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1 Introduction

The one dimensional version of the compressible Euler equations for the perfect gas in gas

dynamics is given by

wt + f(w)x = 0, t ≥ 0, x ∈ R, (1.1)

w =




ρ
m
E


 , f(w) =




m
ρu2 + p
(E + p)u




with

m = ρu, E =
1

2
ρu2 +

p

γ − 1
,

where ρ is the density, u is the velocity, m is the momentum, E is the total energy and p

is the pressure. We consider the initial value problem for system (1.1) with the initial data

w0(x).

It is well known that entropy inequalities should be considered for general hyperbolic

conservation laws. The generalized entropy function for (1.1) is a smooth convex function

U(w) with an entropy flux F (w) such that the following relation holds:

UT
wfw = Fw.

Entropy solutions of (1.1) are weak solutions which in addition satisfy U(w)t + F (w)x ≤ 0

in the sense of distributions for all the entropy pairs (U, F ).

In [11], a minimum principle of the specific entropy S(x, t) = ln p

ργ was proved for the

entropy solutions:

S(x, t + h) ≥ min{S(y, t) : |y − x| ≤ ||u||∞h}.

The first order schemes including Godunov and Lax-Friedrichs schemes preserve a similar

discrete property [11]. In [6], a first order kinetic scheme for multi-dimensional cases on a

general mesh and a second order kinetic scheme satisfying the same property were discussed.

However, it seems difficult to construct higher order minimum-entropy-principle-satisfying

schemes. The minimum principle of specific entropy in [11] is so far the best pointwise

estimate of entropy for gas dynamics equations, which is different from any estimate of total
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entropy. In particular, it was reported in [6] that enforcing this minimum entropy principle

numerically might damp oscillations in numerical solutions.

In this paper, we will discuss the minimum entropy principle of an arbitrarily high order

scheme on a rectangular or unstructured triangular mesh. To have the specific entropy

well-defined, the very first step is to guarantee the positivity of density and pressure of the

numerical solution, which can be done for a high order finite volume or a discontinuous

Galerkin (DG) scheme following [7, 14, 15, 16]. The main idea of positivity-preserving

techniques for high order schemes in [14] is to find a sufficient condition to preserve the

positivity of the cell averages by repeated convex combinations, namely,

1. Use strong stability preserving (SSP) high order time discretizations which are convex

combinations of forward Euler. For more details, see [9, 8, 4, 3]. Then it suffices to

find a way to preserve the positivity for the forward Euler time discretization since the

set of states with positive density and positive pressure is convex.

2. Use first order schemes which can keep the positivity of density and pressure as building

blocks. High order spatial discretization with forward Euler is equivalent to a convex

combination of formal first order schemes, thus will keep the positivity provided a

certain sufficient condition is satisfied.

3. A simple conservative limiter can enforce the sufficient condition without destroying

accuracy for smooth solutions.

In fact, the methodology above can be used to enforce any property for high order schemes

as long as the states satisfying this property form a convex set. In particular, we will show in

Section 2 that the specific entropy function is quasi-concave, thus the following set is convex,

G =




w =




ρ
m
E




∣∣∣∣∣∣
ρ > 0, p > 0, and S ≥ S0 = min

x
S(w0(x))




 . (1.2)

Therefore, we can easily derive a sufficient condition for a high order scheme to keep numerical

solutions lie in G, i.e., the minimum of the specific entropy at any later time will be bounded

3



from below by the initial minimum. Then a straightforward extension of the limiter in [14]

can enforce this condition without destroying conservation. This limiter will not destroy

accuracy for generic smooth solutions, to be explained in Section 2.

The conclusion of this paper is, by adding a simple limiter which will be specified later

to a high order accurate finite volume scheme, e.g., the essentially non-oscillatory (ENO)

and the weighted ENO (WENO) finite volume schemes, or a discontinuous Galerkin scheme

solving one or multi-dimensional Euler equations, with the time evolution by a SSP Runge-

Kutta or multi-step method, the final scheme satisfies the minimum entropy principle and

remains high order accurate for generic smooth solutions.

The paper is organized as follows. We first describe the one-dimensional case in Section 2.

Then we discuss the two-dimensional cases in Section 3. In Section 4, we show the numerical

tests for high order DG schemes. Concluding remarks are given in Section 5.

2 The one-dimensional case

2.1 Preliminaries

Lemma 2.1. S(w) = ln p

ργ is a quasi-concave function, namely, the following inequality

holds,

S(λ1w1 + λ2w2) > min{S(w1), S(w2)}, if ρ1, ρ2 > 0,

where w1 6= w2 λ1, λ2 > 0 and λ1 + λ2 = 1.

Proof. Let U(w) = −ρh(S(w)), then Uww is positive definite if and only if ρ(h′(S) −

γh′′(S)) > 0 and h′(S) > 0, see [5]. In particular, we can take h(S) = S. Let w̄ =

λ1w1 + λ2w2 and S∗ = min{S(w1), S(w2)}. Uww > 0 implies U(w̄) < λ1U(w1) + λ2U(w2).

So

−ρ̄S(w̄) < −λ1ρ1S(w1) − λ2ρ2S(w2) ≤ −λ1ρ1S
∗ − λ2ρ2S

∗ = −ρ̄S∗.

Thus we have S(w̄) > S∗ = min{S(w1), S(w2)}.
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Lemma 2.2. For a vector valued function w(x) = (ρ(x), m(x), E(x))T defined on an interval

Ij = [xj− 1

2

, xj+ 1

2

] satisfying ρ(x) > 0 for all x ∈ Ij, we have

S

(
1

∆x

∫

Ij

w(x)dx

)
≥ min

x∈Ij

S(w(x)),

where ∆x = xj+ 1

2

− xj− 1

2

.

Proof. Define U(w) = −ρS then U is a convex function. Let ρ̄ = 1
∆x

∫
Ij

ρ(x)dx and w̄ =

1
∆x

∫
Ij

w(x)dx. Jensen’s inequality implies

−ρ̄S(w̄) = U

(
1

∆x

∫

Ij

w(x)dx

)
≤

1

∆x

∫

Ij

U (w(x)) dx

= −

∫

Ij

1

∆x
ρ(x)S(w(x))dx ≤ −ρ̄ min

x∈Ij

S(w(x)).

Therefore, G defined in (1.2) is a convex set by the concavity of pressure and Lemma

2.1. The entropy solutions are in the set G, see [11].

Consider a first order scheme for (1.1)

wn+1
j = wn

j − λ[̂f(wn
j ,wn

j+1) − f̂(wn
j−1,w

n
j )], (2.1)

where f̂(·, ·) is a numerical flux, n refers to the time step and j to the spatial cell (we assume

uniform mesh size only for simplicity), and λ = ∆t
∆x

is the ratio of time and space mesh

sizes. wn
j is the approximation to the cell average of the exact solution v(x, t) in the cell

Ij = [xj− 1

2

, xj+ 1

2

], or the point value of the exact solution v(x, t) at xj , at time level n. For

Godunov, Lax-Friedrichs and kinetic type fluxes [6], the scheme (2.1) satisfies that wn
j being

in the set G for all j implies the solution wn+1
j being also in the set G. This is usually

achieved under a standard CFL condition

λ ‖ (|u| + c) ‖∞≤ α0, (2.2)

where α0 is a constant depending on the flux.
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Recall that the numerical solutions of Godunov scheme are the cell averages of the exact

solution if λ ‖ (|u| + c) ‖∞≤ 1. Thus Lemma 2.2 implies α0 = 1 for the Godunov flux.

Following the same proof as that in the Appendix of [7], it is straightforward to check that

α0 = 1
2

for the Lax-Friedrichs flux.

2.2 High order schemes

We now consider a general high order finite volume scheme, or the scheme satisfied by the

cell averages of a DG method solving (1.1), with forward Euler time discretization, which

has the following form

wn+1
j = wn

j − λ
[
f̂
(
w−

j+ 1

2

,w+
j+ 1

2

)
− f̂

(
w−

j− 1

2

,w+
j− 1

2

)]
, (2.3)

where f̂ is Godunov, Lax-Friedrichs or kinetic type flux, wn
j is the approximation to the cell

average of the exact solution v(x, t) in the cell Ij = [xj− 1

2

, xj+ 1

2

] at time level n, and w−
j+ 1

2

,

w+
j+ 1

2

are the high order approximations of the point values v(xj+ 1

2

, tn) within the cells Ij and

Ij+1 respectively. These values are either reconstructed from the cell averages wn
j in a finite

volume method or read directly from the evolved polynomials in a DG method. We assume

that there is a polynomial vector qj(x) = (ρj(x), mj(x), Ej(x))T (either reconstructed in a

finite volume method or evolved in a DG method) with degree k, where k ≥ 1, defined on

Ij such that wn
j is the cell average of qj(x) on Ij, w+

j− 1

2

= qj(xj− 1

2

) and w−
j+ 1

2

= qj(xj+ 1

2

).

We need the N -point Legendre Gauss-Lobatto quadrature rule on the interval Ij =

[xj− 1

2

, xj+ 1

2

], which is exact for the integral of polynomials of degree up to 2N −3. We would

need to choose N such that 2N − 3 ≥ k. Denote these quadrature points on Ij as

{xj− 1

2

= x̂1
j , x̂

2
j , · · · , x̂N−1

j , x̂N
j = xj+ 1

2

}. (2.4)

Let ŵα be the quadrature weights for the interval [−1
2
, 1

2
] such that

N∑
α=1

ŵα = 1.

Theorem 2.3. The high order scheme (2.3) satisfies a minimum entropy principle, i.e.,

assuming the numerical solution at time level n has positive density and positive pressure,

6



then wn+1
j has positive density and positive pressure, and

S(wn+1
j ) ≥ min

{
min

α
S(qj(x̂

α
j )), S(w+

j+ 1

2

), S(w−
j− 1

2

)
}

,

under the CFL condition

λ ‖ (|u| + c) ‖∞≤ ŵ1α0. (2.5)

In particular, if qj(x̂
α
j ) ∈ G for all j and α, then wn+1

j ∈ G.

Proof. The positivity of density and pressure of wn+1
j was proved in Theorem 2.1 of [14].

Thus S(wn+1
j ) is well-defined. The exactness of the quadrature rule for polynomials of degree

k implies

wn
j =

1

∆x

∫

Ij

qj(x)dx =
N∑

α=1

ŵαqj(x̂
α
j ).

By adding and subtracting f̂
(
w+

j− 1

2

,w−
j+ 1

2

)
, the scheme (2.3) becomes

wn+1
j =

N∑

α=1

ŵαqj(x̂
α
j ) − λ

[
f̂
(
w−

j+ 1

2

,w+
j+ 1

2

)
− f̂

(
w+

j− 1

2

,w−
j+ 1

2

)

+ f̂
(
w+

j− 1

2

,w−
j+ 1

2

)
− f̂

(
w−

j− 1

2

,w+
j− 1

2

)]

=
N−1∑

α=2

ŵαqj(x̂
α
j ) + ŵN

(
w−

j+ 1

2

−
λ

ŵN

[
f̂
(
w−

j+ 1

2

,w+
j+ 1

2

)
− f̂

(
w+

j− 1

2

,w−
j+ 1

2

)])

+ŵ1

(
w+

j− 1

2

−
λ

ŵ1

[
f̂
(
w+

j− 1

2

,w−
j+ 1

2

)
− f̂

(
w−

j− 1

2

,w+
j− 1

2

)])

=
N−1∑

α=2

ŵαqj(x̂
α
j ) + ŵNHN + ŵ1H1,

where

H1 = w+
j− 1

2

−
λ

ŵ1

[
f̂
(
w+

j− 1

2

,w−
j+ 1

2

)
− f̂

(
w−

j− 1

2

,w+
j− 1

2

)]
(2.6)

HN = w−
j+ 1

2

−
λ

ŵN

[
f̂
(
w−

j+ 1

2

,w+
j+ 1

2

)
− f̂

(
w+

j− 1

2

,w−
j+ 1

2

)]
. (2.7)

Notice that (2.6) and (2.7) are both of the type (2.1), and ŵ1 = ŵN , therefore H1 and

HN satisfy the minimum entropy principle under the CFL condition (2.5). Since wn+1
j is

a convex combination of H1, HN and qj(x̂
α
j ), by Lemma 2.1, we get the minimum entropy

principle for wn+1
j .
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The high order SSP time discretizations will keep the validity of Theorem 2.3 since they

are convex combinations of forward Euler.

Theorem 2.3 implies that, to have the minimum principle for wn+1
j ∈ G, we need to

enforce qj(x̂
α
j ) ∈ G. The positivity of density and pressure of qj(x̂

α
j ) ∈ G was discussed in

[14]. Thus here we only show how to enforce the entropy part.

At time level n, given wn
j ∈ G, assume qj(x̂

α
j ) (α = 1, · · · , N) have positive density and

pressure. Define ∂G = {w : ρ, p > 0, S = S0 = minx S(w0(x))} , and

L(t) = (1 − t)wn
j + tqj(x), 0 ≤ t ≤ 1. (2.8)

∂G is a surface and L(t) is the line segment connecting the two points wn
j and qj(x), where

t is a parameter. If S(qj(x)) < S0, then the line segment L(t) (t ∈ [0, 1]) intersects with

the surface ∂G at one and only one point since G is a convex set. If S(qj(x)) < S0, let t(x)

denote the parameter in (2.8) corresponding to the intersection point; otherwise let t(x) = 1.

In practice, we can find t(x) by using Newton iteration to solve S (L(t(x))) = S0. Now we

define

q̃j(x) = θj

(
qj(x) −wn

j

)
+ wn

j , θj = min
x∈{bx1

j ,··· ,bxN
j }

t(x). (2.9)

The limiter (2.9) should be used for each stage in a SSP Runge-Kutta method or each

step in a SSP multi-step method. It is easy to check that the cell average of q̃j(x) over Ij is

wn
j .

Lemma 2.4. q̃j(x) defined in (2.9) satisfies q̃j(x̂
α
j ) ∈ G for all α.

Proof. First notice that q̃j(x) is a convex combination of qj(x) and wn
j , thus q̃j(x̂

α
j ) still

have positive density and pressure since pressure is a concave function. We only need to

prove S(q̃j(x̂
α
j )) ≥ S0 for the case that S(qj(x̂

α
j )) < S0.

If S(qj(x̂
α
j )) < S0, then S

(
L(t(x̂α

j ))
)

= S0 and

q̃j(x̂
α
j ) = θj

(
q̃j(x̂

α
j ) − wn

j

)
+ wn

j

=
θj

t(x̂α
j )

[
t(x̂α

j )
(
q̂j(x̂

α
j ) − wn

j

)
+ wn

j

]
+

(
1 −

θj

t(x̂α
j )

)
wn

j
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=
θj

t(x̂α
j )

L(t(x̂α
j )) +

(
1 −

θj

t(x̂α
j )

)
wn

j ,

So q̃j(x̂
α
j ) is a convex combination of L(t(x̂α

j )) and wn
j , thus S(q̃j(x̂

α
j )) ≥ S0.

We refer to a generic smooth solution as a smooth solution v(x, tn) ∈ G satisfying

min S(v(x, tn)) = S0 and the second order derivative of S(v(x, tn)) with respect to x does

not vanish at the global minimum. For such generic smooth solutions, the limiter (2.9)

does not affect the high order accuracy of the original scheme. Assume qj(x) is a (k + 1)-

th order accurate approximation qj(x) − v(x, tn) = O(∆xk+1). Without loss of generality,

assume θj = t(x̂β
j ) for some β. Since qj(x̂

β
j ), L(t(x̂β

j )) and wn
j lie on the same line, we have

θj − 1 = −
‖qj(bx

β
j )−L(t(bx

β
j ))‖

‖qj(bx
β
j )−wn

j ‖
. Thus,

q̃j(x) − qj(x) = θj(qj(x) −wn
j ) + wn

j − qj(x)

= (θj − 1)(qj(x) − wn
j )

= −
‖ qj(x̂

β
j ) − L(t(x̂β

j )) ‖

‖ qj(x̂
β
j ) −wn

j ‖
(qj(x) − wn

j ).

Define d(z, ∂G) = min
w∈∂G

‖ z − w ‖. Since S0 is the minimum of S(v(x, tn)), there

is at least one x̂α
j such that S0 − S(v(x̂α

j , tn)) ≥ C∆x2 where C is a nonzero constant

depending on the derivatives of S(v(x, tn)). This implies d(v(x̂α
j , tn), ∂G) ≥ O(∆x2), thus

d(qj(x̂
α
j ), ∂G) ≥ O(∆x2). wn

j is the cell average of qj(x) implies wn
j =

N∑
α=1

ŵαqj(x̂
α
j ). So

d(wn
j , ∂G) ≥ O(∆x2).

On the other hand, θj = t(x̂β
j ) implies S(qj(x̂

β
j )) /∈ G, so ‖ qj(x̂

β
j ) −wn

j ‖> d(wn
j , ∂G) ≥

O(∆x2). The overshoot is small ‖ qj(x̂
β
j )−L(t(x̂β

j )) ‖= O(∆xk+1) since qj(x) is an accurate

approximation to v(x, tn) ∈ G.

Finally, notice that ‖ qj(x) − wn
j ‖= O(∆x), we get that ‖ q̃j(x) − qj(x) ‖= O(∆xk),

∀x ∈ Ij.

We remark that for the non-generic situation that the second derivative of S(v(x, tn)) with

respect to x does vanish at the global minimum, it seems difficult to design a conservative

limiter which can be proved not to destroy accuracy. On the other hand, the fact that our
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limiter is easy to implement also for multi-dimensional cases (see next section) and that it

maintains high order accuracy for generic smooth solutions makes it a good technique to

adopt for high order schemes.

3 The two-dimensional cases

In this section we extend our result to finite volume or DG schemes of (k + 1)-th order

accuracy solving two-dimensional Euler equations with initial data w0(x, y)

wt + f(w)x + g(w)y = 0, t ≥ 0, (x, y) ∈ R2, (3.1)

w =




ρ
m
n
E


 , f(w) =




m
ρu2 + p

ρuv
(E + p)u


 , g(w) =




n
ρuv

ρv2 + p
(E + p)v




where m = ρu, n = ρv, E = 1
2
ρu2 + 1

2
ρv2 + ρe, p = (γ − 1)ρe, and 〈u, v〉 is the velocity. The

eigenvalues of the Jacobian f ′(w) are u−c, u, u and u+c and the eigenvalues of the Jacobian

g′(w) are v−c, v, v and v+c. The specific entropy S = ln p

ργ is quasi-concave with respect to

w if ρ > 0 and the set of admissible states G =

{
w| ρ > 0, p > 0, S ≥ S0 = min

x,y
S(w0(x, y))

}

is still convex.

3.1 Rectangular meshes

For simplicity we assume we have a uniform rectangular mesh. At time level n, we have an

approximation polynomial qij(x, y) of degree k with the cell average wn
ij on the (i, j) cell

[xi− 1

2

, xi+ 1

2

]× [yj− 1

2

, yj+ 1

2

]. Let w+
i− 1

2
,j
(y),w−

i+ 1

2
,j
(y), w+

i,j− 1

2

(x), w−
i,j+ 1

2

(x) denote the traces of

qij(x, y) on the four edges respectively. A finite volume scheme or the scheme satisfied by

the cell averages of a DG method on a rectangular mesh can be written as

wn+1
ij = wn

ij −
∆t

∆x∆y

∫ y
j+1

2

y
j− 1

2

f̂
[
w−

i+ 1

2
,j
(y),w+

i+ 1

2
,j
(y)
]
− f̂

[
w−

i− 1

2
,j
(y),w+

i− 1

2
,j
(y)
]
dy

−
∆t

∆x∆y

∫ x
i+ 1

2

x
i− 1

2

ĝ
[
w−

i,j+ 1

2

(x),w+
i,j+ 1

2

(x)
]
− ĝ

[
w−

i,j− 1

2

(x),w+
i,j− 1

2

(x)
]
dx,
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where f̂(·, ·), ĝ(·, ·) are one dimensional fluxes. The integrals can be approximated by quadra-

tures with sufficient accuracy. Let us assume that we use a Gauss quadrature with L points,

which is exact for single variable polynomials of degree k. We assume Sx
i = {xβ

i : β =

1, · · · , L} denote the Gauss quadrature points on [xi− 1

2

, xi+ 1

2

], and Sy
j = {yβ

j : β = 1, · · · , L}

denote the Gauss quadrature points on [yj− 1

2

, yj+ 1

2

]. For instance, (xi− 1

2

, yβ
j ) (β = 1, · · · , L)

are the Gauss quadrature points on the left edge of the (i, j) cell. The subscript β will

denote the values at the Gauss quadrature points, for instance, w+
i− 1

2
,β

= w+
i− 1

2
,j
(yβ

j ). Also,

wβ denotes the corresponding quadrature weight on interval [−1
2
, 1

2
], so that

∑L

β=1 wβ = 1.

We will still need to use the N -point Gauss-Lobatto quadrature rule where N is the smallest

integer satisfying 2N − 3 ≥ k, and we distinguish the two quadrature rules by adding hats

to the Gauss-Lobatto points, i.e., Ŝx
i = {x̂α

i : α = 1, · · · , N} will denote the Gauss-Lobatto

quadrature points on [xi− 1

2

, xi+ 1

2

], and Ŝy
j = {ŷα

j : α = 1, · · · , N} will denote the Gauss-

Lobatto quadrature points on [yj− 1

2

, yj+ 1

2

]. Subscripts or superscripts β will be used only for

Gauss quadrature points and α only for Gauss-Lobatto points.

Let λ1 = ∆t
∆x

and λ2 = ∆t
∆y

, then the scheme becomes

wn+1
ij = wn

ij − λ1

L∑

β=1

wβ

[
f̂(w−

i+ 1

2
,β

,w+
i+ 1

2
,β

) − f̂(w−
i− 1

2
,β

,w+
i− 1

2
,β

)
]

−λ2

L∑

β=1

wβ

[
ĝ(w−

β,j+ 1

2

,w+
β,j+ 1

2

) − ĝ(w−
β,j− 1

2

,w+
β,j− 1

2

)
]
. (3.2)

We use ⊗ to denote the tensor product, for instance, Sx
i ⊗Sy

j = {(x, y) : x ∈ Sx
i , y ∈ Sy

j }.

Define the set Sij as

Sij = (Sx
i ⊗ Ŝy

j ) ∪ (Ŝx
i ⊗ Sy

j ). (3.3)

For simplicity, let µ1 = λ1a1

λ1a1+λ2a2
and µ2 = λ2a2

λ1a1+λ2a2
where a1 =‖ (|u| + c) ‖∞, a2 =‖

(|v| + c) ‖∞. Notice that ŵ1 = ŵN , we have

wn
ij =

µ1

∆x∆y

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

qij(x, y)dydx +
µ2

∆x∆y

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

qij(x, y)dxdy

= µ1

L∑

β=1

N∑

α=1

wβŵαqij(x̂
α
i , yβ

j ) + µ2

L∑

β=1

N∑

α=1

wβŵαqij(x
β
i , ŷ

α
j )

11



=
L∑

β=1

N−1∑

α=2

wβŵα

[
µ1qij(x̂

α
i , yβ

j ) + µ2qij(x
β
i , ŷα

j )
]

+

L∑

β=1

wβŵ1

[
µ1w

−
i+ 1

2
,β

+ µ1w
+
i− 1

2
,β

+ µ2w
−
β,j+ 1

2

+ µ2w
+
β,j− 1

2

]
(3.4)

Theorem 3.1. Consider a two-dimensional finite volume scheme or the scheme satisfied

by the cell averages of the DG method on rectangular meshes (3.2), associated with the

approximation polynomials qij(x, y) of degree k (either reconstruction or DG polynomials).

If w±
β,j± 1

2

, w±
i± 1

2
,β

∈ G and qij(x, y) ∈ G (for any (x, y) ∈ Sij), then wn+1
j ∈ G under the

CFL condition

λ1a1 + λ2a2 ≤ ŵ1α0. (3.5)

Proof. Plugging (3.4) in, (3.2) can be written as

wn+1
ij =

L∑

β=1

N−1∑

α=2

wβŵα

[
µ1qij(x̂

α
i , yβ

j ) + µ2qij(x
β
i , ŷα

j )
]

+µ1

L∑

β=1

wβŵ1

[
w−

i+ 1

2
,β
−

λ1

µ1ŵ1

(
f̂(w−

i+ 1

2
,β

,w+
i+ 1

2
,β

) − f̂(w+
i− 1

2
,β
,w−

i+ 1

2
,β

)
)

+ w+
i− 1

2
,β
−

λ1

µ1ŵ1

(
f̂(w+

i− 1

2
,β

,w−
i+ 1

2
,β

) − f̂(w−
i− 1

2
,β
,w+

i− 1

2
,β

)
)]

+µ2

L∑

β=1

wβŵN

[
w−

β,j+ 1

2

−
λ2

µ2ŵ1

(
ĝ(w−

β,j+ 1

2

,w+
β,j+ 1

2

) − ĝ(w+
β,j− 1

2

,w−
β,j+ 1

2

)
)

+ w+
β,j− 1

2

−
λ2

µ2ŵ1

(
ĝ(w+

β,j− 1

2

,w−
β,j+ 1

2

) − ĝ(w−
β,j− 1

2

,w+
β,j− 1

2

)
)]

Following the same arguments as in Theorem 2.3, we conclude wn+1
j ∈ G.

The limiter in the previous section can be extended easily to two-dimensional cases. At

time level n, given wn
ij ∈ G, do the following modification

q̃ij(x, y) = θij

(
qij(x, y) − wn

ij

)
+ wn

ij , θij = min
(x,y)∈Sij

t(x, y), (3.6)

where t(x, y) is the parameter corresponding to the intersection point of the surface ∂G and

the line segment L(t) = (1 − t)wn
ij + tqij(x, y) if qij(x, y) /∈ G; t(x, y) = 1 otherwise.

12



3.2 Triangular meshes

For simplicity, we only discuss DG schemes in this subsection. All the conclusions will also

hold for a high order finite volume scheme.

For each triangle K we denote by liK (i = 1, 2, 3) the length of its three edges ei
K (i =

1, 2, 3), with outward unit normal vector νi (i = 1, 2, 3). K(i) denotes the neighboring

triangle along ei
K and |K| is the area of the triangle K. Let F̂(w,v, ν) be a one dimensional

monotone flux in the ν direction satisfying F̂(w,v, ν) = −F̂(v,w,−ν) (conservation), and

F̂(w,w, ν) = F(w) · ν (consistency), with F(w) = 〈f(w), g(w)〉. For example, the Lax-

Friedrichs flux is defined as

F̂(w,v, ν) =
1

2
(F(w) · ν + F(v) · ν − a(v − w)), a =‖ |〈u, v〉|+ c ‖∞ .

A high order finite volume scheme or a scheme satisfied by the cell averages of a DG

method, with first order forward Euler time discretization, can be written as

wn+1
K = wn

K −
∆t

|K|

3∑

i=1

∫

ei
K

F̂(w
int(K)
i ,w

ext(K)
i , νi)ds,

where wn
K is the cell average over K of the numerical solution, and w

int(K)
i ,w

ext(K)
i are the

approximations to the values on the edge ei
K obtained from the interior and the exterior of

K. Assume the DG polynomial on the triangle K is qK(x, y) of degree k, then in the DG

method, the edge integral should be approximated by the (k + 1)-point Gauss quadrature.

The scheme becomes

wn+1
K = wn

K −
∆t

|K|

3∑

i=1

k+1∑

β=1

F̂(w
int(K)
i,β ,w

ext(K)
i,β , νi)wβliK , (3.7)

where wβ denote the (k + 1)-point Gauss quadrature weights on the interval [−1
2
, 1

2
], so

that
k+1∑
β=1

wβ = 1, and w
int(K)
i,β and w

ext(K)
i,β denote the values of w evaluated at the β-th

Gauss quadrature point on the i-th edge from the interior and exterior of the element K

respectively.

We need the quadrature rule introduced in [15] for qK(x, y) on K. In the barycentric

coordinates, the set Sk
K of quadrature points for polynomials of degree k on a triangle K can

13



be written as

Sk
K =

{(
1

2
+ vβ, (

1

2
+ ûα)(

1

2
− vβ), (

1

2
− ûα)(

1

2
− vβ)

)
,

(
(
1

2
− ûα)(

1

2
− vβ),

1

2
+ vβ, (

1

2
+ ûα)(

1

2
− vβ)

)
,

(
(
1

2
+ ûα)(

1

2
− vβ), (

1

2
− ûα)(

1

2
− vβ),

1

2
+ vβ

)}
(3.8)

where ûα (α = 1, · · · , N) and vβ (β = 1, · · · , k + 1) are the Gauss-Lobatto and Gauss

quadrature points on the interval [−1
2
, 1

2
] respectively. See Figure 3.1 for an illustration of

S2
K .

Figure 3.1: Points in (3.8) for k = 2.

Following Theorem 5.1 in [15] and the same arguments as in Theorem 2.3, we have

Theorem 3.2. For the scheme (3.7) with the polynomial qK(x, y) of degree k, if w
ext(K)
i,β ∈ G

and qK(x, y) ∈ G, ∀(x, y) ∈ Sk
K where Sk

K is defined in (3.8), then wn+1
K ∈ G under the CFL

condition a ∆t
|K|

3∑
i=1

liK ≤ 2
3
ŵ1α0.

The the same limiter can be used to enforce the sufficient condition. At time level n,

given wn
K ∈ G, do the following modification

q̃K(x, y) = θK (qK(x, y) − wn
K) + wn

K , θK = min
(x,y)∈SK

t(x, y), (3.9)

where t(x, y) is the parameter corresponding to the intersection point of the surface ∂G and

the line segment L(t) = (1 − t)wn
K + tqK(x, y) if qK(x, y) /∈ G; t(x, y) = 1 otherwise.

14



4 Numerical Tests

In this section, γ = 1.4 for all the examples.

Example 4.1. Accuracy tests.

We first test the accuracy of the entropy limiter (2.9). The initial condition is ρ0(x, y) =

1 + 1
2
sin(2πx), u0(x) = 1, p0(x) = 1. The domain is [0, 1] and the boundary condition is

periodic. The exact solution is ρ(x, y, t) = 1 + 1
2
sin(2π(x− t)), u(x, t) = 1, p(x, t) = 1. The

numerical schemes are the third order and fourth order DG schemes with Lax-Friedrichs flux

[2] and the third order SSP time discretizations with the entropy limiter (2.9) used at each

time stage or each time step.

The third order SSP Runge-Kutta method in [9] (with the CFL coefficient c = 1) is

u(1) = un + ∆tF (un)

u(2) =
3

4
un +

1

4
(u(1) + ∆tF (u(1))

un+1 =
1

3
un +

2

3
(u(2) + ∆tF (u(2)))

where F (u) is the spatial operator, and the third order SSP multi-step method in [8] (with

the CFL coefficient c = 1
3
) is

un+1 =
16

27
(un + 3∆tF (un)) +

11

27
(un−3 +

12

11
∆tF (un−3)).

Here, the CFL coefficient c for a SSP time discretization refers to the fact that, if we assume

the forward Euler time discretization for solving the equation ut = F (u) is stable in a norm

or a semi-norm under a time step restriction ∆t ≤ ∆t0, then the high order SSP time

discretization is also stable in the same norm or semi-norm under the time step restriction

∆t ≤ c∆t0.

For k = 2 and k = 3, ŵ1 = 1
6

and α0 = 1
2
, thus the time step (2.5) for P 2 DG with

Runge-Kutta is taken as ∆t = 1
12

∆x
‖(|u|+c)‖∞

. Since the CFL coefficient c = 1
3

for the third

order SSP multi-step method, the time step is taken as ∆t = 1
36

∆x
‖(|u|+c)‖∞

. For the fourth

15



order scheme, in order to make the error from spatial discretizations dominant, we replace

∆x by ∆x
4

3 .

The accuracy result is listed in Table 4.1. We observe that, for Runge-Kutta, the accu-

racy degenerates when the mesh is fine enough. This is due to the lower order accuracy in

the intermediate stages of the Runge-Kutta method. In particular, recall that the limiter

(2.9) does not destroy accuracy for generic smooth solutions only if the polynomial qj(x)

is a (k + 1)-th accurate approximation to the exact solution. The DG polynomials qj(x)

in the intermediate stages of a Runge-Kutta methods are in general not (k + 1)-th order

accurate, therefore the limiter (2.9) may kill the accuracy when it is imposed in the interme-

diate stages. The same phenomenon exists for the high order maximum-principle-satisfying

schemes, see [13]. A similar phenomenon of the Runge-Kutta method in the context of

boundary conditions was pointed out in [1].

The full accuracy order is observed for the multi-step time discretization, which justifies

that the limiter itself does not kill accuracy. Since accuracy degeneracy is usually only

observed on very fine meshes for Runge-Kutta methods, in applications it is often acceptable

to use the Runge-Kutta methods, similar to the conclusions in [1, 13].

Example 4.2. The Lax shock tube problem.

For high order DG schemes solving the compressible Euler equations, even though the

characteristicwise TVB limiter in [2] can kill oscillations, it is not sufficient to stabilize

the scheme for problems with low densities or low pressures. In [14], it was reported that

high order RKDG scheme with both the positivity-preserving limiter and the TVB limiter

worked fine for a lot of demanding problems. Recent study reveals that the third order

RKDG scheme with only the positivity-preserving limiter is stable even for strong shocks,

see [12], which is not surprising since a conservative positivity-preserving scheme is L1 stable

[16]. However, the positivity-preserving limiter alone can not kill oscillations for high order

DG schemes, and the oscillations are much more prominent in the fourth order DG scheme

than in the third order scheme. See Figure 4.1 for the result of the fourth order DG scheme
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Table 4.1: Third order SSP time discretizations and high order DG spatial discretizations
with the entropy limiter (2.9), ∆x = 1

N
, t=0.1.

N SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

P 2DG ∆t = 1
12

∆x
‖(|u|+c)‖∞

∆t = 1
36

∆x
‖(|u|+c)‖∞

8 1.49E-3 - 5.23E-3 - 1.58E-3 - 5.79E-3 -
16 1.64E-4 3.17 8.46E-4 2.62 1.65E-4 3.25 8.77E-4 2.72
32 2.07E-5 2.98 9.07E-5 3.22 2.06E-5 3.00 9.07E-5 3.27
64 2.62E-6 2.97 1.17E-5 2.95 2.60E-6 2.98 1.17E-5 2.95
128 3.30E-7 2.98 1.47E-6 2.98 3.25E-7 2.99 1.47E-6 2.98
256 4.16E-8 2.99 1.84E-7 2.99 4.07E-8 2.99 1.84E-7 2.99
512 5.23E-9 2.99 3.51E-8 2.39 5.09E-9 3.00 2.31E-8 3.00
1024 6.60E-10 2.98 1.02E-8 1.78 6.36E-10 3.00 2.88E-9 3.00

P 3DG ∆t = 1
12

∆x
4
3

‖(|u|+c)‖∞
∆t = 1

36
∆x

4
3

‖(|u|+c)‖∞

4 5.11E-4 - 4.52E-3 - 5.19E-4 - 2.09E-3 -
8 2.45E-5 4.38 1.05E-4 4.31 2.46E-5 4.39 1.05E-4 4.31
16 1.40E-6 4.12 5.82E-6 4.18 1.40E-6 4.13 5.34E-6 4.30
32 9.02E-8 3.96 5.61E-7 3.38 8.41E-8 4.06 3.74E-7 3.83
64 6.66E-9 3.75 1.24E-7 2.16 5.21E-9 4.01 2.23E-8 4.06
128 5.29E-10 3.65 1.83E-8 2.77 3.24E-10 4.00 1.42E-9 3.97
256 4.37E-11 3.59 3.39E-9 2.43 2.02E-11 4.00 9.00E-11 3.98
512 4.14E-12 3.39 5.61E-10 2.59 1.26E-12 3.99 5.55E-12 4.01
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Figure 4.1: Lax shock tube problem. P 3 element DG with the positivity-preserving limiter
without any TVD or TVB limiter. 100 cells. The solid lines are the exact solutions. The
symbols are the numerical solutions. 18



with P 3 element for the Lax shock tube problem. We can see that the result with only

the positivity-preserving limiter is oscillatory and the result with the positivity-preserving

limiter and (2.9) has much less oscillations. In other words, enforcing the minimum entropy

principle will damp the oscillations in high order schemes, which was pointed out in [6].

Example 4.3. Double rarefactions with low densities and low pressures.

Consider the following one-dimensional Riemann problem with initial data

ρL = ρR = pL = pR = 1, uR = −uL = v0 ≥ 0.

We first test the entropy limiter for the case v0 = 4, in which the lowest pressure of the

exact solution is around 0.0034. In Figure 4.2, we can see that the DG method with only

the positivity limiter works well and adding the entropy limiter does not destroy the good

performance.

Then we test the entropy limiter for the case v0 = 12, in which vacuum is present. In

Figure 4.3, we observe that the entropy limiter indeed damps the overshoots near x = ±4.

For this particular problem, the exact solution is isentropic. We plot the history of

minimum and maximum specific entropy values of the numerical solutions in Figure 4.4 for

the P 3 element DG scheme with the positivity-preserving limiter and the entropy limiter.

We observe that the minimum stays the same, which means the entropy limiter does its job

to keep the minimum principle. On the other hand, the maximum is not in control, which

however does not affect the performance of the scheme as Figures 4.2 and 4.3 show.

Example 4.4. The Shu-Osher problem.

We consider the problem of shock wave interacting with sine waves in density, proposed

in [10]. Initially,

ρ = 3.857143, u = 2.629369, p = 10.33333, if x < −4;

ρ = 1 + 0.2 sin 5x, u = 0, p = 1, if x ≥ −4.

See Figure 4.5 for the good performance of the entropy limiter.
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Figure 4.2: Example 4.3 with v0 = 4. P 3 element DG with the positivity-preserving limiter
without any TVD or TVB limiter. The solid lines are the exact solutions. The symbols are
the numerical solutions on 200 cells at time T = 0.7.
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Figure 4.3: Example 4.3 with v0 = 12. P 3 element DG with the positivity-preserving limiter
without any TVD or TVB limiter. The solid lines are the reference solutions obtained by
the P 3 element DG with only the positivity-preserving limiter on 10000 cells. The symbols
are the numerical solutions on 800 cells at time T = 0.3.
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Figure 4.4: The minimum and maximum values of specific entropy in the solutions of the
P 3 element DG scheme with the positivity-preserving limiter and the entropy limiter.

5 Concluding Remarks

In this paper, we have discussed the minimum entropy principle for high order schemes solv-

ing the compressible Euler equations in gas dynamics. An extension of positivity-preserving

limiter in [14] can be used to enforce the minimum entropy principle. The generalizations

to higher dimension are straightforward. Numerical tests imply that enforcing the minimum

entropy principle may damp the oscillations in high order schemes.

Acknowledgments: The authors would like to thank Eitan Tadmor for helpful discussions

about the minimum entropy principle for gas dynamics equations.
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