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Abstract. It is well known that finite difference or finite volume total variation diminishing
(TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order accuracy at
smooth extrema [8], thus TVD schemes are at most second order accurate in the L1 norm for general
smooth and non-monotone solutions. However, Sanders [12] introduced a third order accurate finite
volume scheme which is TVD, where the total variation is defined by measuring the variation of
the reconstructed polynomials rather than the traditional way of measuring the variation of the grid
values. By adopting the definition of the total variation for the numerical solutions as in [12], it is
possible to design genuinely high order accurate TVD schemes. In this paper, we construct a finite
volume scheme which is TVD in this sense with high order accuracy (up to sixth order) in the L1

norm. Numerical tests for a fifth order accurate TVD scheme will be reported, which include test
cases from traffic flow models.
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1. Introduction. We consider numerical solutions of one-dimensional hyper-
bolic scalar conservation law

(1.1) ut + f(u)x = 0, u(x, 0) = u0(x),

where u0(x) is assumed to be a bounded variation function. The main difficulty
in solving (1.1) is that the solution may contain discontinuities even if the initial
condition is smooth.

Successful numerical schemes for solving (1.1) are usually total variation stable,
for example the total variation diminishing (TVD) schemes [1] or the total variation
bounded (TVB) schemes [14], or essentially non-oscillatory, for example the essentially
non-oscillatory (ENO) schemes [2, 15] or the weighted ENO (WENO) schemes [6,
4]. ENO and WENO schemes, although uniformly high order accurate and stable
in applications, do not have mathematically provable TVB properties for general
solutions and do not satisfy a maximum principle. It is certainly desirable to have a
TVD or TVB scheme, which shares the TVD property of the exact entropy solution
of (1.1), satisfies a maximum principle, and has at least a convergent subsequence to
a weak solution of (1.1) due to its compactness.

Typically, for a finite difference scheme with the numerical solution given by the
grid values uj , or a finite volume scheme with the numerical solution given by the cell
averages uj , the total variation of the numerical solution is measured by

(1.2) TV (u) =
∑

j

|uj+1 − uj |
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which is the standard bounded variation semi-norm when the numerical solution is
considered to be a piecewise constant function with the data uj . A scheme is TVD if
the numerical solution satisfies TV (un+1) ≤ TV (un) where un refers to the numerical
solution at the time level tn. A TVB scheme is one which satisfies TV (un) ≤ M for
all n such that tn ≤ T , where the constant M does not depend on the mesh sizes but
may depend on T . A sufficient condition for a scheme to be TVB is

TV (un+1) ≤ TV (un) + M∆t, or TV (un+1) ≤ (1 + M∆t)TV (un),

where M is a constant and ∆t is the time step.

It is well known that finite difference or finite volume TVD schemes solving (1.1),
where the total variation is measured by (1.2), necessarily degenerate to first order
accuracy at smooth extrema [8], thus TVD schemes are at most second order accurate
in the L1 norm for general smooth and non-monotone solutions. While the TVB
schemes in [14] can overcome this accuracy degeneracy difficulty, the schemes are no
longer scale-invariant (scale-invariance refers to the fact that the scheme does not
change when x and t are scaled by the same factor) and involve a TVB parameter M
which must be estimated and adjusted for individual problems.

In [12], Sanders introduced a third order accurate finite volume scheme which is
TVD. The main idea in [12] is to define the total variation by measuring the variation
of the reconstructed polynomials, rather than the traditional measurement as in (1.2).
The scheme of Sanders in [12] can be summarized in the following steps.

• Start from the cell averages u0
j and the cell boundary values u0

j+ 1
2

for all j

from the initial condition u0(x).
• For n = 0, 1, · · · , perform the following

1. Reconstruct a piecewise quadratic polynomial solution un(x), based on
the information un

j and un
j+ 1

2

for all j, such that un(x) is third order ac-

curate (degenerates to second order at isolated critical points, therefore
still third order in the L1 norm), and TVD

(1.3) TV (un(x)) ≤ TV (un−1(x))

where the total variation is measured by the standard bounded variation
semi-norm of the piecewise quadratic polynomial solution un(x). For
n = 0, TV (un−1(x)) is taken as the bounded variation semi-norm of the
initial condition u0(x).

2. Evolve the PDE (1.1) exactly for one time step ∆t from the “initial
condition” un(x) at the time level tn, and take the cell averages un+1

j

and the cell boundary values un+1
j+ 1

2

for all j from this exactly evolved

solution. Then return to Step 1 above.

The crucial step in Sanders’ scheme is the reconstruction, which should be high
order accurate and TVD in the sense of (1.3). The second step above, namely the
exact time evolution and cell averaging, does not increase the total variation. The
resulting scheme is thus TVD as long as the reconstruction is TVD. The purpose
of this paper is to generalize the scheme of Sanders, mainly the step of the high
order TVD reconstruction, to higher order accuracy. In order to measure the total
variation of a polynomial p(x) of degree k over the interval [a, b], we would need to
obtain the zeros of its derivative p′(x) in this interval, denoted by a1, a2, · · · , ak−1. If
we also denote a0 = a and ak = b, then the variation of p(x) over the interval [a, b] is

2



∫ b

a |p′(x)|dx =
k∑

j=1

|p(aj)− p(aj−1)|. If we insist on working with explicit formulas for

the zeros of polynomials to save cost, then we can only have the polynomial degree k
of p(x) up to five, hence our approach can generate schemes up to sixth order in the
L1 norm.

A major difficulty in generalizing Sanders’ TVD reconstruction to higher order is
the design of the nonlinear limiter, which should maintain accuracy in smooth regions
while enforcing the TVD property (1.3). The original limiter of Sanders in [12] works
well for the third order scheme (k = 2), but it seems difficult to generalize it directly
to higher order. We will develop a different limiter to achieve this purpose. The finite
volume schemes we develop in this paper are (k+1)-th order accurate in the L1 norm,
conservative, and TVD in the sense of (1.3). Numerical tests for a fifth order accurate
TVD scheme will be reported, which include test cases from traffic flow models.

This paper is divided into six sections. In Section 2 we develop a Hermite type
reconstruction procedure using piecewise polynomials of degree k for functions of
bounded variation. We use a quartic polynomial (k = 4) as an example to illustrate
the procedure. The reconstruction does not increase the variation of the function
being approximated, and is (k + 1)-order accurate in regions where the approximated
function is smooth. In Section 3 we show how to evolve the approximation in time
in essentially the same way as in [12]. In Section 4, we derive the conservative form
of the scheme and show that the local truncation error is formally (k + 1)-th order
accurate. In Section 5 we present some numerical examples of the fifth order scheme
using quartic reconstruction polynomials. Numerical examples include those from
traffic flow models. Finally, in Section 6, we give concluding remarks and remarks for
future work.

2. A fifth order TVD reconstruction. For a smooth function u(x) with
bounded variation over an interval J ⊂ R, we would like to find a piecewise polyno-
mial r(x) approximating u(x) with the property that the variation of r(x) does not
exceed that of u(x). We will use a Hermite type quartic reconstruction polynomial
as an example to show how to find such an approximation. However we remark that
this approximation procedure can also be applied to any reconstruction polynomials
of degree up to five, including those obtained with the ENO or WENO procedure.

We will use the following notation for our mesh Ij = [xj− 1
2
, xj+ 1

2
], xj =

1
2

(
xj− 1

2
+ xj+ 1

2

)
, ∆x = xj+ 1

2
−xj− 1

2
, which is assumed to be uniform for simplicity,

and for the discretization of u over the mesh, uj = 1
∆x

∫
Ij

u(x) dx, uj− 1
2

= u(xj− 1
2
).

Given the cell averages and cell boundary point values of u(x), there are many ways
to obtain a reconstruction polynomial pj(x) over the cell Ij . We choose to use the
Hermite type reconstruction of degree four; i.e., the polynomial pj(x) should satisfy

1

∆x

∫

Ii

pj(x) dx = ui, i = j − 1, j, j + 1; and pj(xj± 1
2
) = u(xj± 1

2
).

If the reconstruction is written as pj(x) = a4(x − xj)
4 + a3(x − xj)

3 + a2(x − xj)
2 +

a1(x − xj) + a0, then the coefficients can be given explicitly as

a0 =
uj−1+298uj+uj+1−54(u

j− 1
2

+u
j+ 1

2

)

192 , a1 =
uj−1−uj+1−10(u

j− 1
2

−u
j+ 1

2

)

8∆x ,

a2 =
−(uj−1+58uj+uj+1)+30(u

j− 1
2

+u
j+ 1

2

)

8∆x2 , a3 =
uj+1−uj−1+2(u

j− 1
2

−u
j+ 1

2

)

∆x3 ,

a4 =
5uj−1+50uj+5uj+1−30(u

j− 1
2

+u
j+ 1

2

)

12∆x4 .
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It is clear that the following properties hold for pj(x):
I Accuracy (recall that u(x) is a smooth function)

(2.1) pj(x) = u(x) + O(∆x5), ∀x ∈ Ij

II Agreement of the cell averages

(2.2)
1

∆x

∫

Ij

pj(x)dx = uj , ∀j

Define the piecewise polynomial p(x) =
∑

j pj(x)χj(x), where χj is the charac-
teristic function on Ij . Notice that for the specific Hermite polynomial pj(x) defined
above, we have p(xj− 1

2
) = pj(xj− 1

2
) = pj−1(xj− 1

2
) = u(xj− 1

2
), that is, p(x) is a

continuous function. For any piecewise polynomial function r(x) =
∑

j rj(x)χj(x),
where rj(x) is a polynomial which may not satisfy rj(xj− 1

2
) = u(xj− 1

2
) or rj(xj+ 1

2
) =

u(xj+ 1
2
), we define the variation of r on each cell by

V ar(rj) =

∫ x
j+ 1

2

x
j− 1

2

|r′j(x)| dx + |rj(xj− 1
2
) − uj− 1

2
| + |rj(xj+ 1

2
) − uj+ 1

2
|,

and define the variation of r on the whole domain by V ar(r) =
∑

j V ar(rj). The
standard total variation seminorm of r(x) is

TV (r) =
∑

j




∫ x
j+ 1

2

x
j− 1

2

|r′j(x)| dx + |rj(xj− 1
2
) − rj−1(xj− 1

2
)|


 ≤

∑

j

V ar(rj).

The approximation r(x) is TVD if it satisfies TV (r) =
∫

J |r′(x)| dx ≤
∫

J |u′(x)| dx =
TV (u), where the integral is in the generalized sense since r′(x) may contain δ-
functions, because r(x) is a piecewise polynomial function which may not be continu-
ous at cell interfaces. Obviously, r is a TVD approximation if V ar(rj ) ≤

∫
Ij
|u′(x)| dx,

∀j, where we assume the cell boundary values u(xj− 1
2
) are well defined and are shared

by both cells Ij−1 and Ij . For convenience, we denote the total variation of the func-
tion u over the interval Ij by TV (u)j =

∫
Ij
|u′(x)| dx.

Now the question is, given a piecewise approximation polynomial p(x) and certain
information of u(x) including its extrema, its cell boundary values uj− 1

2
, its cell

averages uj and its cell total variation TV (u)j for all j, whether we can find a TVD
approximation r(x) by limiting p(x) such that the accuracy condition (2.1) and the
conservation condition (2.2) still hold.

To obtain the TVD property, it suffices to enforce

(2.3) V ar(rj) ≤ TV (u)j , ∀j.

We now discuss the limiting process case by case:
Case I. pj(x) is monotone in the cell Ij .
For this case, the TVD requirement (2.3) is already satisfied since pj(x) is a

Hermite type polynomial which interpolates u at the cell boundaries.
Case II. pj(x) is not monotone in the cell Ij , but u(x) is monotone in this cell.
In this case, the TVD property (2.3) does not hold for pj(x) because

V ar(pj) > |uj+ 1
2
− uj− 1

2
| = TV (u)j .
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Without loss of generality, we only discuss the situation that u(x) is monotonically
increasing in Ij , i.e., uj− 1

2
≤ uj+ 1

2
and u′(x) ≥ 0, ∀x ∈ Ij . Since pj(x) is not

monotone, we must have p′j(x) < 0 for some x ∈ Ij . Consider p̃j(x) = pj(x)−αj(x−
xj), αj = minx∈Ij

p′j(x). We then have the following lemma.
Lemma 2.1. The accuracy condition (2.1) and the cell average agreement condi-

tion (2.2) still hold for p̃j(x).
Proof. The agreement of the cell average is obvious. To prove accuracy, it suffices

to show αj = O(∆x4).
We have p′j(x) − u′(x) = O(∆x4) since pj(x) is a fourth degree Hermite approx-

imation of u(x). If p′j(x) attains its minimum at the point xmin ∈ Ij , then we have

u′(xmin) ≥ 0, αj = p′j(x
min) < 0, therefore |αj | = −αj ≤ u′(xmin) − αj = O(∆x4).

We now enforce the TVD requirement (2.3). For this purpose, we apply the
following scaling to p̃j(x) around its cell average on the cell Ij :

r
θj

j (x) = θj(p̃j(x) − uj) + uj ,

where θj ∈ [0, 1] is a parameter to be determined by the TVD requirement (2.3).
Lemma 2.2. If V ar(p̃j) > TV (u)j , then there exists θj ∈ [0, 1] such that

V ar(r
θj

j ) = TV (u)j .
Proof. Take

θj = min

{∣∣∣∣∣
uj− 1

2
− uj

p̃j(xj− 1
2
) − uj

∣∣∣∣∣ ,

∣∣∣∣∣
uj+ 1

2
− uj

p̃j(xj+ 1
2
) − uj

∣∣∣∣∣

}
.

First, we need to show θj ∈ [0, 1]. If θj > 1, then

(2.4) |uj− 1
2
− uj | > |p̃j(xj− 1

2
) − uj |, |uj+ 1

2
− uj | > |p̃j(xj+ 1

2
) − uj |.

Since u(x) and p̃j(x) are both monotonically increasing in Ij , we have

(2.5) uj− 1
2
≤ uj ≤ uj+ 1

2

and p̃j(xj− 1
2
) ≤ uj ≤ p̃j(xj+ 1

2
). Therefore, (2.4) implies uj− 1

2
≤ p̃j(xj− 1

2
) ≤ uj ≤

p̃j(xj+ 1
2
) ≤ uj+ 1

2
. We then have

V ar(p̃j) =

∫ x
j+ 1

2

x
j− 1

2

|p̃′j(x)| dx + |p̃j(xj− 1
2
) − uj− 1

2
| + |p̃j(xj+ 1

2
) − uj+ 1

2
|

= (p̃j(xj+ 1
2
) − p̃j(xj− 1

2
)) + (p̃j(xj− 1

2
) − uj− 1

2
) + (uj+ 1

2
− p̃j(xj+ 1

2
))

= uj+ 1
2
− uj− 1

2
= TV (u)j .

This contradicts V ar(p̃j) > TV (u)j , therefore we have θj ∈ [0, 1].
Second, we should verify the TVD property (2.3). For convenience, we denote

r
θj

j (x) by rj(x) here. By the definition of the θj ,

|rj(xj− 1
2
) − uj | = θj |p̃j(xj− 1

2
) − uj | ≤ |uj− 1

2
− uj |,

|rj(xj+ 1
2
) − uj | = θj |p̃j(xj+ 1

2
) − uj | ≤ |uj+ 1

2
− uj |.(2.6)

Since u(x) and rj(x) are both monotonically increasing in Ij , we have (2.5)
and rj(xj− 1

2
) ≤ uj ≤ rj(xj+ 1

2
), therefore (2.6) implies uj− 1

2
≤ rj(xj− 1

2
) ≤ uj ≤
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rj(xj+ 1
2
) ≤ uj+ 1

2
. We thus have

V ar(rj) =

∫ x
j+ 1

2

x
j− 1

2

|r′j(x)| dx + |rj(xj− 1
2
) − uj− 1

2
| + |rj(xj+ 1

2
) − uj+ 1

2
|

= (rj(xj+ 1
2
) − rj(xj− 1

2
)) + (rj(xj− 1

2
) − uj− 1

2
) + (uj+ 1

2
− rj(xj+ 1

2
))

= uj+ 1
2
− uj− 1

2
= TV (u)j .

Notice that this scaling does not change the cell average. Of course, we would
need to show that, with the θj taken in Lemma 2.2, this scaling does not destroy
accuracy. We would need the following result for polynomials:

Lemma 2.3. If a polynomial p(x) of degree k (k ≤ 4) is monotone over an interval
I = [a, b], and its cell average over I is p, then

(2.7) max
x∈I

∣∣∣∣
p(x) − p

p(b) − p

∣∣∣∣ ≤ C, max
x∈I

∣∣∣∣
p(x) − p

p(a) − p

∣∣∣∣ ≤ C,

where C is a constant depending only on the degree of the polynomial k. In particular,
C(2) = 2, C(3) = 4 and C(4) = 7.

The proof is elementary but lengthy, and is therefore deferred to the Appendix.
A similar (and more general) result for quadratic polynomials can be found in the
appendix of [5].

Using Lemma 2.3 we can prove the accuracy property:

Lemma 2.4. For the θj chosen in Lemma 2.2, the accuracy property (2.1) holds

for r
θj

j (x).

Proof. It suffices to show that r
θj

j (x) − p̃j(x) = O(∆x5). Without loss of gen-

erality, we assume θj =

∣∣∣∣
u

j− 1
2

−uj

epj (x
j− 1

2

)−uj

∣∣∣∣ . In this case, since both u(x) and p̃j(x) are

monotonically increasing, we actually have θj =
u

j− 1
2

−uj

epj(xj− 1
2

)−uj
. Then,

r
θj

j (x) − p̃j(x) = θj(p̃j(x) − uj) + uj − p̃j(x) = (θj − 1)(p̃j(x) − uj)

=

(
u

j− 1
2

−uj

epj(xj− 1
2

)−uj
− 1

)
(p̃j(x) − uj) =

u
j− 1

2

−epj(xj− 1
2

)

epj(xj− 1
2

)−uj
(p̃j(x) − uj)

=
epj(x)−uj

epj(xj− 1
2

)−uj
(uj− 1

2
− p̃j(xj− 1

2
)) = O(∆x5)

where in the last equality we have used Lemma 2.3.

Case III. Neither pj(x) nor u(x) is monotone in Ij .

First, consider the situation that u(x) has only one nontrivial extremum in Ij .
Without loss of generality, we assume u(x) attains its maximum at xmax ∈ Ij , and we
denote umax = u(xmax).

We propose to break the polynomial pj(x) into two parts, pl
j and pr

j . Let ul
j and

ur
j be the cell averages of u on I l

j = [xj− 1
2
, xmax] and Ir

j = [xmax, xj+ 1
2
] respectively,

similarly let pl
j and pr

j be the cell averages of pj(x) on I l
j and Ir

j respectively. Define

pl
j(x) = pj(x), ∀x ∈ I l

j , pr
j(x) = pj(x), ∀x ∈ Ir

j ,

ul(x) = u(x), ∀x ∈ I l
j , ur(x) = u(x), ∀x ∈ Ir

j .
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After an adjustment of the cell averages over the two sub-cells, in each of the
two intervals I l

j and Ir
j , the situation reduces to either Case I or Case II. Here, we

will only briefly discuss pl
j , since the procedure for pr

j is the same. Since umax is the

maximum, ul(x) is monotonically increasing in I l
j .

1. If pl
j is monotone on I l

j (Case I), then define

(2.8) p̃l
j(x) = pl

j(x) − pl
j + ul

j , (rl
j)

θj (x) = θj(p̃
l
j(x) − ul

j) + ul
j ,

where

(2.9) θj = min

{∣∣∣∣∣
uj− 1

2
− ul

j

p̃j(xj− 1
2
) − ul

j

∣∣∣∣∣ ,
∣∣∣∣∣

umax − ul
j

p̃j(xmax) − ul
j

∣∣∣∣∣ , 1
}

.

2. If pl
j is not monotone on I l

j (Case II), let α be the minimum of the derivative

of pl
j over I l

j , then α < 0. Define
(2.10)

p̃l
j(x) = pl

j(x)−pl
j +ul

j −α

(
x −

x
j− 1

2

+xmax

2

)
, (rl

j)
θj (x) = θj(p̃

l
j(x)−ul

j)+ul
j ,

where

(2.11) θj = min

{∣∣∣∣∣
uj− 1

2
− ul

j

p̃j(xj− 1
2
) − ul

j

∣∣∣∣∣ ,
∣∣∣∣∣

umax − ul
j

p̃j(xmax) − ul
j

∣∣∣∣∣ , 1
}

.

We define rr
j (x) on Ir

j in a similarly way, and use rj(x) = rl
j(x)χ(I l

j )+ rr
j (x)χ(Ir

j )
as our TVD approximation of u(x) on Ij . By the same arguments as in Cases I and
II, we can show the TVD property and agreement of cell averages for rj(x). And we
can also show the accuracy for rj(x), following the same arguments as in Cases I and
II.

If there are multiple nontrivial extrema of u(x) inside the interval Ij , for the
implementation of the limiter, we will choose arbitrarily one of the extrema of u(x)
(e.g. the one which gives the maximum or the minimum of u(x) inside the interval
Ij). Without loss of generality, we assume u(x) attains its maximum at xmax ∈ Ij ,
and umax = u(xmax) is chosen as the extremum which will be used in the limiter. We
still break the polynomial pj(x) into two parts, pl

j(x) on I l
j = [xj− 1

2
, xmax] and pr

j (x)

on Ir
j = [xmax, xj+ 1

2
]. Then we perform the following modification for pl

j(x):

1. If
(
uj− 1

2
− ul

j

)(
ul

j − umax
)
≥ 0 and pl

j(x) is monotonically nondecreasing on

I l
j , then do exactly the same limiting as (2.8) and (2.9).

2. If
(
uj− 1

2
− ul

j

)(
ul

j − umax
)
≥ 0 and pl

j(x) is not monotone on I l
j , do exactly

the same limiting as (2.10) and (2.11).
3. Otherwise, set pl

j(x) = ul
j .

The limiting for pr
j(x) is similar. By the same arguments as above, we can show

the TVD property and the agreement of cell averages for such modified two-piece
polynomials.

Remark 2.5. One apparent gap in the proof above is that accuracy for Case
III can only be shown to hold for the case of u(x) having at most one extremum in
the cell Ij . We would like to justify this restriction for sufficiently small ∆x. For
this purpose, we assume that the initial condition u(x, 0) has only finitely many strict
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smooth extrema. A pair of adjacent extrema can only consist of one maximum Mj

and one minimum mj , if the function u(x, 0) is smooth and non-constant in between,
with mj < Mj . Denoting C = minj(Mj − mj) > 0. If we agree to consider accuracy
only in those cells in which | ∂

∂xu(x, t)| ≤ M for a pre-determined constant M , we

will take the mesh size ∆x < C
M . If at a later time t, u(x, t) has two extrema in

the same cell, then they must correspond to one such pair in the initial condition with
values mj and Mj (following characteristics, along which the solution stays constant).
Clearly, by the mean value theorem, there is then a point ξ in this cell such that
| ∂
∂xu(ξ, t)| ≥

Mj−mj

∆x ≥ C
∆x > M , hence we do not need to consider accuracy of the

numerical approximation in this cell. In summary, the reconstruction polynomials
after the modifications introduced in this section always satisfy the TVD and cell
average agreement properties, however accuracy can be shown only for sufficiently
small ∆x.

3. A TVD finite volume scheme. Combining the high order accurate TVD
reconstruction described in the previous section with the method of characteristics,
we obtain a high order accurate TVD Godunov-type finite volume scheme solving the
one dimensional scalar conservation law (1.1).

3.1. Time evolution. To implement the approximation of the previous sec-
tion, several pieces of information must be available for each cell. Specifically, the
cell averages and the left and right cell boundary point values of the function being
approximated must be known. To obtain this information, we follow Sanders [12] and
use a staggered spatial mesh with the method of characteristics. We only need to
discuss the evolution procedure for one time step.

Let T (u0)(x, t), t ≥ 0, denote the solution to the scalar conservation law (1.1) and
R(u0)(x) denote the piecewise polynomial TVD reconstruction to u0(x) in the previ-
ous section. As in the previous section, we partition the real line into nonoverlapping
intervals Ij = [xj− 1

2
, xj+ 1

2
], and approximate u0 ∈ BV by the piecewise polynomial

TVD reconstruction

u0(x) = R(u0)(x) =
∑

j

rj(x)χj(x),

where rj(x) is either a polynomial or a (possibly discontinuous) two-piece poly-
nomials rj(x) = rl

j(x)χ(I l
j ) + rr

j (x)χ(Ir
j ). Consider a staggered partition Ij− 1

2
=

[xj−1, xj ]. The objective of the evolution is to determine the necessary information
of T (u0)(x, ∆t

2 ) such that a TVD piecewise polynomial reconstruction at time t = ∆t
2

can be obtained.
We assume that u0 is given by u0(x) = R(u0)(x), where R denotes a “precon-

ditioned” version of reconstruction R. By this we mean specifically that R(u0) is
modified (in a way we will discuss later) so that for all j,

(3.1) max
Ij

∣∣∣∣
d

dx
u0(x)

∣∣∣∣
∣∣f ′′(u0(x))

∣∣ ∆t < 2.

Essentially, to enforce (3.1) is to push extremely large gradients of rj(x) out of the
interval Ij and into the jump discontinuities at cell interfaces, see [12]. An additional
condition that we assume throughout is the Courant condition; that is, for all u in
the range of u0 we assume the ratio λ = ∆t/∆x is taken so that

(3.2) |f ′(u)|λ < 1.
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Fig. 3.1.

If we can find the backward characteristic line from each point xj at time t = ∆t/2
back to the time level t = 0 with its foot located at yj ∈ Ij (see Figure 3.1(a)) such
that the exact entropy solution is constant uj = u0(yj) along the line, then we have
already obtained the cell endpoint values of T (u0)(x, ∆t

2 ) on the staggered cell Ij− 1
2
,

and we can apply the divergence theorem to (1.1) over the trapezoid defined by the
points (xj−1, ∆t/2), (xj , ∆t/2), (yj−1, 0) and (yj , 0) to obtain the cell average of
T (u0)(x, ∆t

2 ) on Ij− 1
2

as

(3.3)

u
1
2

j− 1
2

= 1
∆x

[∫ yj

yj−1
u0(x)dx − ∆t

2 f(uj) + (xj − yj)uj + ∆t
2 f(uj−1) − (xj−1 − yj−1)uj−1

]
.

Therefore, we may now focus on how to obtain the backward characteristic line.
With (3.1) and (3.2) we have:
Lemma 3.1. If the approximation function u0 is continuous on Ij , that is, rj(x)

is a polynomial, then the backward characteristic equation

(3.4) f ′(u0(x)) =
xj − x

∆t/2
, x ∈ Ij

has a unique solution yj ∈ Ij .
Proof. Consider finding the root of the function

(3.5) H(s) = f ′(u0(s))∆t + 2(s − xj).

According to (3.2), we have that

(3.6) H(x+
j− 1

2

) = f ′(u0(x+
j− 1

2

))∆t − ∆x < 0,

(3.7) H(x−

j+ 1
2

) = f ′(u0(x−

j+ 1
2

))∆t + ∆x > 0.

Moreover, (3.1) implies that for every s ∈ Ij ,

(3.8)
d

ds
H(s) = f ′′(u0(s))∆t

d

ds
rj(s) + 2 > 0.
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Therefore, H(s) has a unique root yj ∈ Ij = (xj− 1
2
, xj+ 1

2
).

Lemma 3.2. If rj(x) = rl
j(x)χ(I l

j) + rr
j (x)χ(Ir

j ) where rl
j(x) and rr

j (x) are two

polynomials defined on I l
j = [xj− 1

2
, x0

j ] and Ir
j = [x0

j , xj+ 1
2
] respectively, we can get

either one or three possible candidates for the backward characteristic line from (xj , t
1
2 )

by solving the characteristic equation (3.4).
Proof. Again, consider finding the root of the function (3.5). We still have

(3.6) and (3.7). Moreover, (3.8) holds for each piece of s ∈ (xj− 1
2
, x0

j ) and s ∈

(x0
j , xj+ 1

2
), respectively. Therefore, H(s) is continuous on Ij except at x0

j and H(s)

is monotonically increasing both on the left side and on the right side of x0
j . Thus,

there are three cases depending on the signs of H((x0
j )

−) and H((x0
j )

+).

1. If H((x0
j )

−) H((x0
j )

+) > 0, there is exactly one root of H(s).

2. If H((x0
j )

−) ≤ 0, H((x0
j )

+) ≥ 0, the backward characteristic line is from

(x0
j , 0) to (xj , ∆t/2) and the speed of this characteristic is 2(xj − x0

j )/∆t.

Precisely speaking there is no root of H(s) if H((x0
j )

−) < 0 and H((x0
j )

+) > 0,

but this means a rarefaction wave emanating from (x0
j , 0).

3. If H((x0
j )

−) ≥ 0, H((x0
j )

+) ≤ 0, then there are two roots of H(s), one is

in I l
j and the other one is in Ir

j . Moreover, the line segment from (x0
j , 0) to

(xj , ∆t/2) is also a possible characteristic. See Figure 3.1(b).
From the previous lemma, we know that there is a unique backward characteristic

line unless Case 3 happens. For Case 3, we can use the Lax formula to choose the
correct characteristic line among the candidates, if the flux f(u) is convex, see, e.g. the
procedure used in [10]. However, if f(u) is nonconvex, it is very difficult to single out
the correct characteristic line among these candidates. We will show in next section
that any choice among these candidates will maintain the desired accuracy, therefore
our main concern is the TVD property of the scheme. We will choose the candidate
so that the cell average obtained from (3.3) satisfies the maximum principle, i.e.

(3.9) min
[yj−1,yj ]

u0(x) ≤ u
1
2

j− 1
2

≤ max
[yj−1,yj ]

u0(x).

Once this maximum principle is satisfied, the conditions for the analysis in Section 2
will be fulfilled and we may have a TVD reconstruction.

Notice that a choice of the correct characteristics for both cell end points yj−1

and yj would produce u
1
2

j− 1
2

from (3.3) as the exact cell average of the entropy solu-

tion T (u0)(x, ∆t/2) on Ij− 1
2
, therefore it would automatically satisfy the maximum

principle (3.9). Thus, in Case 3 when there are more than one candidate for the char-

acteristic line, there is at least one choice which would return a u
1
2

j− 1
2

satisfying (3.9).

If more than one candidate satisfies this criterion, we will simply choose one of them
arbitrarily. In our implementation, if there are N intervals in which Case 3 happens,
then we have 3N candidates of possible combination. We check all the 3N candidates

sequentially until we find one choice such that each u
1
2

j− 1
2

from (3.3) satisfies (3.9),

then we will stop the search and use this choice.
After finding the backward characteristics, we can obtain the cell averages and

cell boundary point values of T (u0)(x, ∆t/2). With this information, we can apply the
procedure in the previous section to obtain a piecewise Hermite type reconstruction
polynomial p(x) =

∑
j pj− 1

2
(x)χj− 1

2
(x) on the staggered mesh Ij− 1

2
= [xj−1, xj ].

To find a TVD approximation to T (u0)(x, ∆t/2), we still need to know the ex-
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trema of T (u0)(x, ∆t/2). In actual implementation, we use the maximum/minimum
value of u0(x) on the interval [yj−1, yj ] to replace the maximum/minimum value of
T (u0)(x, ∆t/2), and the position of the extremum of T (u0)(x, ∆t/2) is determined
by forward characteristic lines starting from the maximum/minimum point of u0(x).
For example, if xmax

j is the point where the maximum value of u0(x) in [yj−1, yj ] is

achieved, and the maximum value is u0
max, then the forward characteristic is the

line through (xmax
j , 0) and (xmax

j + f ′(u0
max)∆t/2, ∆t/2), i.e., we trace the maxi-

mum/minimum values by the characteristics. The two cell averages of the left and
right parts can be computed in the same way as in (3.3).

Remark 3.3. Since the entropy solution to (1.1) satisfies the maximum principle,
the maximum/minimum value of T (u0)(x, ∆t/2) on the interval Ij− 1

2
is less/greater

than or equal to the maximum/minimum value of u0(x) on the interval [yj−1, yj ],
which could be easily computed because u0 is a piecewise polynomial of degree k ≤ 5
and there are algebraic analytical formulas for the extrema.

3.2. Precondition. We propose the following procedure as the preconditioning
process to ensure (3.1). Clearly, this preconditioning does not affect accuracy in
smooth cells.

1. rj(x) is a polynomial. If rj(x) fails to satisfy (3.1), i.e.,

max
x∈Ij

r′j(x)f ′′(rj(x)) > 2/∆t, or min
x∈Ij

r′j(x)f ′′(rj(x)) < −2/∆t,

then we use r̂j(x) = µ(rj(x) − uj) + uj to replace rj(x), where uj is the cell
average and

µ = min

{∣∣∣∣∣
2

∆t max
x∈Ij

f ′′(rj(x)) max
x∈Ij

r′

j
(x)

∣∣∣∣∣ ,
∣∣∣∣∣

2
∆t min

x∈Ij

f ′′(rj(x)) min
x∈Ij

r′

j
(x)

∣∣∣∣∣

}
.

2. rj(x) = rl
j(x)χ(I l

j) + rr
j (x)χ(Ir

j ). We only discuss rl
j(x), the process for rr

j (x)

is similar. If rl
j(x) fails to satisfy (3.1), i.e.,

max
x∈Il

j

(
rl
j

)′
(x)f ′′(rj(x)) > 2/∆t, or min

x∈Il
j

(
rl
j

)′
(x)f ′′(rj(x)) < −2/∆t,

then we use r̂l
j(x) = µ(rl

j(x) − ul
j) + ul

j to replace rl
j(x), where ul

j is the cell

average on I l
j and

µ = min





∣∣∣∣∣∣
2

∆t max
x∈Ij

f ′′(rl
j
(x)) max

x∈Il
j

(rl
j)

′
(x)

∣∣∣∣∣∣
,

∣∣∣∣∣∣
2

∆t min
x∈Il

j

f ′′(rl
j
(x)) min

x∈Ij
(rl

j)
′
(x)

∣∣∣∣∣∣



 .

3.3. Algorithm flowchart. We can now formulate the algorithm flowchart for
the TVD finite volume scheme. From now on we restrict ourself to the fifth order case
for easy presentation, although the procedure and results are valid for all orders up to
six. Given the cell averages and cell boundary values of the initial data u0(x), we use
the Hermite reconstruction procedure in Section 2 to obtain a piecewise polynomial
of degree four u0(x) as the numerical initial condition. We apply the limiting process
in Section 2 to the numerical initial condition, still denoted by u0(x), which is then a
piecewise polynomial of degree four satisfying TV (u0) ≤ TV (u0).
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1. Start with piecewise polynomial of degree four un(x) =
∑

j rj(x)χj(x) at
time level n, where rj(x) is either a polynomial or two-piece polynomials on
the interval Ij . Apply the preconditioning process detailed in Section 3.2 to
each rj(x), still denoted as rj(x).

2. For each j, by Lemmas 3.1 and 3.2, there is either one or three solutions in
Ij for the characteristic equation f ′(rj(x)) =

xj−x
∆t/2 , x ∈ Ij . Use either explicit

formulas (if f ′(rj(x)) is a lower degree polynomial) or an iterative method
to find the solution or solutions in Ij . If there is only one solution, set it as
yj . Next, if there are N intervals in which there are three candidates for yj ,
then check all the 3N candidates of combination sequentially until we find

one which returns a maximum-principle-satisfying u
n+ 1

2

j− 1
2

for all the intervals

in the formula

u
n+ 1

2

j− 1
2

= 1
∆x

[∫ yj

yj−1
un(x)dx − ∆t

2 f(un(yj)) + (xj − yj)u
n(yj)

+∆t
2 f(un(yj−1)) − (xj−1 − yj−1)u

n(yj−1)
]
.(3.10)

3. Evaluate T (un)(xj ,
∆t
2 ) = un(yj) and the average of T (un)(x, ∆t

2 ) on Ij− 1
2

=

[xj−1, xj ] by the formula (3.10). Construct the Hermite type reconstruction
polynomials pj− 1

2
(x) on the staggered interval Ij− 1

2
= [xj−1, xj ] using the

formulas in Section 2.
4. Let uj denote un(yj). Evaluate the extrema of pj− 1

2
(x) in each staggered in-

terval Ij− 1
2

and the extrema of rj(x) in each Ij to calculate V ar(pj− 1
2
) =∫ xj

xj−1
|p′

j− 1
2

(x)| dx + |pj− 1
2
(xj−1) − uj−1| + |pj− 1

2
(xj) − uj | and the stan-

dard variation of un(x) on [yj−1, yj ], TV (un)[yj−1,yj ] =
∫ yj

yj−1
|(un)′(x)| dx.

If V ar(pj− 1
2
) > TV (un)[yj−1,yj ], we perform the TVD limiting process de-

scribed in Section 2 on pj− 1
2
(x) :

• If un(x) is monotone on [yj−1, yj ], then perform the limiting procedure

p̃j− 1
2
(x) = pj− 1

2
(x) − αj− 1

2
(x − xj− 1

2
),

where αj− 1
2

=

{
minx∈I

j− 1
2

p′
j− 1

2

(x), if uj−1 ≤ uj

maxx∈I
j− 1

2

p′
j− 1

2

(x), if uj−1 ≥ uj
, and

rj− 1
2
(x) = θj− 1

2

(
p̃j− 1

2
(x) − un+1

j− 1
2

)
+ un+1

j− 1
2

,

with θj− 1
2

= min

{∣∣∣∣∣
uj−1−un+1

j− 1
2

ep
j− 1

2

(xj−1)−un+1

j− 1
2

∣∣∣∣∣ ,
∣∣∣∣∣

uj−un+1

j− 1
2

ep
j− 1

2

(xj)−un+1

j− 1
2

∣∣∣∣∣ , 1
}

.

• If un(x) is not monotone on [yj−1, yj ], then choose either the maximum
or the minimum of un(x), denoted as yext

j ∈ [yj−1, yj ]. Set xext
j =

yext
j + f ′(un(yext

j ))∆t/2 and uext
j = un(yext

j ). Divide Ij− 1
2

into two

parts I l
j− 1

2

= [xj−1, x
ext
j ] and Ir

j− 1
2

= [xext
j , xj ]. Calculate the averages
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of T (un)(x, ∆t
2 ) over I l

j− 1
2

and Ir
j− 1

2

by

ul
j− 1

2

= 1
∆x

[∫ yext
j

yj−1
un(x)dx − ∆t

2 f(un(yext
j )) + (xext

j − yext
j )un(yext

j )

+∆t
2 f(un(yj−1)) − (xj−1 − yj−1)u

n(yj−1)
]

ur
j− 1

2

= 1
∆x

[∫ yj

yext
j

un(x)dx − ∆t
2 f(un(yj)) + (xj − yj)u

n(yj)

+∆t
2 f(un(yext

j )) − (xext
j − yext

j )un(yext
j )

]
.

Set pl
j− 1

2

(x) = pj− 1
2
(x) and pr

j− 1
2

(x) = pj− 1
2
(x). Let pl

j− 1
2

denote the

average of pl
j− 1

2

(x) on I l
j− 1

2

. Do the following limiting procedure to

pl
j− 1

2

(x):

(a) If
(
uj−1 − ul

j− 1
2

)(
ul

j− 1
2

− uext
j

)
< 0, set rl

j− 1
2

(x) = ul
j− 1

2

;

(b) Else, if pl
j− 1

2

(x) is monotone and
(
pl

j− 1
2

(xj−1) − pl
j− 1

2

(xext
j )

)
(uj−1−

uext
j ) < 0, then set rl

j− 1
2

(x) = ul
j− 1

2

;

(c) Else, if pl
j− 1

2

(x) is monotone and
(
pl

j− 1
2

(xj−1) − pl
j− 1

2

(xext
j )

)
(uj−1−

uext
j ) ≥ 0, then set p̃l

j− 1
2

(x) = pl
j− 1

2

(x)−pl
j− 1

2

+ul
j− 1

2

, and rl
j− 1

2

(x) =

θj− 1
2
(p̃l

j− 1
2

(x) − ul
j− 1

2

) + ul
j− 1

2

, where

θj− 1
2

= min

{∣∣∣∣
uj−1−ul

j− 1
2

ep
j− 1

2

(xj−1)−ul

j− 1
2

∣∣∣∣ ,

∣∣∣∣
uext

j −ul

j− 1
2

ep
j− 1

2

(xext
j

)−ul

j− 1
2

∣∣∣∣ , 1
}

;

(d) Else, if pl
j− 1

2

(x) is not monotone, set

p̃l
j− 1

2

(x) = pl
j− 1

2

(x) − pl
j− 1

2

+ ul
j− 1

2

− αj− 1
2

(
x −

xj−1 + xext
j

2

)
,

with αj− 1
2

=





minx∈Il

j− 1
2

(
pl

j− 1
2

)′

(x), if uj−1 ≤ uext
j

maxx∈Il

j− 1
2

(
pl

j− 1
2

)′

(x), if uj−1 ≥ uext
j

, and

rl
j(x) = θj− 1

2
(p̃l

j− 1
2

(x) − ul
j− 1

2

) + ul
j− 1

2

,

where θj− 1
2

= min

{∣∣∣∣
uj−1−ul

j− 1
2

epl

j− 1
2

(xj−1)−ul

j− 1
2

∣∣∣∣ ,

∣∣∣∣
uext

j −ul

j− 1
2

epl

j− 1
2

(xext)−ul

j− 1
2

∣∣∣∣ , 1
}

.

Perform a similar modification to pr
j− 1

2

(x), then we obtain rj− 1
2
(x) =

rl
j− 1

2

(x)χ(I l
j− 1

2

) + rr
j− 1

2

(x)χ(Ir
j− 1

2

).

This finishes the evolution to tn + ∆t
2 on the staggered mesh Ij− 1

2
.

5. Evolve to tn + ∆t in an analogous way back to the mesh Ij .

4. Properties of the scheme.

4.1. Conservative form. Theorem 4.1. The scheme given in the previous
section can be written in a conservative form.
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Fig. 4.1. The trapezoid region in the x-t plane.

Proof. The cell averages can be rewritten as

u
n+ 1

2

j− 1
2

= 1
∆x

[∫ yj

yj−1
un(x)dx − ∆t

2 f(uj) + (xj − yj)uj + ∆t
2 f(uj−1) − (xj−1 − yj−1)uj−1

]

= un
j− 1

2

− 1
2

∆t
∆x(f̂j − f̂j−1),

where the numerical flux is f̂j = 2
∆t

∫ xj

yj
un(x)dx +

(
f(uj) −

2(xj−yj)
∆t uj

)
and un

j− 1
2

denotes the average of un(x) on Ij− 1
2
. See Figure 4.1.

First, f̂j only depends on un(x) over the interval Ij . Second, f̂j is consistent in

the sense that f̂j = f(u) if un(x) is a constant u. Thus, our scheme is conservative.

4.2. Total-variation diminishing. Theorem 4.2. The scheme given in the
previous section is TVD: TV (un+ 1

2 (x)) ≤ TV (un(x)).
Proof. As long as the cell averages satisfy the maximum principle (3.9), Lemma

2.2 in the TVD reconstruction section will hold, which ensures the TVD property
of the reconstruction after limiting. The preconditioning process in Section 3.2 clear
does not increase the variation. Therefore, the scheme satisfies

TV (un+ 1
2 (x)) ≤ V ar(un+ 1

2 (x)) ≤ TV (un(x)).

4.3. Accuracy. Except for the Case 3 in Lemma 3.2, the time evolution of our
scheme is exactly the same as [12]. Therefore, following the same lines as in [12],
if Case 3 never happens, then we can show that our scheme is fifth order accurate
for smooth solutions away from the extrema by calculating the local truncation error
defined in [12], and it will lose at most one order of accuracy near extrema. Since
there is only finitely many such extrema, the L1 order of accuracy is optimal. Here,
we need to show that the local truncation error will lose at most one order of accuracy
if Case 3 happens. It suffices to check the accuracy of the backward characteristic
line that we choose in Case 3.

Lemma 4.3. Assume f ′′(x) and u′
0(x) are both bounded, then all the three can-

didates of the backward characteristic lines in Case 3 are fifth order accurate if the
mesh is fine enough.
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Proof. Assume the three possible locations of the foot of backward characteristics
are s0, s1 and s2 as shown in Figure 3.1(b) (in which s0 is denoted as x0

j ). It suffices

to show that s1 − s2 = O(∆x5) if ∆x and ∆t are sufficiently small.
Define G(x) = f ′(u0(x))∆t + 2(x− xj) and H(x) = f ′(u0(x))∆t + 2(x− xj). We

have

G(x) − H(x) = f ′(u0(x))∆t − f ′(u0(x))∆t = f ′′(ζ)(u0(x) − u0(x))∆t = O(∆x5),

therefore |H(s−0 ) − H(s+
0 )| ≤ |H(s−0 ) − G(s0)| + |G(s0) − H(s+

0 )| = O(∆x5), hence
H(s−0 ) H(s+

0 ) < 0 implies |H(s−0 )| = O(∆x5). Notice that

G′(x) = f ′′(u0(x))u′
0(x)∆t + 2,

hence we have G′(x) ≥ 3
2 for all x ∈ [xj− 1

2
, xj+ 1

2
] if ∆t is small enough, since f ′′(x)

and u′
0(x) are bounded. Now G′(x) − H ′(x) = O(∆x4) implies that if ∆x is small,

H ′(x) ≥ 1 for all x ∈ [xj− 1
2
, xj+ 1

2
]. Therefore

H(s−0 ) − H(s1)

s0 − s1
= H ′(ξ) ≥ 1, for some ξ ∈ [s1, s0],

which implies s0 − s1 ≤ H(s−0 ) − H(s1) = H(s−0 ) = O(∆x5). Similarly s0 − s2 =
O(∆x5). Therefore, the accuracy is not destroyed even if the entropic characteristic
line is not necessarily chosen in Case 3.

We now have the following theorem on the accuracy of our scheme.
Theorem 4.4. Assuming the initial data u0(x) and the flux f(u) are both smooth

functions. Take ∆t sufficiently small so that (3.1) is satisfied. The scheme is fifth
order accurate away from the extrema of u0(x) and when Case 3 does not happen.
Accuracy can lose at most one order near the extrema or when Case 3 happens, hence
in L1 the error is fifth order accurate.

5. Numerical test. In this section we provide numerical examples to test our
schemes.

5.1. Standard test cases. Example 1. We solve the model equation ut+ux =
0,−1 ≤ x ≤ 1, u(x, 0) = u0(x), with periodic boundary conditions.

Three initial data u0(x) are used. The first one is u0(x) = sin(πx), and the second
one is u0(x) = sin4(πx). We list the L1 and L∞ errors for the cell averages at time
t = 5 in Table 5.1. Here and below, the mesh size ∆x = 2/N . We can clearly see that
the designed fifth order accuracy is achieved in both cases, at least for the L1 error.

Table 5.1

t = 5, ∆t/∆x = 0.95.

N u0(x) = sin(πx) u0(x) = sin4(πx)
L1 error order L∞ error order L1 error order L∞ error order

20 1.08E-6 – 2.18E-6 – 6.25E-4 – 1.22E-3 –
40 3.34E-8 5.01 6.93E-8 4.97 2.72E-5 4.52 7.58E-5 4.01
80 1.02E-9 5.03 2.17E-9 5.00 8.46E-7 5.00 3.15E-6 4.59
160 3.14E-11 5.02 6.69E-11 5.02 2.65E-8 4.99 1.20E-7 5.13
320 8.57E-10 4.95 4.08E-9 4.47

The third initial function is u0(x) =

{
1, −1 ≤ x ≤ 0
−1, 0 ≤ x ≤ 1

. The results at t = 100

are shown in Figure 5.2(a). We can see that numerical solution maintains a strict
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maximum principle and has relatively good resolution for the discontinuity for a coarse
mesh after a very long time simulation (50 time periods).

Example 2. We solve the Burgers equation with periodic boundary conditions ut +(
u2/2

)
x

= 0,−1 ≤ x ≤ 1, u(x, 0) = u0(x). For the initial data u0(x) = 0.25 +

0.5 sin(πx), the exact solution is smooth up to t = 2
π , then it develops a moving shock

which interacts with a rarefaction wave. We list the errors in Table 5.2 at t = 0.15.
We can clearly see the designed fifth order accuracy is achieved in the L1 norm. In
Figure 5.1 we can see that the shock is captured very well at t = 2

π and t = 2.0.
The errors 0.05 away from the shock (i.e., |x− shock location| ≥ 0.05) are listed in
Table 5.2 at t = 2.0. We can see that the designed order of accuracy is achieved or
surpassed.

Table 5.2

u0(x) = 0.25 + 0.5 sin(πx), ∆t/∆x = 1.2.

N t = 0.15 t = 2
L1 error order L∞ error order L1 error order L∞ error order

20 1.32E-6 – 6.73E-6 – 2.19E-3 – 4.09E-2 –
40 3.26E-8 5.34 1.47E-7 5.51 3.30E-5 6.05 7.34E-4 5.80
80 6.41E-10 5.66 4.25E-9 5.12 2.68E-6 6.95 1.79E-5 5.36
160 2.30E-11 4.80 2.38E-10 4.16 8.23E-10 8.34 9.24E-8 9.24
320 7.63E-13 4.91 1.59E-11 3.90 2.70E-13 11.57 9.30E-12 13.27
640 2.46E-14 4.95 1.02E-12 3.95
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(b) t = 2

Fig. 5.1. N = 80, ∆t/∆x = 1.2. Solid line: exact solution; Symbols: numerical solution.

Example 3. Note that we have only proved TVD for our schemes, not entropy con-
ditions. We use nonconvex fluxes to test the convergence to the physically correct en-
tropy solutions. The “exact” solutions are obtained from the first order Lax-Friedrichs
scheme on a very fine mesh.

The first flux is the Buckley-Leverett flux f(u) = 4u2

4u2+(1−u)2 , with the initial data

u = 1 in [− 1
2 , 0] and u = 0 elsewhere. The computational result is displayed in Figure

5.2(b), which is quite satisfactory.
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The second flux is f(u) =





1, if u < 1.6
cos(5π(u − 1.8)) + 2.0, if 1.6 ≤ u < 2.0
− cos(5π(u − 2.2)), if 2.0 ≤ u < 2.4
1, if u ≥ 2.4

with

two initial conditions, which is an example used in [11]. The first initial condition is

u0(x) =

{
1, for x < 0
3, for x ≥ 0

and it is shown in [11] that the numerical solutions of

many high order schemes would stay stationary which is entropy-violating. Our result
is shown in Figure 5.2(c) (solid line is exact solution and symbols denote numerical
solution (cell averages)) which approximates the exact entropy solution very well. The

other initial data that we test is u0(x) =

{
3, for − 1 ≤ x < 0
1, for 0 ≤ x ≤ 1

with a periodic

boundary condition. It is shown in [11] that convergence towards the entropy solution
for this test case is slow for first order monotone schemes and may fail for many high
order schemes. Our results are shown in Figure 5.2(d). There is clearly convergence
with refined meshes, and the rate of convergence is faster than that of the first order
schemes shown in [11].

5.2. Test cases from traffic flow models. In the subsection, we test our
fifth order TVD scheme on two traffic flow problems. To describe the dynamic
characteristics of traffic on a homogeneous and unidirectional highway, the Lighthill-
Whitham-Richards (LWR) model is widely used. The equation for the LWR model
is ρt + q(ρ)x = 0 with suitable initial and boundary conditions. Here ρ ∈ (0, ρmax) is
the density, ρmax is the maximum (jam) density, and q(ρ) = u(ρ)ρ is the traffic flow
on a homogeneous highway.
Example 4. The first traffic flow test example is taken from [7]. The flow-density
function is given by a concave function

q(ρ) =





−0.4ρ2 + 100ρ, ρ ∈ [0, 50]
−0.1ρ2 + 15ρ + 3500, ρ ∈ [50, 100]
−0.024ρ2 − 5.2ρ + 4760, ρ ∈ [100, 350]

.

The length of the freeway is 20 km. The entrance density is 50 veh/km. The piecewise
linear initial density profile shown in Fig 5.3(a) is formed. The entrance is blocked
for 10 min, after which traffic is released again from the entrance at the capacity
density 75 veh/km. After 20 min, the entrance flow returns to 50 veh/h. At the exit
boundary, a traffic signal is installed, with a repeated pattern of 2 min green light
(zero density) followed by 1 min red light (jam density). The numerical solutions are
shown in Figures 5.3(b), 5.3(c) and 5.3(d). We can observe that our TVD scheme
produces very good approximations to the exact solution for this test case.
Example 5. We consider a similar problem but with a much more complicated
flow-density function in [3]. The flow function q(ρ) = ρVe(ρ) is given by

Ve(ρ) =
eV 2

2V0

(
−1 +

√
1 +

4V 2
0

eV 2

)

with Ṽ (ρ) = 1
Tr

(
1
ρ − 1

ρmax

)√
α(ρmax)

α(ρ) and α(ρ) = α0 + ∆α
(
tanh (ρ−ρc

∆ρ ) + 1
)

. Here

V0, Tr, ρmax, α0, ∆α, ρc and ∆ρ are all constant parameters to be determined by
fitting them to the empirical data. The physical meaning of these parameters can
be found in [3]. We simply choose some typical values mentioned in [3]: V0 = 110
km/h, Tr = 1.8 seconds, ρmax = 160 vehicles/km, α0 = 0.008, ∆α = 0.02, ρc =
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(c) N = 400, t = 2, ∆t/∆x = 0.04.
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(d) t = 2, ∆t/∆x = 0.04. The curves, from
right to left, are corresponding to N = 800,
N = 1600, N = 3200 and the “exact” solution,
respectively.

Fig. 5.2. Example 1 and Example 3. In Fig 5.2(a), 5.2(b) and 5.2(c), solid line is exact
solution and squares denote numerical solution (cell averages).

0.27ρmax and ∆ρ = 0.1ρmax. With all these parameters, the flow-density function
q(ρ) is well-defined, the graphs of this function and its second derivative are plotted
in Figure 5.4(a) and 5.4(b). It is clearly neither a globally concave nor a globally
convex function. The entrance density is constant 30 veh/km. The initial condition
is ρ0(x) = 135

2 sin ( π
10x) + 145

2 . At the exit boundary, a traffic signal is installed, with
a repeated pattern of 1 min green light (ρ = 10 veh/km) followed by 2 min red
light (ρ = 140 veh/km). The numerical solutions are shown in Figure 5.4(c), with
a magnified graph for the boxed region shown in Figure 5.4(d), where the solid line
is the reference solution obtained by the first order Lax-Friedrichs scheme on a very
fine grid (N = 4000000) at t = 18 min. We again observe very good resolution of our
scheme for this nonconvex traffic flow model.

Remark 5.1. The advantage of our scheme is that it is high order accurate and
satisfies strictly a maximum principle, therefore it has better resolution than the usual
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Fig. 5.3. Traffic flow Example 4: N = 800. Solid line: exact solution; Circles: numerical
solution (cell averages).

TVD schemes when the solution contains many waves, and it does not generate any
unphysical solution such as negative density. From the two examples above, we can
see that all the waves (shocks and rarefactions) are well captured.

Remark 5.2. The boundary conditions in these two examples are all piecewise
constants in time. Hence we simply use constant values on ghost cells as the numerical
boundary condition for our scheme.

5.3. A simplified scheme. In this subsection we discussed a simplified version
of our finite volume scheme. We use the same method for time evolution, and a
similar but simpler limiter which only enforces strict maximum principle but not
TVD, without breaking a polynomial into two pieces on any interval. The algorithm
satisfies all the theoretical properties of the previous scheme except for a rigorous
proof of TVD. This maximum-principle-satisfying finite volume scheme is described
below.

1. Start with the preconditioned version of piecewise polynomial of degree four
un(x) =

∑
j rj(x)χj(x) at time level n.
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Fig. 5.4. Traffic flow Example 5: N = 1600. Solid line: exact solution; Circles: numerical
solution (cell averages).

2. For each xj , find the unique root yj of the characteristic equation (3.4) in Ij .
The uniqueness of the root is ensured by Lemma 3.1.

3. Evaluate T (un)(xj ,
∆t
2 ) = un(yj) and the average u

n+ 1
2

j− 1
2

of T (un)(x, ∆t
2 ) on

Ij− 1
2

by the formula (3.3). Construct the Hermite type interpolation polyno-

mials pj− 1
2
(x) on the staggered interval Ij− 1

2
= [xj−1, xj ].

4. For each interval Ij− 1
2
, evaluate the maximum Mj and the minimum mj of

pj− 1
2
(x) on Ij− 1

2
, and the maximum M̃j and the minimum m̃j of un(x) on

[yj−1, yj ]. Apply the following scaling rj− 1
2
(x) = θ(pj− 1

2
(x) − u

n+ 1
2

j− 1
2

) + u
n+ 1

2

j− 1
2

where θ is determined by θ = min





fMj−u
n+1

2

j− 1
2

Mj−u
n+1

2

j− 1
2

,
emj−u

n+1
2

j− 1
2

mj−u
n+1

2

j− 1
2

, 1



 .

5. Apply the preconditioning process. This finishes the evolution to tn + ∆t
2 on

the staggered mesh Ij− 1
2
.
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6. Evolve to tn + ∆t in an analogous way back to the mesh Ij .

Remark 5.3. We can easily prove that this scheme is conservative and fifth order
accurate. Obviously it satisfies the maximum principle. Therefore we will refer to it
as the maximum-principle-satisfying scheme.

Remark 5.4. The maximum-principle-satisfying scheme is much easier to code
than the TVD scheme. Although we cannot rigorously prove TVD or TVB of the nu-
merical solution, we have not observed any significant difference between this scheme
and the TVD scheme tested before, for all the test cases reported in this paper. We
will not show these results here to save space.

6. Concluding remarks. In this paper we have extended the work in [12] and
have constructed a class of genuinely high order accurate finite volume TVD schemes
for solving one dimensional scalar conservation laws. These schemes do not degen-
erate to lower order accuracy for solutions with smooth extrema, yet they satisfy a
strict maximum principle and they can be proved to be TVD, when the total varia-
tion is measured by the bounded variation semi-norm of the reconstructed piecewise
polynomials. The key ingredient of the algorithm is the TVD reconstruction, which
can be efficiently implemented for order of accuracy up to six.

We have tested the fifth order scheme on a variety of examples including those
from traffic flow models and those with non-convex fluxes. The solutions are high
order accurate and provide good resolution to shocks and rarefaction waves.

A simplified scheme is also described, which enforces a strict maximum principle
but is not rigorously TVD, however it is much simpler to implement than the TVD
scheme. Numerical experiments indicate that this simplified scheme perform as nicely
in all the test cases as the TVD scheme.

The advantage of the schemes constructed in this paper, compared with tradi-
tional TVD schemes, is that they do not degenerate to first order at smooth extrema,
hence they give very good resolutions to solutions with complicated smooth waves.
On the other hand, the advantage of the schemes constructed in this paper, compared
with ENO and WENO schemes, is that they satisfy strictly the maximum principle,
hence they will not generate non-physical solutions such as negative density for the
traffic flows. This property is important in many applications.

In order to generalize of this scheme to two dimensions, we should abandon the
requirement of TVD and insist only on the strict maximum principle, that is, along the
approach of the simplified scheme in Section 5.3. Initial work along this direction has
been performed in [16], after the submission of the original version of this paper. It is
also possible to formally generalize the scheme to hyperbolic systems, see [13] for one
possible approach. However, it would be probably more appropriate, for the system
case, to enforce certain positivity preserving properties, such as positivity preserving
for density and pressure for Euler equations of compressible gas dynamics, see [9] for
one possible approach. These generalizations constitute ongoing research.
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Appendix A. Appendix.

In this appendix we provide a proof of Lemma 2.3.
Proof: We only prove the k = 4 case. The proof for lower k is very similar (and

simpler) and is thus omitted.
We can assume the interval is I = [− 1

2 , 1
2 ] by considering the rescaled variable

x′ = x−(a+b)/2
b−a , which leaves the ratios in (2.7) unchanged. We will still denote x′ by

x and, without loss of generality, we assume p(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4

is increasing on I = [− 1
2 , 1

2 ]. Notice that since p(x) is monotone on I = [− 1
2 , 1

2 ], we
only need to show that

(A.1)

∣∣∣∣∣
p

(
1
2

)
− p

p
(
− 1

2

)
− p

∣∣∣∣∣ ≤ 7,

∣∣∣∣∣
p

(
− 1

2

)
− p

p
(

1
2

)
− p

∣∣∣∣∣ ≤ 7.

We will only prove the first inequality in (A.1), the derivation for the second
inequality being the same. We have

p
(
− 1

2

)
= a0 −

1
2a1 + 1

4a2 −
1
8a3 + 1

16a4, p
(

1
2

)
= a0 + 1

2a1 + 1
4a2 + 1

8a3 + 1
16a4

p = a0 + 1
12a2 + 1

80a4

Thus,

∣∣∣∣∣
p

(
1
2

)
− p

p
(
− 1

2

)
− p

∣∣∣∣∣ =
p( 1

2 ) − p

−p(− 1
2 ) + p

=
1
2a1 + 1

6a2 + 1
8a3 + 1

20a4

1
2a1 −

1
6a2 + 1

8a3 −
1
20a4

= 1 +
2
3a2 + 1

5a4

a1 −
1
3a2 + 1

4a3 −
1
10a4

= 1 +
2

3

a2 + 3
10a4

a1 −
1
3a2 + 1

4a3 −
1
10a4

.
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We now discuss this in several cases.

Case 1. If a2 + 3
10a4 = 0, then

∣∣∣∣
p( 1

2 )−p

p(− 1
2 )−p

∣∣∣∣ = 1 < 7.

Case 2. If a2 + 3
10a4 < 0, then

∣∣∣∣
p( 1

2 )−p

p(− 1
2 )−p

∣∣∣∣ = 1 + 2
3

1
a1+ 1

4
a3

a2+ 3
10

a4

− 1
3

. Since p(x) is

increasing,

1

2
a1 +

1

6
a2 +

1

8
a3 +

1

20
a4 = p

(
1

2

)
− p ≥ 0,

=⇒
1

2
(a1 +

1

4
a3) +

1

6
(a2 +

3

10
a4) ≥ 0,

=⇒
a1 + 1

4a3

a2 + 3
10a4

≤ −
1

3
,

=⇒

∣∣∣∣∣
p

(
1
2

)
− p

p
(
− 1

2

)
− p

∣∣∣∣∣ < 1.

Case 3. If a2 + 3
10a4 > 0, then

∣∣∣∣∣
p

(
1
2

)
− p

p
(
− 1

2

)
− p

∣∣∣∣∣ = 1 +
2

3

1
a1+ 1

4
a3

a2+
3
10

a4
− 1

3

.

For any u, v ∈ [− 1
2 , 1

2 ], we have

p′(u) = a1 + 2ua2 + 3u2a3 + 4u3a4 ≥ 0,

p′(v) = a1 + 2va2 + 3v2a3 + 4v3a4 ≥ 0,

=⇒ p′(u) + p′(v) = 2a1 + 2(u + v)a2 + 3(u2 + v2)a3 + 4(u3 + v3)a4 ≥ 0,

=⇒ 2(a1 +
3

2
(u2 + v2)a3) + 2(u + v)(a2 + 2(u2 + v2 − uv)a4) ≥ 0,(A.2)

We would like to find u, v ∈ [− 1
2 , 1

2 ] satisfying

{
3
2 (u2 + v2) = 1

4
2(u2 + v2 − uv) = 3

10

.

Solving this linear system, we obtain u = − 1
2

(√
1
5 +

√
2
15

)
and v = − 1

2

(√
1
5 −

√
2
15

)
,

which are apparently within [− 1
2 , 1

2 ]. Plugging these values into (A.2), we obtain

2

(
a1 +

1

4
a3

)
− 2

√
1

5

(
a2 +

3

10
a4

)
≥ 0,

=⇒
a1 + 1

4a3

a2 + 3
10a4

≥

√
1

5
,

=⇒

∣∣∣∣∣
p

(
1
2

)
− p

p
(
− 1

2

)
− p

∣∣∣∣∣ ≤ 1 +
2

3

1√
1
5 − 1

3

≈ 6.85 < 7.

Remark A.1. The result of this lemma also holds for polynomials of higher
degree. We refer to Lemma 2.4. in [16] for the existence proof of the constant C. The
proof in [16] does not however provide an explicit value of C.
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