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POSITIVITY-PRESERVING HIGH ORDER FINITE DIFFERENCE
WENO SCHEMES FOR COMPRESSIBLE NAVIER-STOKES
EQUATIONS*

CHUAN FANT, XIANGXIONG ZHANG!, AND JIANXIAN QIUS

Abstract. In this paper, we construct a high order weighted essentially non-oscillatory (WENO)
finite difference discretization for compressible Navier-Stokes (NS) equations, which is rendered
positivity-preserving of density and internal energy by a positivity-preserving flux splitting and a
scaling positivity-preserving limiter. The novelty of this paper is WENO reconstruction performed
on variables from a positivity-preserving convection diffusion flux splitting, which is different from
conventional WENO schemes solving compressible NS equations. The core advantages of our pro-
posed method are robustness and efficiency, which especially are suitable for solving tough demanding
problems of both compressible Euler and NS equation including low density and low pressure flow
regime. Moreover, in terms of computational cost, it is more efficient and easier to implement and ex-
tend to multi-dimensional problems than the positivity-preserving high order discontinuous Galerkin
schemes and finite volume WENO scheme for solving compressible NS equations on rectangle domain.
Benchmark tests demonstrate that the proposed positivity-preserving WENO schemes are high order
accuracy, efficient and robust without excessive artificial viscosity for demanding problems involving
with low density, low pressure, and fine structure.

Key words. WENO, finite difference, positivity-preserving, compressible Navier-Stokes equa-
tions, high order accuracy

AMS subject classifications. 65M06, 7T6N06

1. Introduction.

1.1. Motivation of preserving positivity. The compressible NS equations are
the most popular continuum model equations in gas dynamics. The system without
external forces in conservative form can be written as

(1.1) U;+V-F*=V.F

where U = (p, pu, E)T are the conservative variables, p is the density, u = (u,v,w)
denote the velocity, the total energy E = pe + 1p|lul|* with e denoting the interal
energy. The fluxes are are the advection flux F¢ = (pu, pu ® u + pl, (E + p)U)T and
the diffusion flux F? = (0,7,u- 7 — q)7, in which p is the pressure and I is the unit
tensor, T is the stress tensor and q is the heat flux. The relations between conserved
variables U and pressure p are given by equations of state (EOS). For a calorically
ideal gas one has p = (v — 1)pe where v = 1.4 can be taken for air.

The positivity of density p and pressure p (or internal energy e) is often desired
for numerical schemes solving compressible Euler and NS equations. Of course it is
needed for numerical solutions to be physical meaningful. More importantly, it is
crucial to preserve positivity for the sake of nonlinear stability. In practice, emer-
gence of negative density or pressure often results in blow-ups of computation. With
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2 C. FAN, X. ZHANG AND J. QIU

negative density or pressure, the linearized compressible Euler equations are no longer
hyperbolic thus the initial value problem of linearized system is already ill-posed. A
conservative positivity-preserving Eulerian scheme on fixed meshes is L' stable for p
and E, thus quite robust [28].

For the sake of robustness of schemes, we are interested in conservative schemes
preserving the positivity. Define the internal energy function pe(U) = E — $p||u/?
and the set of admissible states as

p
(1.2) G=SU=1| pu | :p>0, pe(U)>0
E

We only consider an EOS satisfying p > 0 < e > 0, e.g., the ideal gas EOS, so
positivity of e is equivalent to positivity of p. For other equations of state such as
Jones-Wilkins-Lee EOS [6], (1.2) on longer ensures positive pressure. Nonetheless, it
suffices to preserve positivity of p and e for the sake of robustness. Moreover, G in
(1.2) is always a convex set for any EOS since pe(U) is a concave function for p > 0
and satisfies the Jensen’s inequality VU1, Uy € G, VA1, A2 >0, A1 + Ao =1,

(13) pe(/\1U1 + /\QUQ) Z Alpe(Ul) + )\QPG(UQ).

1.2. WENO schemes for gas dynamics. Weighted essentially non-oscillatory
(WENO) method [18] is a very successful high order accurate reconstruction method.
The finite difference WENO scheme by Jiang and Shu in [15], which will be re-
ferred as WENO-JS scheme, and its variants are among the most popluar high order
schemes for hyperbolic problems such as gas dynamics applications [25]. In prac-
tice, the WENO-JS scheme provides stable numerical solutions for most problems of
compressible Euler equations. On the other hand, for demanding problems involving
extremely low density and pressure such as simulating astrophysical jets, the WENO
method and the WENO-JS scheme may not be robust enough [25].

For stabilizing high order accurate schemes for demanding problems, a systematic
method of designing bound-preserving or positivity-preserving limiters based on in-
trinsic properties in high order finite volume and discontinuous Galerkin (DG) meth-
ods were developed by Zhang and Shu in [30-33,35]. The Zhang-Shu method can
be easily applied to finite volume WENO schemes. For the finite difference WENO
scheme, the Zhang-Shu method can be extended through a special implementation
for compressible Euler equations [34].

For rendering the finite difference WENO scheme positivity-preserving for com-
pressible Euler equations, there are many other methods, e.g., [11,14,22,27]. All
these methods are heavily dependent on first-order positivity-preserving schemes for
compressible Euler equations, including the exact Godunov scheme, flux vector split-
ting scheme [9], Lax-Friedrich schemes [21,31], HLLE schemes [2,4] and gas-kinetic
schemes [26]. It is not straightforward at all to generalize these methods to compress-
ible NS equations, since there are no standard low order positivity-preserving schemes
for the NS diffusion operator, which is the key difficulty for designing positivity-
preserving schemes for compressible NS equations.

For approximating diffusion operators, the robustness of WENO methods can
be much improved by avoiding negative linear weights in reconstruction [19, 20, 24].
However, these WENO methods are still not robust for demanding gas dynamics tests,
e.g., the positivity of density and pressure is not preserved. Without any positivity
treatment, WENO schemes might not be stable for the low density and low pressure
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PP FD WENO SCHEMES FOR COMPRESSIBLE NS EQUATIONS 3

problems such as high Mach number astrophysical jets. Thus, it is necessary to enforce
positivity in WENO schemes for the sake of robustness.

1.3. Objective and related work. The objective in this paper is to design
a conservative positivity-preserving high order accurate scheme for solving (1.1) in
the finite difference framework. The Zhang-Shu method [31] can be generalized
to positivity-preserving discontinuous Galerkin schemes solving the compressible NS
equations [28], in which the key ingredient is a positivity-preserving nonlinear diffusion
flux. Such a flux can also be used for constructing high order positivity-preserving
finite volume methods [5]. In this paper, we construct a high order accurate positivity-
preserving finite difference WENO scheme by applying the same positivity-preserving
nonlinear diffusion flux in the WENO implementation.

We emphasize that it is quite straightforward to construct a positivity-preserving
finite difference scheme for NS equations in one dimension, see the appendix in [28].
The main difficulty of designing positivity-preserving finite difference schemes lies in
the multiple dimensional stress tensor. In this paper, the positivity of one-dimensional
scheme can be easily extended to two dimensions due its construction.

There are also other positivity-preserving menthods for compressible NS equations
[8,10], but extensions of these methods to high order finite difference schemes seem
difficult. A nonconvential WENO finite volume method can preserve bounds for scalar
convection diffusion [29] but it is still nontrivial to generalize it to compressible NS
equations.

1.4. Contributions and organization of the paper. In this paper, we con-
struct positivity-preserving high order finite difference WENO schemes for solving
compressible NS equations. The key step is to reconstruct variables from a positivity-
preserving convection diffusion flux splitting, which is different from conventional
WENO schemes for diffusion terms. Compared to the positivity-preserving high or-
der accurate DG schemes in [28] and finite volume WENO schemes in [5] for solving
compressible NS equations, the positivity-preserving finite difference WENO schemes
are more efficient and easier to implement, thanks to smaller memory cost compared
to DG schemes, and lower computational cost than DG and finite volume schemes,
especially for multi-dimensional problems.

It is an extension of the positivity-preserving finite difference WENO scheme
for compressible Euler equations in [34] to the compressible NS equations. When the
Navier-Stokes equations reduce to Euler equations, i.e., F¢ = 0, the scheme in this pa-
per will reduce to exactly the same scheme in [34]. However, the positivity-preserving
diffusion flux splitting used in this paper is a nonlinear flux and its analytical proper-
ties such as artificial viscosity are not as well understood as the classical Lax-Friedrichs
flux splitting used for compressible Euler equations in [34]. On the other hand, unlike
the linear DG methods, the WENO reconstruction is a nonlinear operator thus using a
nonlinear flux splitting seems more suitable in WENO schemes. Moreover, numerical
tests on the classical WENO-JS schemes and a less diffusive scheme WENO-ZQ [36]
suggest that the nonlinear diffusion positivity-preserving flux splitting can improve
robustness significantly without inducing excessive artificial viscosity.

The organization of the paper is as follows. In Section 2, we review the basic
idea of the finite difference WENO scheme and review the positivity-preserving high
order finite volume scheme for compressible NS equations. In Section 3, we construct
the positivity-preserving high order finite difference WENO schemes for compressible
NS equations. A similar alternative positivity-preserving high order finite difference
WENO scheme is discussed in Section 4. In Section 5, we consider a few benchmark
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4 C. FAN, X. ZHANG AND J. QIU

tests for validating the performance. Concluding remarks are given in Section 6.

2. Preliminaries. In this section, we first review the high order finite differ-
ence WENO scheme for scalar conservation laws [15], which can be regarded as a
formal finite volume scheme for an auxiliary function. Then we review the high order
positivity-preserving finite volume scheme for compressible NS equations [28]. These
methods will be used for constructing a positivity-preserving finite difference scheme
in Section 3.

2.1. The finite difference WENO scheme for scalar conservation laws.
Consider the one-dimension scalar hyperbolic conservation law

(2.1) ut + f(u)y = 0.

Given a uniform grid z; with spacing Az, we define cells I; = [xl-_%,xH%] where
Tipl = x;E $Az. Let u;(t) be the numerical approximation to the exact solution
u(x,t) at x;. A conservative semi-discrete scheme for (2.1) is given by

(22) )

);

N
N

where fl +1 is the numerical flux, but not as a high order approximation of the flux
f(u) at x;, 1. Assume there exists an auxiliary function h(z, ) satisfying

1 z+Ax/2
(2.3) Fluta, 1)) = A / o, Mt e

By (2.3), f(u(z;,t)) is the cell average of h(z,t) and

(2.4) Pl e = 3= [, 0) — by, 1)

Thus if the numerical flux fi+% is a (2r+1)th order approximation to h; 1 = h(z;; 1),
then ﬁ(ﬂ#% - fifé) is a (2r + 1)th order approximation to f(u(z;))., which is the
point of view for the high order conservative finite difference scheme in [15]. Let
hi(t) = == [ ffﬁ;/; h(n,t)dn, then by the interpretation above, the finite difference
scheme (2.2) is also a formal finite volume scheme for the function h(z,t):

dhi(t) 1 . s
at _E(f“’% - fi—%)'

For stability, the upwind biasing is usually used by splitting the flux f(u) into
two parts: f(u) = fT(u) + f~(u) with %{EU) > 0 and df;iéu) < 0. A simple Lax-

Friedrichs splitting is applied as f*(u) = 1 (f(u) + au) with o = max, | f’(u)|, where

the maximum can be taken globally or locally in the stencil of the WENO scheme.
Assume there exist two functions hy (x) depending on the mesh size Az, such that

Ll fwY ! /M” ’
2.5 — + —— ) = = — h dn.
(25) s (e I) = = 55 [ et
For convenience, we introduce the operator Ra, as

hy = Raz(2%),h_ = Ras(27) or 2zt =RxL(hy), 27 = RL(h).

This manuscript is for review purposes only.
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PP FD WENO SCHEMES FOR COMPRESSIBLE NS EQUATIONS 5

Notice that the flux f = a(zt — 27) and z* d % >0, thus it is

equivalent to fi by 27 =aft and 27 = —af".

Given cell averages of h (), i.e., point values z* (u(z;)) = % (uz + %), one can
use the WENO reconstruction to obtain high order approximation to h (x; +1 ), which

are denoted as 2% | . Finally, the numerical flux is computed as f 1= = a2 1 L =2 ).
2

i 1-
2.2. A positivity-preserving high order finite volume scheme. The di-
mensionless compressible Navier-Stokes equations for ideal gas in one dimension are

(2.6) U, + F4(U), = F4(U,8),
with the flux function F(U,S) = F*(U) — F4(U, S) and

p pU 1 0
S=U,U=| pu | ,FY(U)=| pu®>+p ,Fd(U,S):R— T ,
E (E+p)u e\ ur+gq

where 7 = nu, is shear stress tensor, ¢ is the heat flux given by g-e, and Re is the
Reynolds number. The equation of state for ideal gas is p = (y — 1)pe.

By the method in [28,32], a positivity- preservmg high order finite volume scheme
for (2.6) can be constructed as follows. Let U, denote the approximation to the cell

average of the exact solution U(z,t) on the cell Ii = [;_1, 2, 1] at time level n. A
finite volume scheme with forward Euler time discretization can be written as
(2.7)
SRR § (L T DR S st.)-FU., s ., U, s’

7 AZ'I: ( i+%’ i+17 +1; 1_,'_2) ( i— 1; 17 17 ):|
with a positivity-preserving flux defined by
(2.8)

- - +ogt o1 - - + gt + -
F (U850 .85, ) =5 [F(Ur,85, ) +F (U085, ) — By (U5, - U5,

where 3; 1 is defined as

29 B> may | S+ 257l — o+ ol
i+1 il
Assume a vector of polynomials of degree k, P;(z) = (pi(a:)7mi(x),Ei(ai)T, is a

(k + 1)-th order accurate approximation to U(z,t) in I; and satisfies that U, is the
cell average of P;(x) on I;, and U+ L= = Pi(z;_1), = Pl( z;y1). Denote the

it3
N-point Legendre Gauss-Lobatto pomts on I; as {z¢ : a = WwN} = {xz_; =
b7,z N = 1} with normalized quadrature welghts We on the interval

N
[—2,1] such that > @, = 1. The N-point Gauss-Lobatto quadrature is exact for

a=1
integrating polynomials of degree 2N — 3. Thus if 2N — 3 > k,

N—-1
—n 1 N
(2.10) U =5 /I P;(z)dx = ;waPl () + @ U, +onU;,
By the mean value theorem, there exist some points z},z2, 27 in cell I; such that
(2.11)

N-1 ~ s U, -5, U7, —o5UT
3\ T (,PZ(:Z?) i 1%, 1 NV, 41
P = (pz( ) mz(zf),Ez(gjf)) — Z il ol T A i S
a:21—w1—wN 1—0W0; — N
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6 C. FAN, X. ZHANG AND J. QIU

In [28], it has been proven that U

for ﬁﬁﬂ

for enforcing Ut

il,P;‘ € G for all 7 is a sufficient condition

edqd under some suitable CFL condition. A high order accurate limiter

P ,P7 € G can be used to render the base finite volume scheme

positivity-preserving, e.g., [5]. Positivity for high order time discretizations can be
achieved by using a strong stability-preserving (SSP) Runge-Kutta method, which is
a convex combination of forward Euler steps thus positivity in forward Euler carries
over.

3. A positivity-preserving high order finite difference WENO scheme.
In this section, we propose a positivity-preserving high order finite difference WENO
scheme for solving dimensionless compressible Navier-Stokes equations by interpreting
the high order finite difference scheme as a formal high order finite volume scheme, for
which a sufficient condition of positive-preserving is obtained and a scaling positivity-
preserving limiter can be applied. We first consider forward Euler time discretization
and high order time discretizations will be discussed in Section 3.5. When the Navier-
Stokes equations reduce to Euler equations, the scheme in this section will reduce
to exactly the positivity-preserving finite difference WENO scheme for compressible
Euler equations in [34].

3.1. The one-dimensional WENO scheme. For 1D compressible NS equa-
tions, consider the following conservative finite difference scheme:
At~ =

(3.1) UMt —ur - —(F,,, - F

Ay Fitd );

j— L
=3

2

where ﬁw% is the numerical flux so that ﬁ(ﬁwl — 1?‘1-7%) is a high order approxi-
mation to F(U,S),, at x = x;,t = t".

For a (2r 4 1)-th order finite difference WENO scheme, given point values U}
at time level n, we first compute S by a (2r + 1)-th order finite difference WENO
approximation to first order derlvatlves like in (2.3), (2.4) as described in Section 2.1.

Then for computing FZ L1 at a given fixed index i +1 3, we take a positivity-

preserving flux splitting to splitted variables in a local stencﬂ

(3.2) zi’;’j— (UgtW),jir,...,HrH,

where

(3.3) Bipy > max [u| + ﬁ(\/p2q2+2p26‘7—p‘2+p|q|)

and the maximum is taken locally over the WENO reconstruction stencil {i—r,--- i+

r+1}. For example, in a fifth order WENO reconstruction, the stencil for computing
ﬁH% is {i —2,i—1,4,i+1,i+2,i+3}.

We emphasize that §; 41 has no specific physical meaning, which is the main
difference from a Lax-Friedrichs flux splitting for compressible Euler equations in [34].
Let A;, 1 denote the Roe matrix of the two states Uj" and U, ;, and L, 1 and Ri+%
denote the left and right eigenvector matrices of Al 41 ie., A= LAR, “Wwhere A is
the diagonal matrix with eigenvalues of A on the dlagonal For each fixed z; ir1 at
time level n, the numerical flux Fi +1 can be computed as follows via a characteristic
WENO reconstruction.
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1.DﬁmeHim%::RAAzi%%Le

(3-4) Zilﬂﬂxhs@ﬂ)—l/w+AW2H&' 1 (n)dn
3 Az z—Az/2 e ’

where Zi% (U(z),S(z)) = 1 <U + Fﬁ(UIS)> Then we have the cell averages

L+2

=+, . . .
(Hi)?+%,j = Zi+7;j7 j=i—r e i4r+1.
2. Transform the cell averages (Hi)?+ 1 from physical space to the local char-
b
acteristic space by

=Ly (Ho)fys 5 j=i—r-itr+l.

3. Perform the WENO reconstruction for each component of (T_F)?Jr 1 to obtain
3
approximations of the point value of the function L, 1 H, | 1at Ty, denoted by
(T+)il, where the superscipts + and — denote approximations from the right and
2

from the left respectively. Perform the WENO reconstruction for each component of

(ﬁ);@r%’j to obtain approximations of the point value of the function Li+%H7’i+%
+
at x;, 1, denoted by (T,)H%

4. Transform back into physical space by

(H+)i_+% = Ri+%(T+)i_+%7 (H—);:% = Ri—i—%(T—);:,l'

2

5. Obtain the numerical flux by
(3.5) Fii1= /BH-%[(H-F);L% - (H—)j+%]~

3.2. Sufficient conditions for positivity. Next, we will derive a sufficient
condition for the scheme (3.1) to keep UPT' € Gif Ur € G. s

For a fixed 4, we have U} = (H4)? , . +(H_)", = H)? ,  +H)" ,

? i+5, it+5, t— 5,0 1= 35,0

from (3.2). Plugging it into (3.5) and (3.1), we can get

At~

n+1 n o
(3.6) Ut =up - E(FH—% —F,_1)=H; +H
with
1 — 1 — At _ At "
(3.7) Hy= §(H+)i+%,i + §(H,)i+%’i - Txﬁi+%(H+)i+% + Ixﬂwé(Hf)H%a
1 1 At At N
(38) Hp= §(H+)i_%,i + §(H—)i_%7i + Eﬁi—%(H-i-)i_% - Eﬁi—%(H—)i_%'
It suffices to discuss conditions to keep Hi,Hy € G. If given U} € G at time
level n, then (Hy)?, | ;= Ziz ;= L(ur+ ﬂ;rllF(U?, S?)) € G, which was proved
25 25 2

in Lemma 6 of [28]. We first discuss H; in equation (3.7).
By interpolation [30], there exists a vector of polynomials of degree k = 2r,
denoted P (z), satisfying

This manuscript is for review purposes only.
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8 C. FAN, X. ZHANG AND J. QIU

1. the cell average of P (x) on the inverval I; is (H,)"

2 P (i) = (Ho),
3. P (z)isa (2r+1)-th order accurate approximation to the function H, ;i 1(2)

H—l i’

on the interval I; if H+7i+%(x) is smooth.

Recall that we have reviewed quadrature in Section 2.2. Let N = [QT; 37, ie.,
N is the smallest integer s.t. N > 27"—;'37 then the exactness of the Gauss-Lobatto

quadrature rule implies

1
(H+)1+27l A.’E / dl‘ = ZOJQP+ (1 — WN)P+7 +wN(H+) i+3
where
= 1
o + ,\a _ T \» - -
Pi - (1221 z 1 — CAUN [(HJF)H-%,Z‘ wN(HJr)i_;'_%]'

We have

1—A +,% w A
H, :%(H ) QWNP@' +(TN_ t i+3 )(H-l—)H_l +A$61+ (H—);:_%
So under the CFL condition ££5,,1 < @y, if U}, P, (Hi), s (H_);.:% €Gq,

then we have H; € G because it is a convex combination of four vectors in G.
Similarly, discussion for Hy in equation (3.8). By interpolation [30], there exists

a vector of polynomials of degree k = 2r, denoted P; (), satisfying

1. the cell average of P; () on the inverval [; is (H_)" , ;

3
2. PI(%—%) = (Hf):r_?
3. P; (z)isa (2r+1)-th order accurate approximation to the function H_ ;1 (z)
on the interval J; if H_ ; 1 (x) is smooth.

The quadrature rule implies

N
()= 3y | Prr = 32 00PT(69) =1+ (=00,
where
P LS o) - (), — B ]
v 1—w1a:2 A — W 1=t i—3
We have
Hy = Y, + 58P+ (3 - A48 )(H )7, + 446, ()],

So under the CFL condition %BF% < i, if UL P, (H,):r_%(H+ -
then Hy € G because it is a convex combination of four vectors in G.

Notice that @; = Oy = m By above discussion, we have the following main

result.

This manuscript is for review purposes only.
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THEOREM 3.1. The (2r+1)-th order accurate finite difference WENO scheme
(3.1) and (3.5) is positivity-preserving, i.e., Ul € G = U?H e G, if

(39) P:_7*7 (H+>:+%7 (H*);:_%7Pi_,*7 (H*>:r_%7 (H“F);;'_% S G? V’L

under the CFL condition
At 1

3.10 h— I —

(3.10) Ap PPy S onN Ty

where N = [2733] and

+ox Hi"r)?_;,_l P @N(H"r)i__i_l _ ok (E)?_l i a1 (H—)?__l

(311) Pi7 = 2 — 2)Pi7 — 27 _ 2-

1—WN 1—0w;

REMARK 3.1. The polynomials Pli(x) are needed only for deriving sufficient con-
ditions for positivity, but they are not needed and never used in the implementation.

REMARK 3.2. The sufficient condition in Theorem 3.1 is an intrinsic property of
any finite difference scheme interpreted as a finite volume scheme for an auxiliary
variable. On the other hand, we emphasize that Theorem 3.1 is a weak positivity
result, i.e., the scheme (3.1) and (3.5) is not positivity-preserving unless (3.9) is
enforced by additional limiters. Moreover, the CFL (3.10) is only sufficient but not
always mecessary for positivity. For a smooth solution the CFL (3.10) reduces to
At = O(Ax), which does not satisfy the linear stability CFL At = O(ReAx?) in an
explicit scheme for a convection diffusion problem [28]. In practice, At = O(ReAx?)
should be always obeyed in the WENQO scheme, and (3.10) should be enforced only
when positivity is lost. See Section 3.5 for details.

3.3. A high order accurate positivity-preserving limiter. To enforce the
condition (3.9) in Theorem 3.1, we can simply use the limiter in [34], which is essen-
tially the same as applying the high order accurate positivity-preserving limiter in [28]
to two formal finite volume schemes (3.7) and (3.8). For simplicity, let (H7+)?+%’i =

By, E)T, (HY) -, = (p,m_ ., E7.,)T and P = (p*,m*, Ef,)T. The
A i+3 i+3 i+4 i+ i ] i [
following limiter procedures can enforce the condition (3.9) in Theorem 3.1.

For a fixed index 7 + %, we apply the following limiter:
Step 1. Setup a small positivity number ¢ as a desired lower bound for density

and internal energy, e.g., ¢ = min {10_137 p <(H+)?+l z) }
3
Step 2. For each cell I; = [mifé,xﬂr%], we first modify density by

o Ve il PimE
(312) pH»% - op (pH»% - pz) + Pis 0[) = min {17 ﬁz — Pmin } )
where p,, = min {pi__i_%,p;‘}. Then denote (H+)i_+% = (ﬁ;%,mi__i_%,E;_%)T and
D +,* 1 ~ =3 _
Pl = o [, —on(EL), |-
~ ~ R —2
Step 3. For convenience, let q; = (H+)¢_+%’ qo = Pj'* Define pe;, = E; — %T;;

For k = 1,2, compute

pe;—¢ ; a
o [ 0 <
: 1, if pe(ar) >¢
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Then we modify the internal energy by

(813)  (H), =00 ()5, — ED2 ) + )Ly, 0 = min{tl,i2).

Similarly, we can get the revised point value (H—):rl' Finally, we have the
2
modified WENO flux with
(3.14) Fiy =0 ((Hy);, — (HO)S L

By Theorem 3.1, the modified scheme (3.1) and (3.14) is positivity-preserving.

This limiter is high order accurate for smooth solutions without vacuum in the
following asymptotic sense. Assume the exact smooth solution U(z,t) has a uniform
lower bound in density and internal energy, i.e.,

x,t

min p(U(z,t)) =a > O,mitnpe(U(x,t)) =b>0.

By Lemma 6 in [28], with suitable Biy1, we have ZjE 1 € G. If Az is small enough,

H. ;,1 defined in (3.4) satisfies Hy ;.1 € G. Notlce that the limiter (3.12) and
(3.13) is the exactly the same type of limiter for finite volume scheme (3.7) as in [28].
Based the same arguments in [28], if regarding it as a limiter applied to polynomials
approximating the auxiliary function H, ;| 1 it is straightforward to show that the
scaling positivity-preserving limiter will not destroy the high order accuracy of the
finite difference WENO schemes for smooth solutions without vacuum regions when
Az is small, see also [34].

3.4. Two-dimensional case. Consider the dimensionless form of compressible
dimensionless Navier-Stokes equations

(3.15) U, +V - F*=V.F%

where U = (p, pu, E)T are the conservative variables, p is the density, u = (u,v), u
and v denote the velocity in x and y direction respectively, F is the total energy, the
flux function F* and F? are respect to advection and diffusion fluxes

pu 0
(3.16) F=| puu+pl |, Fi= T ,
(E+p)u u-7—gq

where I is the unit tensor, the shear stress tensor and heat diffusion flux are

1 1
(3.17) T=— ( Tex Tay ) , q= flr(ex,ey)T

Re Tyz Tyy

with 7, = %uz — %’Uy, Toy = Tyz = Uy + Vg, Tyy = %vy — %um The total energy is
E = % + 3pu? + Zpv? and EOS is p = (7 — 1)pe, where p is the pressure and e is
the internal energy. Denote S = VU. We can regard F® — F? as a single flux and
formally treat V - (F® — F?) as a convection by combining the advection flux F¢ and

diffusion flux F?, then (3.15) can be written as

(3.18) U, +F(U,S), + G(U,S), =0
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with
ou
2 _ 1
F(U, S) _ pu”+p lReTxx
pUY — 3Ty
(E+pu— = e (Twatl + Tyav + 52)
pv
1
puv — =Ty
G(U,S) = Re Y
( ) /)U +p F%87'3”, .
(E+pv— (Twy“ + Tyyv + ’YP: ) |
Consider a uniform grid with nodes (x;, y]-). A conservative WENO finite difference
with forward Euler discretization can be written as

. . At o - At
(3.19) Uij+1 U (Fi—&-%,j_Fi—%,j)_Iy(

We use the same positivity-preserving flux splitting,

T Yy
/31+27] ﬁi,j-&-%
(3.21)
7, > max [|u i+ 55 (a2 my— P+ la n1>],
(3.22)

1 2 2
0y > ma el + 5 (0 maf 2 [ ma = pmal 4 pla- e

where the maximum is taken locally over the corresponding WENO stencils and n; =
(1,0)7,ny = (0,1)T. According to the Lemma 6 in [28], it is easy to check that
Zlﬁ J(U S), ijJr%(U,S) € G if U € G. The numerical flux fH%J and (A}LH% in
(3. 19) can be obtained by the dimension-by-dimension reconstruction in exactly the
same way of one-dimensional WENO approximation. For the property of positivity-
preserving in (3.19), we rewrite the scheme as U”+1 iF 4+ 1G with

At [/~ ~ " At /-~ ~
ae (Feps—Foyy) 6=Up 20 (G -Gy

If F,G € G, then UZTH € G. Notice that (3.23) are two formal one-dimensional
schemes, thus Theorem 3.1 applies to both F and G. So it is straightforward to extend
the one-dimension positivity-preserving results and the limiter to two-dimensions.

(3.23) F=UY —

3.5. High order time discretizations and implementation details. (3.10)

For high order time discretizations, we can use any high order strong stability-
preserving (SSP) Runge-Kutta method, which is a convex combination of forward
Euler steps, thus all discussion about positivity for forward Euler still holds due to
convex combinations since the set G is convex. In numerical tests, we use the third
order SSP Runge-Kutta method. For solving 7 4 U = L(U), it can be written as

Ul = U? + AtL(Up),

3 1

(3.24) U = Ut 4(U§1)+Atﬁ(U§1))),
2

Ut = 3U” S(U U + Aatc(ui?y).
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Algorithm 3.1 Implementation of the time discretization

Input: point values U} € G for i=1,- .-, N,, where NNV, is number of grid-point.
Output: point values U} € G for i=1,--- , N,.

1: Step I Compute the wave speed «; = |u;| + 1/%. Let o = max; |oy;|. Set

up time step At = min{aﬁf,bReAwQ} with the two parameters a = 0.6 and
b =0.001;
Step II Compute UY) = U + AtL(UT),i=1,--- ,N,.

2:

3. if U € G then jjjji;

4: Proceed to next Step III; jjii

5: elsejjjjii

6: Setup time step At = % and restart the computation.

7: Step III Compute UEQ) = %U? + i(Uz(»l) + Atﬁ(Ugl))),i =1, , Ny
8 if U € G then jjjji

9: proceed to next step Step IV jj

10: elsejjjiii

11: Setup time step At = %, return to Step II and restart the computation.
12: Step IV Compute U;"H = %U? + %(UEQ) + AtE(UE2))),i =1, Ny

13: if UEI) € G then jjjj

14: iiiiThe computation to step n + 1 is done; jjjj

15: elsejjiiii

16: Setup time step At = %, return to Step II and restart the computation.
17: return

The time step should not be set as the CFL (3.10) because it gives At = O(Ax)
for smooth solutions which is inconsistent with linear stability constraints At =
O(ReAx?). For a solution with shocks but far away from vacuum, the CFL (3.10) is
much stringent than a necessary time step for positivity in WENO schemes. So for
the sake of efficiency, (3.10) should not always be enforced either. To this end, (3.10)
should be enforced only when positivity is lost, and we can use the same simple time
marching strategy in [28]. The positivity-preserving limiter should be used for each
stage in (3.24). The positivity-preserving high order finite difference WENO schemes
with the third order SSP Runge-Kutta (3.24) for equation (3.1) is implemented as in
the Algorithm 3.1.

REMARK 3.3. Obviously one can use the Algorithm 3.1. for any finite difference
scheme, but the restarting might result in an infinite loop. Even though the CFL (3.10)
is never used directly in the Algorithm 3.1, Theorem 3.1 ensures that it will not be
an infinite loop in the positivity-preserving scheme since the restarting will end when
(3.10) s satisfied for each forward Euler step.

REMARK 3.4. Theorem 3.1 will hold for any method computing point values of
derivatives S = VU. But Theorem 3.1 is only about positivity and a positivity-
preserving scheme can still be oscillatory [28]. In our numerical tests, we find that
a high order linear approzimation for approximating derivatives u, and e, can result
in oscillations. Instead, given point values of U, we use high order WENO finite dif-
ference approximation to find point values of S = VU. After derivatives of conserved
variables p,m, E are obtained, derivatives of u and e can be computed by product and
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pmmp—gmpx

4. An alternative positivity-preserving finite difference WENO scheme.|j
In Section 3, we have constructed a WENO scheme solving compressible NS equations
by combing the advection flux F® and the diffusion flux F¢ in the WENO reconstruc-
tion. However, in practice one might prefer not to regard F® — F¢ as a single flux. For
instance, if a positivity-preserving WENO scheme for compressible Euler equations
such as [34] is already available, then one might prefer a positivity-preserving WENO
scheme for directly approximating the diffusion flux F%. In this section, we describe
such a positivity-preserving WENO scheme based on existing Euler solvers in [34].

For simplicity, we only discuss sufficient conditions for positivity in forward Euler
time discretization in one dimension. The extension to two dimensions is straight-
forward since the finite difference scheme is defined in the dimension-by-dimension
fashion, as shown in Section 3. Discussion for the positivity-preserving limiter, high
order time discretizations and implementation are the same as in Section 3. The same
notation in Section 3 will be used.

quotient rules, e.g., u = % = Uy =

4.1. One-dimensional scheme. Consider the following finite difference scheme

At~ ~ At~ ~
n+1 __ n __ a _ Ja d _ 4
(4.1) U™ =1U; —AI(FH% Fi_%) + A;z:(F”% Fi_%).
For the advection flux F¢, we use the same Lax-Friedrichs flux splitting in [34],
1 F*(U
(4.2) Z4H(U) = S U+ %)

with @ = max ||(Ju| + ¢)||, u and ¢ are the velocity and speed of sound of the state
U?, the maximum is taken either globally or locally over the U} in the WENO
reconstruction stencil. For simplicity, we take the maximum globally over the U7.
For the diffusion flux F¢, we use the following local flux splitting. For a (2r + 1)-th
order WENO scheme, at a fixed index ¢ + %, define

Fi(Un, S?
(4.3) ijé)j—;(U”:F(Hijréj))aj—ir,m,ierJrl,

where
1
(4.4) Rip1 > max %( p2q% + 2p2e|T|2 + plq|)

and the maximum is taken locally over the the WENO reconstruction stencil {i —

ry-+-,i+r+ 1}. The advection flux 1'/;;,11 can be computed exactly the same as

in [34]. We emphasize that signs in (423) must be flipped for the correct
upwinding bias, i.e., ZT = (U - F¥/k) and Z%~ = (U + F/k).

At each fixed ;. 1 the diffusion flux f‘f L ds computed as follows.
2

1. Let Hi,i 41 = RAx(ij:%), we can obtain the cell averages at time level n
TTd d+ . )
(Hi)?+%7.jzzi+%7j’ j=i—mreitrt L

2. Transform the cell averages (Hi‘i)fJr 1 from the physical space to the local
ol

characteristic space of the Roe matrix by
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3. Perform the (2r 4+ 1)-th order WENO reconstruction for each component of
(T+)l+1 to construct nodal values of L, +1H , at x;, 1, denoted by (T,)*

+iitg it
Perform the (2r+1)-th order WENO reconstruction for each component of (T_)”, , "
+
to construct nodal values of Li+%H7’i+% at x;, 1, denoted by (T ,)H%.

4. Transform from the local characteristic space back into the physical space by

(Hi);r% =R,y (T+) i3 (Hd) 1= Rz+ (T,):;%,

5. Obtain the numerical diffusion flux by

(4.5) F?+% = "%‘+%[(Hi);;% - (Hi);+%]~

4.2. Sufficient conditions for positivity of the diffusion flux. The scheme
(4.1) can be written as UP*! = Lurthe 4 1uith? with

la At~ . At~ -
Uz’ +1, :Un QE(F?J,-Q Fa ) U +1,d U:L_’_QE(F;{%% —F;i_%).

Except the extra scalar factor 2 in front of %, U?H’a is the finite difference WENO
scheme with forward Euler time stepping for compressible Euler equations, thus its
positivity can be discussed exactly the same as in [34]. So it suffices to only discuss

sufficient conditions for U e G.
For a fixed ¢, we have U} = (Hd )H
Thus we have

Lot ED, = @D, EDY

n At -
U’ +1d—U"+2—(F F! ,)=H, +H,

Az’ s
with
1 1 At d\— At d
H, = 2(Hd )H—i i T 2(Hd )z+2, 2E“i+%(H+)i+% + 2@’%4—%(}1—)2%,
At At
HI He =0 dy— _ o920 d
H, = (H i1t (H gt 2k () — 2 (HO)F

Notice that the structure of H; and Hs are similar to those in Section 3.3 thus the
sufficient conditions for positivity can be derived following the same lines in Section
3.3. We state the main result as the following theorem.

THEOREM 4.1. The (2r+1)-th order accurate finite difference WENO diffusion
flux in the scheme (4.1) and (4.5) is positivity-preserving, i.e., UY € G = U?Jrl’d €
G, if

Py (HL), (H)F

PO (EOE, (HY), €G, Vi

+17 +17

under the CFL condition

where N = [2r + 3] and

HI)® ,  —Gn(HD)T o
P;r’d*:( +)'L+%,1 CUN( +)z+% Pi’d*: 3,

1—-on
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5. Numerical results. We consider some representative numerical examples in
one and two dimensions for the positivity-preserving (PP) property of the finite differ-
ence (FD) WENO schemes, to demonstrate the performance. We test the positivity-
preserving approaches in Section 3 and Section 4 on three different high order WENO
schemes. We observe no significant difference for the numerical results between two
methods in Section 3 and Section 4, thus for simplicity we only show the results
computed by the method of the Section 3.

The classical fifth-order and seven-order FD WENO schemes of Jiang and Shu [15]
are referred to as the WENO-JS5 and WENO-JS7 schemes. In the literature, there
are many improvements and variants of WENO-JS schemes, and we also test one of
the variants, the simple fifth-order FD WENO scheme of Zhu and Qiu [36], referred
as the WENO-ZQ5 scheme. The linear weights of the WENO-ZQ5 schemes are set
as y1 = 0.98, 1 = 0.01, y; = 0.01 in all examples unless otherwise specified.

In these tests, one particular aspect is to validate the robustness. Without the
positivity-preserving flux and limiter in this paper, WENO-JS5, WENO-JS7 and
WENO-ZQ5 schemes will blow up for all one- and two-dimensional examples in this
section. With the additional positivity-preserving limiter, one finds by the numeri-
cal test that there don’t increase a lot of computational cost since there is very few
cells using the positivity-preserving limiter in each time step. Another aspect we
should focus on is the artificial viscosity. The WENO schemes are high order in the
sense that the errors are high order for solving smooth solutions. Near shocks, the
error of any scheme on a uniform mesh cannot be high order. However, the high
order WENO schemes are still much more advantageous for shock problems in the
sense that their numerical artificial viscosity is much lower than first and second
order accurate schemes. Inevitably, the positivity-preserving flux splitting and the
positivity-preserving limiter in Section 3 induce artificial viscosity, which must be
validated through these tests.

For computing nonlinear weight in WENO-JS schemes, the constant € to avoid
the denominator being zero can influence the accuracy and can be set as ¢ = Az? to
achieve the optimal convergence order [1]. For many shock problems on fine meshes,
simply setting e = 1071® can also reduce artificial viscosity. For all examples except
the accuracy test in this paper, the choice between ¢ = 1071 and ¢ = Az? makes
marginal difference for WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes. Thus for
simplicity, we only show results using ¢ = 1071°.

The reference solution for the accuracy test was generated by a Fourier collocation
spectral method using 1280 points and a 1280 x 1280 mesh respectively. The reference
solutions for Examples 5.2, 5.3 and 5.4. were generated by a second order PP FD
scheme discussed in the Appendix A of the literature [34] by using a fifth order PP
WENO flux for convection term and the second order central difference approximation
for diffusion term on a mesh of 6400 grid points.

EXAMPLE 5.1. (An accuracy test) We test the accuracy of positivity-preserving
FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes for one and two dimensional
compressible Navier-Stokes equations with Re = 1000. The initial condition is p =
Lu=0, E = (1071 4sin®(x))/(y — 1) on the interval [0, 27] for 1D case; p = 1,u =
v=0,FE= (10" +sin®(z +9))/(y — 1) on the rectangle domain [0, 27] x [0, 27] for
2D case. The boundary condition is periodic and final computing time 7" = 0.1. The
minimal value of exact solution energy E is 2.56 x 10719 for 1D case and 3.45 x 10710
for 2D case. For comparison, the L' errors and numerical order of accuracy by
WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes are shown in Table 5.1 and 5.2
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16 C. FAN, X. ZHANG AND J. QIU

to verify the accuracy of the convection diffusion WENO flux and the PP limiter
will not destroy the high order accuracy of the schemes. We test the accuracy test
with € = 107%° and Az2. We can observe that WENO-JS5 and WENO-ZQ5 achieve
the fifth-order accuracy with € = 107'° and Az2. WENO-JS7 has smaller L; errors
than WENO-JS5 and WENO-ZQ5, suffering certain order loss with ¢ = 107!® but
achieving optimal seven-order accuracy with ¢ = Az?2. For the accuracy test, the time
step At is set as At = min{0.6Az3,0.001ReAz2} for WENO-JS5 and WENO-ZQ5,
and At = min{O.GAx%,O.OOchAa:Q} for WENO-JS7.

TABLE 5.1
An accuracy test of the PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes for
one-dimensional compressible Navier-Stokes equations with Re=1000 and final time T = 0.1.
PP limiter: the average of the Ratio of cells using PP limiter to total cells at each time step.

Mesh  WENO-JS5(e = 1071%) WENO-JS7(e = 10719)
Llerror order PP limter Llerror order PP limter
10 4.65E-02 — 20.0% 1.94E-01 — 53.3%
20 1.08E-02 2.11 18.9% 1.10E-01 0.82 25.3%
40 1.22E-03 3.15 19.3% 1.29E-03 6.41 19.9%
80 6.19E-05 4.30 7.24% 1.02E-05 6.99 9.28%
160 1.22E-06 5.66 2.76% 6.11E-08 7.38 3.46%
320 5.96E-08 4.36 0.91% 6.78E-10 6.50 1.00%
Mesh WENO-ZQ5(e = 10~ 17)
Llerror order PP limter
10 5.90E-02 — 13.3%
20 1.15E-02 2.36 33.3%
40 1.45E-03 2.99 9.52%
80 3.75E-05 5.28 4.42%
160 1.85E-06 4.34 1.82%
320 4.93E-08 5.23 0.87%
Mesh  WENO-JS5(e = Az?) WENO-JS7(e = Az?)
Llerror order PP limter Lterror order PP limter
10 4.36E-02 — 33.3% 1.52E-01 — 46.7%
20 1.05E-02 2.05 26.1% 4.39E-02 1.79 15.6%
40 9.29E-04 3.50 9.62% 6.89E-04 5.99 22.8%
80 3.40E-05 4.77 4.81% 5.96E-06 6.85 6.19%
160 1.03E-06 5.05 3.83% 1.64E-08 8.51 2.53%
320 2.99E-08 5.10 0.20% 9.96E-11 7.36 0.88%
Mesh WENO-ZQ5(e = Az?)
Lterror order PP limter
10 3.42E-02 — 46.7%
20 1.46E-02 1.23 22.8%
40 4.75E-04 4.94 8.60%
80 1.49E-05 4.99 4.57%
160 3.28E-07 5.51 3.15%
320 8.23E-09 5.31 1.25%

EXAMPLE 5.2. (Double rarefaction problem) This problem [17] has the low pres-
sure and low density regions. The initial condition is (p,u, p,y) = (7,—1,0.2,1.4) for
z € [—1,0) and (p,u,p,v) = (7,1,0.2,1.4) for = € [0,1]. The final computing time is
T = 0.6. The left and right boundary conditions are inflow and outflow respectively.
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TABLE 5.2
An accuracy test of the PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes for two-
dimensional compressible Navier-Stokes equations with Re=1000 and final time T’ = 0.1. PP limiter:
the average of the Ratio of cells using PP limiter to total cells at each time step.

Mesh  WENO-JS5(e = 10719) WENO-JS7(e = 107 19)
Lterror order PP limter Lterror order PP limter
10 x 10 2.17E-01 — 20.2% 1.08E-01 — 26.7%
20 x 20 1.28E-02 4.08 11.7% 2.10E-02 2.37 24.2%
40 x 40 1.91E-03 2.75 14.8% 3.70E-03 2.51 10.5%
80 x 80 1.35E-04 3.83 4.97% 2.05E-05 7.50 5.00%
160 x 160 3.15E-06 5.42 2.32% 1.16E-07 7.47 2.34%
320 x 320 1.07E-07 4.88 0.75% 1.27E-09 6.51 0.37%
Mesh WENO-ZQ5(e = 10~ 19)
Llerror order PP limter
10 x 10 2.73E-01 — 3.33%
20 x 20 2.03E-02 3.75 9.00%
40 x 40 3.02E-03 2.75 9.57%
80 x 80 5.18E-05 5.87 2.48%
160 x 160 5.87E-06 3.14 0.86%
320 x 320 2.14E-07 4.78 0.60%
Mesh  WENO-JS5(e = Aa?) WENO-JS7(e = Az?)
Llerror order PP limter Llerror order PP limter
10 x 10 2.17E-01 — 30.7% 1.07E-01 — 33.3%
20 x 20 4.22E-02 2.37 16.7% 2.35E-02 2.18 20.8%
40 x 40 2.43E-03 4.12 9.10% 3.67E-03 2.68 7.69%
80 x 80 6.75E-05 5.17 4.91% 9.73E-06 8.56 2.88%
160 x 160  2.15E-06 4.97 1.22% 4.10E-08 7.89 2.50%
320 x 320 6.20E-08 5.12 0.01% 2.32E-10 7.47 0.31%
Mesh WENO-ZQ5(e = Az?)
Lterror order PP limter
10 x 10 1.42E-01 — 56.7%
20 x 20 2.46E-02 2.53 18.7%
40 x 40 1.78E-03 3.79 10.3%
80 x 80 3.47E-05 5.68 2.48%
160 x 160 7.62E-07 5.51 0.46%
320 x 320 1.92E-08 5.31 1.04%

The numerical results of PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes
for Re = 1000 are shown in Figure 5.1, which are comparable to the results of PP DG
method in [28]. From the density zoomed (right) in the Figure 5.1, we can see that
the PP FD WENO-ZQ5 scheme has better performance than PP FD WENO-JS5 and
PP FD WENO-JS7 schemes.

EXAMPLE 5.3. (1D Sedov blast wave problem) The Sedov blast wave problem
contains both very low density and strong shocks and is difficult to be simulated
precisely. The exact solution is specified in [16,23]. The computational domain is
[—2,2] and initial conditions are that the density is 1, the velocity is 0, the total
energy is 10712 everywhere except in the center cell, which is a constant Ey/Ax with
Ey = 3200000, with v = 1.4. The final computing time is T = 0.001. The inlet
and outlet conditions are imposed on the left and right boundaries, respectively. The
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Fi1G. 5.1. Double Rarefraction problem with Re = 1000 using 400 grid points. Top row: density
(left) and its magnified view (right). Bottow row: the space-time location where the PP limiter is
triggered (left) and its magnified view (right).

computational results of PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes
for Re = 1000 are shown in Figure 5.2. We can see that PP FD WENO-JS5, WENO-
JS7 and WENO-ZQ5 schemes work well for this extreme 1D test case.

EXAMPLE 5.4. (Leblanc problem) The initial condition of Leblanc problem [17]
is (p,u, p,7y) = (2,0,10°,1.4) for x € [-10,0) and (p,u, p,7v) = (0.001,0,1,1.4) for = €
[0,10]. The left and right boundary conditions are also inflow and outflow respectively,
and the computing time is 7" = 0.001. See the Figure 5.3 for results of PP FD WENO-
JS5, WENO-JS7 and WENO-ZQ5 schemes for Re = 1000 shown in Figure 5.3. The
PP FD WENO-ZQ5 scheme produces more oscillation possibly due to its wider stencil
in reconstruction.

EXAMPLE 5.5. (2D Sedov blast wave problem) The computational domain is a
square of [0,1.1] x [0,1.1]. For the initial condition, similar to the 1D case, the
density is 1, the velocity is 0, the total energy is 107'? everywhere except in the
lower left corner is the constant % and v = 1.4 in the ideal gas EOS. The
numerical boundary conditions on the left and bottom edges are reflective. The
numerical boundary conditions on the right and top are outflow. The final time is
T = 1. For comparison, we present the numerical results of density for Re = 1000 and

oo in Figure 5.4 by the PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes.
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Fic. 5.2. Sedov1D problem with Re = 1000 using 400 grid points. Top row: density (left) and
its magnified view (right). Bottom row: the space-time location where the PP limiter is triggered
(left) and its magnified view (right).

The average of the Ratio of cells using PP limiter to total cells at each time step is
0.303%,0.248%,0.299% in Re=oc and 0.309%, 0.119%, 0.139% in Re=1000 for the PP
FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes respectively. The numerical
results demonstrate the good performance of the PP FD WENO-JS5, WENO-JS7
and WENO-ZQ5 schemes.

EXAMPLE 5.6. (Shock diffraction problem) Shock passing a backward facing cor-
ner (diffraction) has been used as a positivity test problem for the DG method in [3].
It is easy to get negative density and/or pressure below and to the right of the corner.
The computational domain is the union of [0,1] x [6,11] and [1, 13] x [0, 11]. The ini-
tial condition is a pure right-moving shock of Mach number 5.09, initially located at
x=0.5and 6 < y < 11, moving into undisturbed air ahead of the shock with a density
of 1.4 and a pressure of 1. The boundary conditions are inflow at z = 0,6 <y < 11,
outflow at x = 13,0 <y < 11,1 <z <13,y =0 and 0 <z < 13,y = 11, and reflec-
tive at the walls 0 <z < 1,y =6 and at z = 1,0 < y < 6. The average of the Ratio
of cells using PP limiter to total cells at each time step is 0.0024%, 0.0026%, 0.0125%
in Re=oo and 0.0005%,0.0010%, 0.0079% in Re=1000 for the PP FD WENO-JS5,
WENO-JS7 and WENO-ZQ5 schemes respectively. The numerical results of density
for Re= 1000 and oo at final time T = 2.3 by the PP FD WENO-JS5, WENO-JS7
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F1G. 5.3. Leblanc problem with Re = 1000 using 3200 grid points. Top row: density (left) and
its magnified view (right). Bottom row: the space-time location where the PP limiter is triggered
(left) and its magnified view (right).

and WENO-ZQ5 schemes are presented in Figure 5.5.

EXAMPLE 5.7. (Mach 2000 astrophysical jet problem) For simulating the gas
dynamical jets and shocks imaged by the Hubble Space Telescope, one can imple-
ment theoretical models in a gas dynamics simulator [7,12,13]. We consider the
Mach 2000 astrophysical jets without the radiative cooling to demonstrate the ro-
bustness of our method. The computational domain is [0,1] x [-0.25,0.25] and
initially full of the ambient gas with (p,u,v,p,7) = (0.5,30,0,0.4127,5/3)T. The
boundary conditions for the right, top, and bottom are outflow. For the left bound-
ary (p,u,v,p,7) = (0.5,800,0,0.4127,5/3)T for y € [—0.05,0.05] and (p, u,v,p,v) =
(0.5,0,0,0.4127,5/3)T otherwise. The terminal time is 7 = 0.001. The simulation
results of density for Re= 1000 and oo by the PP FD WENO-JS5, WENO-JS7 and
WENO-ZQ5 schemes are shown in Figure 5.6. The average of the Ratio of cells us-
ing PP limiter to total cells at each time step is 0.178%,0.230%,0.416% in Re=o0
and 0.103%, 0.070%, 0.225% in Re=1000 for the PP FD WENO-JS5, WENO-JS7 and
WENO-ZQ5 schemes respectively. One can see these schemes work well for this test
with advantages that negative density and pressure never appear. We emphasize that
WENO schemes without any positivity treatment will simply blow up for this test.

EXAMPLE 5.8. (Mach 10 shock reflection and diffraction problem) The computa-
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0.2 04 0.6 . 1 . 0.4 0.6 . 1

(a) WENO-JS5, Re = oo (b) WENO-JST7, Re = oo

0 0.2 04 0.6 0.8 1 . 0.4 0.6 0.8

(d) WENO-JS5, Re = 1000 (e) WENO-JS7, Re = 1000 (f) WENO-ZQ5, Re = 1000

0.2 0.4 0.6 0.8 1

Fi1G. 5.4. 2D Sedov blast wave problem. 20 equally spaced density contour lines from 0.1 to 5.

Mesh size: Ax = Ay = %

4 6 8

(b) WENO-JST7, Re = oo

12

(d) WENO-JS5, Re = 1000 (e) WENO-JS7, Re = 1000 (f) WENO-ZQ5, Re = 1000

F1c. 5.5. Shock diffraction problem. 20 equally spaced density contour lines from 0.066227 to

7.0668. Mesh size: Az = Ay = 6—14.
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F1c. 5.6. Simulation of Mach 2000 jet without radiative cooling problem. Scales are logarithmic.
40 equally spaced density contours from -2 to 8. Mesh size: Ax = Ay = %.

tional domain is the union of [0, 1] x [0, 1] and [—1,1] x [1, 3]. The initial condition is a
pure right-moving Mach 10 shock located at z = %, y = 0, making a 60° angle with the
x-axis. The boundary conditions are set up as follows: reflective boundary condition is
used at the wall é <z <l,y=0and x =1,—1 <y <0; for the boundary from z = 0
tox = % and y = 0, the exact post-shock condition is posed; the top boundary is the
exact motion of mach 10 shock and v = 1.4 for compressible Euler equations; inflow
boundary condition is used for the left edges; outflow boundary condition is applied
at right and bottom edges. This test case is a combination of reflection and diffraction
of shock involving not only shock but also low density, low pressure and complicated
fine structure due to the Kelvin-Helmholtz instability generated in the reflection. The
reflection part is exactly the same as the benchmark test referred as double mach re-
flection. We present the simulation result of density at final time T = 0.2 for Re
= 1000 and oo by the PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes in
Figure 5.7 to verify the robustness and efficiency of the proposed PP FD schemes.
The average of the Ratio of cells using PP limiter to total cells at each time step is
0.0017%, 0.0016%, 0.0034% in Re=oc and 0.0002%, 0.0001%, 0.0009% in Re=1000 for
the PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes respectively. Com-
pared with the result of Re = 0o, we can see that the result of Re = 1000 smears the
fine feature generated by the Kelvin-Helmholtz instability due to numerical viscosity
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622 and extra physical viscosity of compressible NS equations. On the other hand, the nu-
623 merical results demonstrate that positivity flux and limiter does not induce excessive
624 numerical viscosity in WENO schemes, which still can capture fine feature generated
625 by the Kelvin-Helmholtz instability. In particular, the PP FD WENO-ZQ5 performs
626 better than PP FD WENO-JS5, WENO-JS7, with lower artificial viscosity.

05

05

"o 05 1 1 15 2 25

(a) WENO-JS5, Re = oo (b) WENO-JS5, Re = 1000

15 2 25 3

1 15 2 i B i 1 15 2 25

(c) WENO-JS7, Re = oo (d) WENO-JS7, Re = 1000

1 15 2 25 B i 1 15 2 25

(e) WENO-ZQ5, Re = oo (f) WENO-ZQ5, Re = 1000

Fic. 5.7. Simulation of Mach 10 shock reflection and diffraction problem. 50 equally spaced
density contours from 0 to 25. Mesh size: Ax = Ay = ﬁ.

627 6. Concluding remarks. We propose an approach of constructing positivity-
628 preserving finite difference WENO schemes for compressible Navier-Stokes equations
629 by using a positivity-preserving convection diffusion flux splitting and a positivity-
630 preserving limiter in the WENO reconstruction. The new flux splitting is quite differ-
631 ent from a conventional WENO method for a convection diffusion problem, numerical
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results on demanding problems for PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5
schemes demonstrate that its performance is quite satisfying thanks to much improved
robustness. Moreover, the positivity-preserving approach does not induce excessive
artificial viscosity in these high order WENO schemes.
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