 1) D 20,7342 ()
=0

lun — ull L2 jo, 1752 () <Ch**2

1
+ ) (D (0)[[xrs + 1(Lu)D(0)[[x42) |
7=0

2

l[un — ul| o< (o, 7722(0)) <ChFH? Z(Hu(j)||L°°([0,T];Hk+3(ﬂ)) + (L) D oo 0,75 10+2 (2)))
=0
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where C' is independent of t, h, u, and f.
Proof. Note that for the numerical solution u; we have
(5.1) (W onn + Anun,vn) = (fyon)n,  Von € Vi
The exact solution u satisfies uyy = —Lu+ f thus the elliptic projection (2.4) satisfies
An(Rpu,vp) = (W® — fLop)n, Vo, € VI
Subtracting the two equations above, we get 6, = u, — Rpu, which satisfies
(5.2) (9}(12), p)h + Ap (O, vn) = —<p§12),vh>h + (u® — uf),vm7 Yo, € V.
Note that

(5.3)
d
Z A0, 01) = AN (61, 61) + 24461, 00) — (b- V6, 00), + (b- VOV 6,5,

Thus by Lemma 3.4 and (2.8), we have

bV 6, =(b- V6 6,) + Oh%)[bb, 2| VOV o
<(b- VO, 6,) + C16 o]16n 14
=(V - (b8),65) + Cl10 [l0/16n 111
<C10 1oll0nllr < ClO 121165 1,

(5.4)

where an inverse inequality was applied to the first inequality and integration by parts
in 0, € V" yields the last equation.

Next we estimate ||0£1)(3)||(2) + [|0n(s)||2. Take vj, = 0;1) in (5.2) and integrate
with respect to ¢ from 0 to s. With (5.3), we have
(5.5)

Td (L) gmy ] )
—(=(0,",0 + -A,(6h,0 dt
/Odt<2<h hoon o+ 5 An(On, On)
1 S
=3 / AP (On,00) — (b V04,0, + (b VO, 00 — 20017, 000 + 2(u® — ul 01)) .
0
With 65,(0) = 0 and (5.4), this implies
1 1 1. a
S (103 (F + An(6n(5). 0(5))) — 516, O)II7:

S 1 S 9
<C [ (8nl3 + 1652 lolon )t +C |12 ol ot
0 0
(5.6) ]
0 [ = e o
0

s 1 s 2
<c / (612 + 10n]12)dt + C / PP IE + [u® — u@|2)t,

where Cauchy-Schwarz inequality was used in the last inequality.
Thus with (2.8), (2.10), and (5.6) we have
(5.7)
16,7 )1 + 18n()F < €16 ()2 + CAR(Bn(5). 6n(5))

1 s 1 s 2
<C|gV (0)[|% +C / (10212 + (164 12)dt + C / (o212 + [[u® — w2 dt.
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With the Gronwall inequality (3.8) we can eliminate the second term to find
1 1 s 2
165 ()12 + 16n(5) 113 < €165 (0) |2 + C / 2113 + u® — w2 dt.

With (4.3) and Theorem 3.1 we have

1657 (5112 + 10n()]13 < CllOSV ()1 + O(R2F+4) / Z ([ s + [|(Z) D [ 42) 2,

i.e.

(5.8)
S 2 . .

1657 (s)llo + 116n(s) [l < CI16° ()2 + O(hF+2) / S U [lkgs + 1(Lu) Do)t
7=0

To estimate ||0}(Ll)(0)||lz we use Theorem 3.1, (4.3), and (2.8),

1657 (0) 2 =1 (1)1 — (Rw)™® (0)|z2
=[l(ur)s — (ur)p + (u1)p — (Rpt) D (0))|
<N(ur)r — (ui)pllie + )y — (Ru)) @ (0)]12
=llur — (u)pllie + [l (ur)p — Ru(u(0)]]22
=[lur — (w)pllie + || (ur)p — R ()
=O(R**2)(ur 45 + 1L [l5+2)-
Then we have

1651l + 1641

(5.9) :
<O 2) | s ||rss + ||LU1Hk+2+/ Z ([ [[k4s + (L) D |42 )t

Now with (4.2), (4.3), and Theorem 3.1, the proof is concluded. 0
5.2. The parabolic problem. We now present the main result for the parabolic

problem.

THEOREM 5.2. If a;;, bj, ¢ € CL([0,T]; WktLe2(Q)), uw € CL([0,T]; H*(Q)),
then for the semi-discrete scheme (2.5) for problem (2.1), we have

1
l[un — ul| 2 (0,172 () SCRM T2 Z(Hu(j)HL2([0,T];H"+3(Q)) + (L) D L2 fo,77: mr0+2(02)))
=0
1 . .
llun = ull Lo (o, 17:02(0)) SCRF2 D (109 Lo o, m42 () + 1) || oo 0,351 202
=0

where C' is independent of t, h, u, and f.

Proof. By our semi-discrete numerical scheme (2.5) and the definition of the el-
liptic projection (2.4), we have

(5.10) (O, on)n + An(Bn,on) = — (08 ondn + (WD —ulD v), Vo, € V.
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Take vy, = 021) in (5.10) and integrate with respect to ¢ from 0 to s,
(5.11)
/O <9}(1 )702 )>h + E%Ah(eh,@h)dt

1 (%« 1 1 1
= /0 A (04, 01) — (- V04, 050, + (b- VO 00 — 2008, 050) s + 2(u® — ulV),0)) .

Note that 6;,(0) = 0, then with (2.8), (5.4), and (5.11) we have
/0 05,0t + 1104 (s) 2 < / (05,00 ndt + C AL (01 (), 01 (5))
= onldt + © / 68 i 6nlad + C / 1o 16 et
+0 [ 1 650

S S C S C
<C [ 1onlide+ [ el6 0000+ Tlonlide + [ etof 00+ Tl e
0 0 € 0 4e
® c
o [ el o T — Y
0

where Cauchy-Schwartz inequality was applied in the last inequality. Thus we have

S 1 S C S
(130 [0 it +10n(6) I <CO+ 1) [ Ionlfa+ [ 1o e
0 4e 0 4e 0

C s

Now take € small enough to make 1 — 3¢ > % then
(5.12)

1 S S S
3 | O @00+ o <C [l a0 [t — ol

0
w0 [ (1enz + 5 [ @006 @ndn) .

Next, apply Gronwall’s inequality to eliminate the last term of the right hand side of
(5.12) to find

1

5 [ 00t ot <€ [l B+ € [ — ) e
0 0 0

Using (4.2), (4.3), and Theorem 3.1 we have
, ;1
1 s s . .
3 | (000t + 100 < 00 [ (10 e+ 1) )i
§=0
concluding the proof. 0

5.3. The linear Schrédinger equation. Consider the problem
iug = —Au+Vu+ f, inQx][0,T],

u(x,t) =0, on 90 x [0,T],

(5.13) (
u(x,0) = ug(x), in Q,
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SPECTRAL ELEMENT METHOD FOR WAVE EQUATIONS 15

where 2 € R? is a rectangular domain, the functions ug(x), f(x,t), and the solution
u(x,t) are complex-valued while the potential function V(x,t) is real-valued, non-
negative, and bounded for all (x,¢) € Q x [0,T].

In this subsection we work with complex-valued functions and the definition of
inner product and the induced norms are modified accordingly. For instance, for
complex-valued v, w € L?(Q), the inner product is defined as

(v, w) ::/vadx.

We assume all the functions of the function spaces defined previously are complex-
valued for this subsection, such as H*(Q), H}(Q), Vi, etc.
The variational form of (5.13) is: for t € [0, 77, find u(t) € H}(Q) satisfying:

(5.14) { i (0, 0) — (Va, Vo) — (Vu,0) = (f,0), Vo € HY(Q),

u(0) = ug, Vo € HYH(Q).
The semi-discrete numerical scheme discretizing (5.14) is to find uy, € Voh satisfying

(5.15) { Zif;‘él))t:v”(fis); (Vun, Vop)n = (Vun, vn)n = (f,on)n, You € V('

and the elliptic projection Rpu € V{* is defined as
(5.16) (VRuu, Vor)n + (VRyu,vp)n = (—Au+ Vu,vp)n, Vo, € VI
As in Section 4, we split the error into two parts
e =0n+ pn,

where 0;, = up, — Rpu € Voh and pp, = Rpu —uy € Voh. The estimates for pém), m >0
from Lemma 4.1 are still valid.

THEOREM 5.3. If u € C([0,T]; H**%(2)), then for the semi-discrete scheme
(5.15) for problem (5.13), we have

1

l[un — ul| 2 (o, 7702 (0)) SCRFT? Z(HUU)HLZ([O,T];HHS(Q)) + (L) D L2 0,77 mr0+2(02)))
=0
1

llun = ull Lo (o, 17:02(0)) SCRF2 Y (10D o 0,742 () + (L) || oo 0,351 200
=0

where C' is independent of t, h, u, and f.

Proof. As in the parabolic case we start by estimating 6,.
(5.17)

<0,Sl),vh>h+i(V9h,Vvh>h +i<V9h,Uh>h = —(pg),vh>h—|—<u(1)—uz()l),vmh, Yoy, € Voh.

Taking v, = 6, in (5.17) and taking real part,

d d
100 % ) = = (On, 0n)n =2Re (— (oS, 00)n + (W@ —ulD) 6,
dt ) = gt P

1
<2 (lIof” 2oy + 1D = u iz ) 10nl0)-
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Since &[0 17y = 2010n 2 () 11082 () it impilies

@ _ (D

d 1
Z10lli@) < lloh e + lu liz(e-

Upon integrating this inequality with respect to ¢ from 0 to s we have

10n(3)]li2() < 10h(0)[l12(q) +/O (oS N2y + [lu — w2 (0 )dt.
Now, using Theorem 3.1, (4.3), and (2.8) we have

10n.(0)]li2 =I(uo)r — (Rru)(0)]]2
=[(wo)r — (wo)p + (wo)p — (Rru)(0)]]s2
<|[(wo)r = (wo)plliz + [[(uo)p — (Rru)(0) 2
=lluo — (uo)plliz + [[(w0)p — Rnuolliz
=O(W**?)(|luollr+s + | Luollk+2)-
With this result in concert with (4.2), (4.3), and Theorem 3.1 we note

s 1
16 (5) 2y < ORFT2) | luollkss + | Luol etz + /0 > (1 [[regs + (L) D[ 42)dt
j=0

Together with (4.2), (4.3), and Theorem 3.1, proof is concluded. |

5.4. Neumann boundary conditions and /°°-norm estimate. For homo-
geneous Neumann type boundary conditions, due to Lemma 3.3, in general we can
only prove (k+ %)—th order accuracy for the hyperbolic equation, parabolic equation,
and linear Schrodinger equation. As explained in Remark 3.7, the half order loss
happens for homogeneous Neumann boundary condition only when the second order
operator coeflicient a is not diagonal, e.g., when the PDE contains second order mixed
derivatives. If a is diagonal, then all results of (k + 2)-th order in ¢? norm in this Sec-
tion can be easily extended to the homogeneous Neumann boundary conditions. See
Section 2.8 in [22] for a detailed discussion of nonhomogeneous Neumann boundary
conditions.

For Lagrangian QF finite element method without any quadrature solving the
elliptic equation with Dirichlet boundary conditions, the best superconvergence order
in max norm of function values at Gauss-Lobatto that one can prove is O(|log h|h**2)
in two dimensions, see [24] and references therein. Thus we do not expect better results
can be proven in the Q¥ spectral element method in £> norm over all nodes of degree
of freedoms.

6. The implementation for nonhomogeneous Dirichlet boundary con-
ditions. Consider the hyperbolic problem on Q = (0, 1)? with compatible nonhomo-
geneous Dirichlet boundary condition and initial value

Utt:—LU+f(X7t) il’lQX(O,T],
(6.1) u(x,t) =g on 0 x [0,T7,
u(x,0) =up(x), w(x,0) =wuq(x) onx{t=0}.
As in [12, 24], by abusing notation, we define
0, if (z,y)€(0,1) x(0,1),

t) =
glevt) {g@c,y,t), it (ay) € 09

This manuscript is for review purposes only.



163
464
465
466
467

168

476
477
478
479
480
481
482
483
484
485
486
487

488
489
490

491

192
493

494

195
496

497

SPECTRAL ELEMENT METHOD FOR WAVE EQUATIONS 17

and define g; € V" as the Q* Lagrange interpolation at (k + 1) x (k + 1) Gauss-
Lobatto points for each cell on Q of g(x,y,t). Namely, g € V" is the piecewise Q*
interpolant of g along 002 at the boundary grid points and g; = 0 at the interior grid
points. Then the semi-discrete scheme for problem (6.1) is as follows: for ¢ € [0, 7],
find @, € VJ* such that

(2)

(6 2) <ﬂ’h ’Uh>h + Ah(dhmvh) :<f7 vh>h - Ah(gI>vh>7 V’Uh S %h7
tn(0) = Rpuo, feﬁ”@) =(u1)r.

Then

(6.3) up =y + gr,

is the desired numerical solution. Notice that u; and 4, are the same at all interior
grid points.

For the initial value of numerical solution, instead of using discrete elliptic pro-
jection, we can also use @y (0) = u(x,y,0)s in (6.2) where u(z,y,0)s is the piecewise
Lagrangian Q¥ interpolation of u(z,y,0). In all numerical tests in Section 7, (k+2)-th
order accuracy is still observed for the initial condition @, (0) = u(z,y,0);.

The treatment for nonhomogeneous Dirichlet boundary condition above can be
extended naturally to the parabolic equation and linear Schrodinger equation,

REMARK 6.1. For the (k + 2)-th order accuracy of the scheme (6.2), it can be
shown analogously as in [2/], and in Section j and Section 5 by defining discrete
elliptic projection as

(6.4) Ryu = Ryu+ gr,

where Ryu € VI satisfying

Ah(Rhu,Uh) = (—Lu,vh>h — Ah(g[,vh), Yy, € Voh, 0<t<T.
7. Numerical examples. In this section we present numerical examples for the
wave equation, a parabolic equation and the Schrodinger equation.
7.1. Numerical examples for the wave equation.

7.1.1. Timestepping. The so called modified equation technique, [10, 35, 16,
19], is an attractive option for timestepping the scalar wave equation. After semidis-
cretization the method (2.6) can be written as

d2 up
dt?

= Quy,

where uy, is a vector containing all the degrees of freedom and @ is a matrix. To
evolve in time we expand the approximate solution around ¢ + At and t — At

PPup(t) | At dup(t) AL dup(t)

dt? 12 dtt 360 dtb

Replacing the even time derivatives with applications of the matrix ) we obtain, for
example, a 6th order accurate explicit temporal approximation

uy, (t+At) +uy (t—At) = 2uy, () + At? +O(AL®).

5 At A6 o
up(t + At) + up(t — At) = 2uy(t) + At*Qup(t) + HQ up(t) + %Q uy,(t).
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198 Note that the matrix @ does not need to be explicitly known, and an implicit
499  definition through a “matrix-vector multiplication” subroutine will suffice. In that
00 case the three last terms on the right hand side of the above equation would be
I computed by repeated application of ). For example to compute up,(t+At) one would
2 assign vp = 2up(t) — up(t — At), up(t — At) = uy(t), followed by three applications
3 of @ and updates of vi: (1) w, = Qui(t), vi < v, + At2wy, up(t) = wy, (2)
I wWp = Quh(t), Vp < Vi + At4/12wh, uh(t) = Wy, (3) Wp = Quh(t), vV — vy +
5 At5/360wy,. The time update is then finalized by the assignment uy(t) = vy, which
06 can conveniently be implemented as a for loop.

07 7.1.2. Standing mode with Dirichlet conditions. In this experiment we
)8 solve the the wave equation uy = Uzg + Uy, With homogenous Dirichlet boundary
09 conditions in the square domain (x,y) € [, 7]>. We take the initial data to be

510 u(zx,y,0) = sin(x) sin(y), u(x,y,0) =0,
511  which results in the exact standing mode solution
512 u(z,y,0) = sin(x) sin(y) cos(v/2t).

513 We consider the two cases k = 2 and k = 4 and discretize on three different
514 sequences of grids. The first sequence contains only plain Cartesian of increasing re-
515 finement. The second sequence consists of the same grids as in the Cartesian sequence
516 but with all the interior nodes perturbed by a two dimensional uniform random vari-
517 able with each component drawn from [—h/4,h/4]. The nodes of the third sequence
518 are

519 (z,y) = (€ +0.1sin(¢) sin(n),n + 0.1sin(n) sin(¢)),  (&n) = [-7,7]%,

and this is refined in the same ways as the Cartesian sequence. Typical examples of
the grids are displayed in Figure 1. Even though the equation contains no coeflicients,
variable coefficients are still involved for the second and the third sequences of grids.
The variable coefficients are induced by the geometric transformations of the elements
in the mesh to a reference rectangle element. However, on a randomly perturbed grid,
the variable coefficients are not smooth across cell interfaces. The variable coefficients
are smooth in a smoothly perturbed grid.

We evolve the numerical solution until time 5 by the time stepping discussed in
Section 7.1.1 of order of accuracy 4 when k = 2 and 6 when k£ = 4. To get clean
measurements of the error we report the time integrated errors

5 7 5
530 (/ Hu(vt) _uh(7t)Hl22 dt) 5 / ||U(,t) —Uh(-jt)Hloo dt7
0 0

NN NN NN
Y O R W N

® 3 O

v Ot Ot Ot Ot Ut Ut ot Ot Ot

N
©

1 for the spatial {? and [ errors respectively.

2 The results are displayed in Figure 2. Note that here and in the rest of this section
33 the solid lines in the figures are the computed errors, using many different grid sizes,

i and the symbols are indicating the slopes or rates of convergence of the curves. The

5 Cartesian grids and smoothly perturbed grids satisfy the assumptions of the theory
36 developed in this paper while the second sequence of randomly perturbed grids does
37 not. The results confirm the theoretical predictions for smooth variable coefficients as
38 the rate of convergence is k + 2 for the [>-norm in the cases of the Cartesian meshes
39 and the smoothly perturbed meshes. We also observe the rate k + 2 in the {**-norm
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Randomly perturbed grid Smoothly perturbed grid
3 3 [TT] AN
| []]
2f 2 e B
! 15 T 1]
[
(HEE ITT]]
0 0
mEn ] \\ \‘\‘\‘1 [TT]]
1T -1 T ]
2f 120 T =
] 111
-3L ] -3¢ LIT1 A
-2 0 2 -2 0 2

Fic. 1. Two typical grids used in the numerical examples in Section 7.1.2 and 7.1.4.

o rate=3 o rate=3 .
10%F = rate=4 10%F * rate=4 °
Cartesian Cartesian
—rand. pert. —rand. pert.
_» [|——smooth pert. « . o [|[——smooth pert.
5102} 15107}
?
Y] ©
—10tE 1=10*
10 ¢ 10°®
107 10° 107 10°
Gridsize Gridsize
o rate=5 o rate=5
* rate=6 * rate=6
— Cartesian — Cartesian
—rand. pert. —rand. pert.
_ 105" —smooth pert. 15 108} —smooth pert.
S =
>
[V [
= =
10710¢ 1010 &
107 10° 107 10°
Gridsize Gridsize

F1G. 2. Dirichlet problem in a square. Errors measured in the 12 and the 1 norms for the
three different sequences of grids. The top row is for k = 2 and the bottom row is for k = 4.

for these cases. For the non-smooth variable coeflicients resulting from the randomly
perturbed grid, which is not covered by our theory, we see a rate of convergence of

k + 1 in the [2-norm.

7.1.3. Standing mode in a sector of an annulus with Dirichlet condi-
tions. In this experiment we solve the wave equation us = Ugze + Uyy With homoge-
nous Dirichlet boundary conditions. The computational domain is the first quadrant
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5 10°7 18 10°
2
N <
- =
o rate=4 o rate=4
* rate=2 * rate =2
Straight Straight
10710+ —Tecuni |} g0 — True curvi. ||
—Bdry. curvi. — Bdry. curvi.
107 10° 107" 10°
Gridsize Gridsize
10° 1. 10% ]
S S
?
3 s
o rate=6 o rate=6
10‘10* * rate =2 1 10‘10* * rate=2
Straight Straight
—True curvi. —True curvi.
—Bdry. curvi. —Bdry. curvi.
10! 10° 10! 10°
Gridsize Gridsize

FIG. 3. Dirichlet problem in an annular sector. Errors measured in the 12 and the 1° norms
for the three different sequences of grids. The top row is for k = 2 and the bottom row is for k = 4.
These results are for the annular problem with homogenous Dirichlet boundary conditions.

of the annular region between two circles with radii r; = 7.58834243450380438 and
ro = 14.37253667161758967, i.e. the domain is described by (z,y) = (rcosé,rsinf)
where

r<r<r, 0<60<mx/2
On this domain the standing mode
u(r, 0,t) = Ja(r) sin(460) cos(t),

is an exact solution and we use this solution to specify the initial conditions and to
compute errors.

We consider the two cases k£ = 2 and k = 4 and discretize on three different
sequences of grids. The first sequence uses a straight sided approximation of the
annulus and all internal elements are quadrilaterals with straight sides. The second
sequence uses curvilinear elements throughout the domain and all internal element
boundaries conform with the polar coordinate transformation. After the smooth
mapping to the unit square, smooth variable coefficients emerge due to the geometric
terms. The metric terms are approximated with numerical differentiation using the
values at the quadrature points. The third sequence is the same as the second sequence
but all the internal element edges are straight. The meshes in the last sequence are
likely close to those that would be provided by most grid generators.

We evolve the numerical solution until time 1 by the time stepping discussed in
Section 7.1.1 of order of accuracy 4 when k = 2 and 6 when k = 4. Again, to get
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clean measurements of the error we report the time integrated errors

(/01 (s t) — un(-, 1) dt) ' , /01 (-, ) — (-, 1) ||1oe dt,

for the spatial {2 and [*° errors respectively.

The results are displayed in Figure 3. Here, as expected, we only observe second
order accuracy independent of k for the non-geometry-conforming meshes. We observe
a convergence at the rate of k+2 in both the /2-norm and [°°-norm for the geometry-
conforming meshes. The true curvilinear grids are covered by our theory since the
variable coefficients due to the geometric transformation are smooth. For the third
sequence of grids, since internal edges are straightsided, the variable coefficients from
the geometric transformation are not smooth across edges thus this configuration is
not covered by our theory. Nonetheless, its convergence rate is still k£ + 2.

10° 10°
o rate=3 o rate=3
* rate=4 * rate =4
102k * rate =3.666 1 1072 F * rate=3
—Cartesian —Cartesian
—rand. pert. = —rand. pert.
S 1074 F|—smooth pert. 1 9 10 F—smooth pert.
5 5
U x
Y] I [ .
- 108 1S 10°®
108 ¢ 1 108t
-10 . . -10
10 10
102 107 10° 102 107" 10°
Gridsize Gridsize
102 ‘ 102
o rate=5 o rate=5
* rate=6 * rate =6
4[| * rate= 5.666 4[| ¥ rate= 5
10 —Cartesian 10™ {|—cartesian
—rand. pert. = —rand. pert.
5] —smooth pert. o ——smooth pert.
& 10°; 19 10°)
[aY] [
- =
108 1078
10710 ‘ 10710 ‘
107 10° 107 10°
Gridsize Gridsize

F1G. 4. Neumann square problem. Errors measured in the 12 and the 1°° norms for the three
different sequences of grids. The top row is for k =2 and the bottom row is for k = 4.

7.1.4. Standing mode with Neumann conditions. In this experiment we
approximate the solution to the wave equation s = Uz + Uyy in the square domain
(x,y) € [-m,7]%. Then with homogenous Neumann boundary conditions and initial
data

’U,(.Z‘, Y, O) = COS(I) COS(y)7 Uy (Ia Y, 0) = Ov

the exact standing mode solution is

u(x,y,0) = cos(x) cos(y) cos(V/2t).
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We consider the two cases k¥ = 2 and k = 4 and discretize on the same three
sequences of grids as those used in §7.1.2. We evolve the numerical solution until time
5 as above and we report the time integrated errors as above.

The results are displayed in Figure 4. For the Cartesian mesh we observe a rate of
convergence k + 2 in the ¢?-norm, confirming our theory. For the smoothly perturbed
grids, which corresponds to smooth variable coefficients resulting in mixed second
order derivatives on the reference rectangular mesh, the rate in the /2-norm appears
to be k+5/3. As explained in Section 5.4, only (k + 2)-th order can be proven when
both mixed second order derivatives and Neumann boundary conditions are involved.
As in the Dirichlet case, the randomly perturbed grid yields rates of convergence k+ 1
in both norms.

7.1.5. Standing mode in a sector of an annulus with Neumann con-
ditions. In this experiment we solve the the wave equation u; = Ugs + Uy, with
homogenous Neumann boundary conditions. The computational domain is again
the first quadrant of the annular region between two circles, now with radii r; =
5.31755312608399 and 7, = 9.28239628524161, to satisfy the boundary conditions.
On this domain the standing mode

u(r, 0,t) = Jay(r) cos(46) cos(t),

is an exact solution and we use this solution to specify the initial conditions and to
compute errors.

As in the previous examples we consider the two cases k = 2 and k = 4 and
discretize on the same three different sequences of grids as was used in the Dirichlet
example above. We evolve the numerical solution until time 1 in the same way as
above and we report the time integrated errors.

The results are displayed in Figure 5. Here, the only grid satisfying our assump-
tions is the true curvilinear grid. For this case, the problem is equivalent to solving a
variable coefficient problem wuy = . + T%uge + %ur on rectangular meshes for polar
coordinates (r,6) € [r;, o] x [0, 5]. Since there are no mixed second order derivatives,
by our theory as explained in Section 5.4, (k + 2)-th order in the ¢2-norm can still
be proven. We can see that the rate for the true curvilinear grid is indeed k£ + 2 in
£?-norm, confirming our theory for Neumann boundary conditions.

7.2. Numerical tests for the parabolic equation. For problem (2.1) on the
domain Q = (0,7)?, we set a = ( ail Q12

a21 Aa22

with

3 1 .
a1 = (4 + 4sm(t)) (1 —|—y—|—y2—|—accosy)7

a12 =as; = (i + isin(t)) (1 + %(Sin(wm) + 2)(sin(my) + y*) + cos(z* + y3)) :

o
Il

( Z; > with
b= (3 ) () o= (3o Lano) (1),

and ¢ = (3 4 %sin(¢)) (10 +2%y3). For time discretization in (2.5), we use the
third order backward differentiation formula (BDF) method. Let u( z,y,t) = (2 +
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5 10° 18 10°

2

ﬁ o rate=4 g o rate=4

* rate=2 * rate =2

* rate = 3.666 * rate=3

— Straight — Straight

0t —Truecurvi. || 40| —True curvi. ||
10 —Bdry. curvi. 10 — Bdry. curvi.
107 10° 107 10°
Gridsize Gridsize
10 I 10 /

o S
?

g o rate=6 g o rate=6

* rate=2 * rate=2
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FIG. 5. Neumann annular sector problem. Errors measured in the 12 and the 1°° norms for the
three different sequences of grids. The top row is for k = 2 and the bottom row is for k = 4. These
results are for the annular problem with homogenous Neumann conditions.

1 sin(t))(— sin(y) cos(y) sin(z)?) and we use a potential function f so that w is the

Lz Az m), where by =

exact solution. The time step is set as At = min(5f, 067 10
maxxeq,i=12 |[0:(0,x)| and fyr = maxxeq |f(0,x)|. The errors at time 7' = 0.1 are

listed in Table 1, in which we observe order around k + 2 for the £2-norm.

TABLE 1
A two-dimensional parabolic equation with Dirichlet boundary conditions.

QF polynomial | SEM Mesh | % error  order | I® error order
4 x4 8.34E-3 - 4.57E-3 -
Kk — 9 8 x 8 6.59E-4  3.66 | 3.16E-4  3.85
16 x 16 4.52E-5  3.86 | 2.36E-5  3.74
32 x 32 291E-6 396 | 1.53E-6 3.94
4 x4 5.88E-4 - 1.71E-4 -
k=3 8 x 8 2.24E-5 471 | 7.56E-6  4.50
16 x 16 749E-7 490 | 252E-7 491
32 x 32 2.38E-8 497 | 8.06E-9  4.96
4 x4 4.26E-5 - 1.16E-5 -
k=4 8 x 8 7.62E-7 581 | 2.34E-7 5.63
16 x 16 1.26E-8 592 | 4.12E-9 5.83
32 x 32 2.00E-10 5.98 | 6.68E-11 5.95
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7.3. Numerical tests for the linear Schrodinger equation. For problem
(5.13) on the domain (0,2)?, a fourth-order explicit Adams-Bashforth as time dis-
cretization for (5.15). The solution and potential functions are as follows: u(z,y,t) =

e~ite= =5 V(z,y) = L;yz, and f(z,y,t) = 0. The time step is set as At = %‘gg.
Errors at time 1" = 0.5 are listed in Table 2, in which we observe order near k + 2 for

the ¢2-norm.

TABLE 2
A two-dimensional linear Schrodinger equation with Dirichlet boundary conditions.

QF polynomial | SEM Mesh | 1% error  order | I® error order
4 x4 9.98E-4 - 6.36E-4 -
Kk — 9 8 x 8 6.65E-5  3.91 | 4.01E-5  3.99
16 x 16 4.10E-6  4.02 | 2.77TE-6  3.85
32 x 32 2.53E-7  4.02 | 1.79E-7  3.89
4 x4 4.06E-5 - 2.12E-5 -
k=3 8 x8 1.12E-6  5.18 | 5.56E-7  5.26
16 x 16 3.22E-8 5.12 | 1.75E-8  4.99
32 x 32 1.06E-9 494 | 5.33E-10 5.04
4 x4 1.61E-6 - 5.86E-7 -
K — 4 8 x 8 2.6bE-8 592 | 9.93E-9 5.88
16 x 16 3.95E-10  6.07 | 1.66E-10  5.90
32 x 32 5.30E-12  6.22 | 2.66E-12 597

8. Concluding remarks. We have proven that the Q* (k > 2) spectral element
method, when regarded as a finite difference scheme, is a (k + 2)-th order accurate
scheme in the discrete 2-norm for linear hyperbolic, parabolic and Schrodinger equa-
tions with Dirichlet boundary conditions, under smoothness assumptions of the exact
solution and the differential operator coefficients. The same result holds for Neumann
boundary conditions when there are no mixed second order derivatives. This explains
the observed order of accuracy when the errors of the spectral element method are
only measured at nodes of degree of freedoms.
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