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Abstract

In [16, 17], we constructed uniformly high order accurate discontinuous Galerkin (DG)

schemes which preserve positivity of density and pressure for the Euler equations of com-

pressible gas dynamics with the ideal gas equation of state. The technique also applies to

high order accurate finite volume schemes. For the Euler equations with various source terms

(e.g., gravity and chemical reactions), it is more difficult to design high order schemes which

do not produce negative density or pressure. In this paper, we first show that our framework

to construct positivity-preserving high order schemes in [16, 17] can also be applied to Euler

equations with a general equation of state. Then we discuss an extension to Euler equations

with source terms. Numerical tests of the third order Runge-Kutta DG (RKDG) method

for Euler equations with different types of source terms are reported.
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1 Introduction

The one dimensional version of the Euler equations with source terms for gas dynamics is

given by

wt + f(w)x = s(w, x), t ≥ 0, x ∈ �
, (1.1)

w =




ρ
m
E


 , f(w) =




m
ρu2 + p
(E + p)u


 (1.2)

with

m = ρu, E =
1

2
ρu2 + ρe, (1.3)

where ρ is the density, u is the velocity, m is the momentum, E is the total energy, e is the

internal energy, and the pressure p can be obtained from the equation of state. For instance,

for the perfect gas,

p = (γ − 1)ρe. (1.4)

We consider four different types of the source term s(w, x) in this paper. The first one is the

axial symmetry, i.e., the three-dimensional axially symmetric flow is governed by the one- or

two-dimensional Euler equations with spherical or cylindrical symmetry. The second type is

the gravity. The third type is the chemical reaction, for which we use the non-equilibrium

model in [14]. The last one that we consider is the radiative cooling in [4].

Physically, the density ρ and the pressure p should both be positive. Therefore we are in-

terested in positivity-preserving high order schemes, which maintain the positivity of density

and pressure at time level n + 1, provided that they are positive at time level n. Failure of

preserving positivity of density or pressure may cause blow-ups of the numerical algorithm,

for example, for low density problems in computing blast waves, and low pressure problems

in computing high Mach number astrophysical jets, see [16] for more details. Most com-

monly used high order numerical schemes for solving hyperbolic conservation law systems,

including, among others, the Runge-Kutta discontinuous Galerkin (RKDG) method with

a total variation bounded (TVB) limiter [1, 2], the essentially non-oscillatory (ENO) finite
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volume and finite difference schemes [5, 13], and the weighted ENO (WENO) finite volume

and finite difference schemes [9, 6], do not in general satisfy the positivity property for Euler

equations automatically.

Motivated by the approach in [10], we proposed a general framework in [15] to construct a

maximum-principle-satisfying high order scheme for scalar conservation laws on rectangular

meshes. The framework was extended to positivity-preserving high order schemes for the

Euler equations for the perfect gas without the source term in [16]. We have also extended

this method to unstructured triangular meshes in [17]. The main result of our previous

work is, by adding a simple limiter to a high order DG scheme or a high order finite volume

scheme, the numerical solution will satisfy a strict maximum principle for scalar conservation

laws or will be positivity-preserving for the Euler equations under a suitable CFL condition,

while maintaining uniform high order accuracy. In this paper, we extend this result to high

order schemes for the Euler equations with various source terms.

The conclusion of this paper is, by adding a positivity-preserving limiter which will be

specified later to a high order accurate finite volume scheme or a discontinuous Galerkin

scheme solving one or multi-dimensional Euler equations with a source term, with the time

evolution by a SSP Runge-Kutta or multi-step method, we obtain a uniformly high order

accurate scheme preserving the positivity in the sense that the density and pressure of the

cell averages are always positive if they are positive initially.

The paper is organized as follows: we show a general formulation in Section 2. In Section

3, we discuss the results and show the numerical tests of the third order DG method for

different types of source terms case by case. Concluding remarks are given in Section 4.
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2 A general formulation for positivity-preserving high

order schemes

2.1 The Euler equations without the source term

In this subsection, we will show that the framework in [16] to construct high order schemes

for Euler equations without source terms also holds for a general equation of state satisfying

the following assumption:

if ρ ≥ 0, then e > 0 ⇔ p > 0. (2.5)

We have the following results.

Lemma 2.1. The set of admissible states G =



w =




ρ
m
E



∣∣∣∣∣∣
ρ > 0 and p > 0



 is a

convex set.

Proof: Denote ẽ = ρe, then the assumption (2.5) implies G =
{
w = (ρ, m, E)T

∣∣ ρ > 0, ẽ > 0
}
.

By (1.3) we have ẽ = E − 1
2

m2

ρ
, which is a concave function of w. For w1 = (ρ1, m1, E1)

T

and w2 = (ρ2, m2, E2)
T , Jensen’s inequality implies, for 0 ≤ s ≤ 1,

ẽ (sw1 + (1 − s)w2) ≥ sẽ (w1) + (1 − s)ẽ (w2) , if ρ1 ≥ 0, ρ2 ≥ 0. (2.6)

Thanks to the Jensen’s inequality, G is a convex set.

Lemma 2.2. Consider the first order Lax-Friedrichs scheme for (1.1) with s(w, x) = 0,

wn+1
j = wn

j − λ[h(wn
j ,wn

j+1) − h(wn
j−1,w

n
j )], (2.7)

where λ = ∆t/∆x and

h(u,v) =
1

2
[f(u) + f(v) − a0(v − u)] , (2.8)

where

a0 ≥ max

∣∣∣∣
∣∣∣∣|u| +

p

ρ
√

2e

∣∣∣∣
∣∣∣∣
∞

. (2.9)
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Under the CFL condition λa0 ≤ 1, the scheme is positivity-preserving, namely wn+1
j ∈ G if

wn
j ∈ G for all j.

Remark: For the equation of state of the ideal gas (1.4), if we take a0 = max ||(|u| + c)||∞
where c =

√
γ p

ρ
, then (2.9) is automatically satisfied.

Proof: The scheme can be written as

wn+1
j = wn

j − λ[h(wn
j ,wn

j+1) − h(wn
j−1,w

n
j )]

= (1 − λa0)w
n
j +

λa0

2
[wn

j+1 −
1

a0
f(wn

j+1)] +
λa0

2
[wn

j−1 +
1

a0
f(wn

j−1)]

Notice that wn+1
j is a convex combination of the three vectors wn

j , wn
j+1 − 1

a0

f(wn
j+1) and

wn
j−1 + 1

a0

f(wn
j−1), we only need to show wn

j−1 + 1
a0

f(wn
j−1) and wn

j+1 − 1
a0

f(wn
j+1) are in the

set G. It is easy to check that the first components of the both vectors are positive. The

only nontrivial part is to check the positivity of the “pressure”. For simplicity, we drop the

subscripts and superscripts, i.e., we prove w ± 1
a0

f(w) ∈ G if w ∈ G. Let ẽ = E − 1
2

m2

ρ
and

u = m/ρ. By a direct calculation, we have

ẽ

(
w ± 1

a0
f(w)

)
= ẽ

[(
(1 ± u

a0
)ρ, (1 ± u

a0
)m ± p

a0
, (1 ± u

a0
)E ± up

a0

)T
]

= (1 ± u

a0
)E ± up

a0
− 1

2

[
(1 ± u

a0

)m ± p
a0

]2

(1 ± u
a0

)ρ

=

(
1 − p2

2(a0 ± u)2ρ2e

) (
1 ± u

a0

)
ρe

Therefore,

ẽ

(
w ± 1

a0
f(w)

)
> 0 ⇐⇒ p2

2(a0 ± u)2ρ2e
< 1

⇐⇒ p2

2ρ2e
< (a0 ± u)2.

So (2.9) implies ẽ(w ± 1
a0

f(w)) > 0, thus w ± 1
a0

f(w) ∈ G.

We discuss the high order schemes now. Here we only consider the first order Euler

forward time discretization; strong stability preserving high order Runge-Kutta [13] and
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multi-step [12] time discretization will keep the validity of positivity-preserving property

since G is convex. A general high order finite volume scheme, or the scheme satisfied by the

cell averages of a DG method solving (1.1) with s(w, x) = 0, has the following form

wn+1
j = wn

j − λ
[
h
(
w−

j+ 1

2

,w+
j+ 1

2

)
− h

(
w−

j− 1

2

,w+
j− 1

2

)]
, (2.10)

where h is defined in (2.8). wn
j is the approximation to the cell average of the exact solution

v(x, t) in the cell Ij = [xj− 1

2

, xj+ 1

2

] at time level n, and w−

j+ 1

2

, w+
j+ 1

2

are the high order

approximations of the point values v(xj+ 1

2

, tn) within the cells Ij and Ij+1 respectively.

These values are either reconstructed from the cell averages wn
j in a finite volume method

or read directly from the evolved polynomials in a DG method. We assume that there is

a polynomial vector qj(x) = (ρj(x), mj(x), Ej(x))T (either reconstructed in a finite volume

method or evolved in a DG method) with degree k, where k ≥ 1, defined on Ij such that wn
j

is the cell average of qj(x) on Ij, w+
j− 1

2

= qj(xj− 1

2

) and w−

j+ 1

2

= qj(xj+ 1

2

).

We need the N -point Legendre Gauss-Lobatto quadrature rule on the interval Ij =

[xj− 1

2

, xj+ 1

2

], which is exact for the integral of polynomials of degree up to 2N −3. We would

need to choose N such that 2N − 3 ≥ k. Denote these quadrature points on Ij as

Sj = {xj− 1

2

= x̂1
j , x̂

2
j , · · · , x̂N−1

j , x̂N
j = xj+ 1

2

}. (2.11)

Let ŵα be the Legendre Gauss-Lobatto quadrature weights for the interval [− 1
2
, 1

2
] such that

N∑
α=1

ŵα = 1, with 2N − 3 ≥ k. Following the same lines as in [16], we can prove

Theorem 2.3. For a finite volume scheme or the scheme satisfied by the cell averages of a

DG method (2.10) with the Lax-Friedrichs flux (2.8) and (2.9) solving the Euler equations

with an equation of state satisfying (2.5), if qj(x̂
α
j ) ∈ G for all j and α, then wn+1

j ∈ G

under the CFL condition λa0 ≤ ŵ1.

A simple linear scaling limiter can enforce qj(x̂
α
j ) ∈ G without destroying the accuracy

if wn
j ∈ G, see [16] for details. We refer to the RKDG scheme with this limiter as the

positivity-preserving DG method.
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Notice that even though we discuss only the Lax-Friedrichs flux, any other positivity

preserving first order numerical fluxes, such as the Godunov flux, will also work for our high

order positivity preserving schemes.

2.2 The Euler equations with a source term

The notations are the same as in the previous subsection. A general high order finite volume

scheme, or the scheme satisfied by the cell averages of a DG method solving (1.1), has the

following form

wn+1
j = wn

j − λ
[
h
(
w−

j+ 1

2

,w+
j+ 1

2

)
− h

(
w−

j− 1

2

,w+
j− 1

2

)]
+ λ

∫

Ij

s(qj(x), x)dx,

where the integral can be approximated by quadratures with sufficient accuracy. Let us

assume that we use a Gauss quadrature with L points, which is exact for single variable

polynomials of degree 2L − 1 ≥ k. We assume {xβ
j : β = 1, · · · , L} denote the Gauss

quadrature points on the interval Ij and wβ be the quadrature weights for the interval

[−1
2
, 1

2
] such that

L∑
β=1

wβ = 1. Replace the integral by the Gauss quadrature, the scheme now

becomes

wn+1
j = wn

j − λ
[
h
(
w−

j+ 1

2

,w+
j+ 1

2

)
− h

(
w−

j− 1

2

,w+
j− 1

2

)]
+ ∆t

L∑

β=1

wβs(qj(x
β
j ), xβ

j ). (2.12)

The exactness of the quadrature rule for polynomials of degree k implies

wn
j =

1

∆x

∫

Ij

qj(x)dx =

L∑

β=1

wβqj(x
β
j ). (2.13)

Plug (2.13) in, then (2.12) becomes

wn+1
j =

1

2

(
wn

j − 2λ
[
h
(
w−

j+ 1

2

,w+
j+ 1

2

)
− h

(
w−

j− 1

2

,w+
j− 1

2

)])

+
1

2

(
wn

j + 2∆t
L∑

β=1

wβs(qj(x
β
j ), xβ

j )

)

=
1

2
H +

1

2

L∑

β=1

wβ

(
qj(x

β
j ) + 2∆ts(qj(x

β
j ), xβ

j )
)
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where

H = wn
j − 2λ

[
h
(
w−

j+ 1

2

,w+
j+ 1

2

)
− h

(
w−

j− 1

2

,w+
j− 1

2

)]
.

Thus wn+1
j in (2.12) is a convex combination of H and qj(x

β
j ) + ∆ts(qj(x

β
j ), xβ

j ) (β =

1, · · · , L). Assuming qj(x̂
α
j ) ∈ G for all j and α, then H ∈ G under the CFL condition

λa0 ≤ 1
2
ŵ1 by the Theorem 2.3. To ensure wn+1

j ∈ G, we only need to consider the sufficient

condition for qj(x
β
j ) + 2∆ts(qj(x

β
j ), xβ

j ) ∈ G.

Suppose the following is true, for any w ∈ G, there exists a time step restriction

∆t ≤ As(w, x) (2.14)

such that w + 2∆ts(w, x) ∈ G. Here As(w, x) is a function of w and x, which is positive

for positive density and pressure. Its explicit form depends on the specific source term s in

(1.1). Then we have the following result.

Theorem 2.4. Consider a finite volume scheme or the scheme satisfied by the cell averages of

a DG method (2.12) with the Lax-Friedrichs flux (2.8) and (2.9) solving the Euler equations

with a source term (1.1). Assume the equation of state satisfies (2.5). If qj(x̂
α
j ),qj(x

β
j ) ∈ G

for all α, β and j, then wn+1
j ∈ G under the CFL conditions λa0 ≤ 1

2
ŵ1 and

∆t ≤ min
β,j

As(qj(x
β
j ), xβ

j ). (2.15)

Remark: We only showed how to construct the one-dimensional schemes. For two-dimensional

positivity-preserving high order schemes solving the Euler equations with a source term, it

is straightforward to follow the ideas of Theorem 2.4 and [16] on rectangular meshes or [17]

on triangular meshes.

The limiter in [16] can enforce qj(x̂
α
j ),qj(x

β
j ) ∈ G without destroying high order accuracy

if wn
j ∈ G.
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2.3 Limiter and implementation for the DG method

We only discuss the one-dimensional algorithm. Two-dimensional algorithms on rectangular

and triangular meshes are straightforward by following [16, 17].

At time level n, assuming the DG polynomial in cell Ij is qj(x) = (ρj(x), mj(x), Ej(x))T

with degree k , and the cell average of qj(x) is wn
j =

(
ρn

j , m
n
j , E

n

j

)T ∈ G, then the algorithm

flowchart of our algorithm for the Euler forward is

• Set up a small number ε = min
j
{10−13, ρn

j , p(wn
j )}.

• In each cell, modify the density first: evaluate ρmin = min
α,β

{ρj(x̂
α
j ), ρj(x

β
j )} and get

ρ̂j(x) by

ρ̂j(x) = θ1(ρj(x) − ρn
j ) + ρn

j , θ1 = min

{
ρn

j − ε

ρn
j − ρmin

, 1

}
.

Set q̂j(x) = (ρ̂j(x), mj(x), Ej(x))T .

• Define

Qj = {q̂j(x̂
α
j ), q̂j(x

β
j ) : α = 1, · · · , N, β = 1, · · · , L}.

Then modify the pressure: for each q ∈ Qj, if p(q) < ε, then solve the following

equation for sq,

p
[
(1 − sq)w

n
j + sqq

]
= ε.

If p(q) ≥ ε, then set sq = 1. Calculate

q̃j(x) = θ2

(
q̂j(x) − wn

j

)
+ wn

j , θ2 = min
q∈Qj

sq.

• Use q̃j(x) instead of qj(x) in the DG scheme with Euler forward in time under the

CFL condition λa0 ≤ 1
2
ŵ1 and (2.15).

For SSP high order time discretizations, we need to use the limiter in each stage for a

Runge-Kutta method or in each step for a multistep method. See [16] for more details about

the limiter. We point out that (2.15) could be very restrictive if we enforce it every time
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step. To be efficient, we could implement (2.15) only when a preliminary calculation to the

next time step produces negative density or pressure.

The implementation for a finite volume method is similar, but it will be a little bit more

complicated for the WENO procedure since there are only reconstructed nodal values but no

polynomials in each cell after the WENO reconstruction. One way to implement the limiter

is to construct polynomials using the nodal values and cell averages, see [15] for details. We

are also exploring other, simpler ways to implement this positivity preserving limiter for

WENO finite volume schemes. These implementation details and numerical tests will be

reported elsewhere.

3 Examples and numerical tests

3.1 The Euler equations with axial symmetry

In this subsection, we only consider the equation of state for the thermally ideal gases. The

conservative form of the Euler equations governing two-dimensional circular symmetric or

three-dimensional spherical symmetric flow of a compressible inviscid fluid with the equation

of state (1.4) can be written as:

(B(r)w)t + (B(r)f(w))r = (0, B′(r)p, 0)T (3.16)

where w and f(w) are defined in (1.2) with B(r) = r for two-dimensional circular symmetric

flow and B(r) = r2 for three-dimensional spherical symmetric flow.

Denote W = (ρ̂, m̂, Ê)T = B(r)w, and p̂ = (γ−1)(Ê− 1
2

bm2

bρ ). Let d denote the dimension,

i.e., d = 2 or d = 3. Then B(r)f(w) = f(W) and the source can be written as B ′(r)p =

(d − 1) bp
r
. (3.16) becomes Wt + f(W)r =

(
0, (d − 1) bp

r
, 0
)T

.

For simplicity, we abuse the notation by setting r = x and replacing W by w, then we

can consider

wt + f(w)x =
(
0, (d − 1)

p

x
, 0
)T

, x ≥ 0. (3.17)
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Lemma 3.1. The condition (2.14) for (3.17) is

∆t < − γxu

2(d − 1)c2
+

x

2c

√
γ2u2

(d − 1)2c2
+

2γ

(d − 1)2(γ − 1)
. (3.18)

Proof: Assume w ∈ G. To ensure w+2∆ts(w, x) = (ρ, m+2(d−1)∆t p
x
, E) ∈ G, it suffices

to ensure the “pressure” p(w + 2∆ts(w, x)) > 0. Notice that p = (γ − 1)(E − 1
2

m2

ρ
) and

c2 = γ p
ρ
, we get

p(w + 2∆ts(w, x)) = (γ − 1)(E − 1

2

(
m + 2(d − 1)∆t p

x

)2

ρ
)

=

[
1

γ − 1
− 2(d − 1)

u

x
∆t − 2(d − 1)2 c2

γx2
∆t2
]

p.

So we only need 1
γ−1

− 2(d − 1)u
x
∆t − 2(d − 1)2 c2

γx2 ∆t2 > 0. Solving the quadratic equation

gives us the result.

Remark: We can easily verify that the right hand side of the time step restriction (3.18)

is positive provided that c > 0 and x > 0. By (2.15), this condition has to hold for all

the Gauss quadrature points of each interval x = xβ
j . Since the smallest of such points is

x1
1 = O(∆x) away from x = 0, the time step restriction (3.18) is similar to the usual CFL

condition ∆t < C∆x.

Example 3.1. The Sedov point-blast wave is a typical low density and low pressure problem

involving shocks and the solution is circular or spherical symmetric. The exact solution

formula can be found in [11, 7]. We test the third order RKDG method with TVB limiter

and the positivity-preserving limiter [16] for three blast waves. The high order RKDG scheme

with TVB limiter without the positivity preserving limiter will blow up due to the presence

of negative density or pressure for these tests.

The first one is two-dimensional circular symmetric flow, i.e., we solve the equations (3.17)

with d = 2. For the initial condition, the density is 1, velocity is zero, total energy is 10−12

everywhere except that the energy in the first cell is the constant E0

∆x
with E0 = 0.979264

(emulating a δ-function at the center). γ = 1.4. The computational results at t = 1 are

shown in Figure 3.1. We can see the solution is captured very well.
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To study how the numerical solutions are affected by the geometric projection (from the

Cartesian to the radical coordinates) around the shock front, we compare the computational

result of the positivity-preserving RKDG method solving (3.17) in this paper with the result

of the positivity-preserving RKDG method solving the two-dimensional Euler equations in

Cartesian coordinates in [16] on the same mesh size. See Figure 3.2. We can observe that the

shock is better resolved for the result in Cartesian coordinates, however, the computational

cost is much larger since it is a two-dimensional computation.
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Figure 3.1: Example 3.1: Circular symmetric flow, 2D Sedov blast. The third order
positivity-preserving RKDG scheme with TVB limiter. The solid line is the exact solution.
Symbols are numerical solutions. ∆x = 1.1

800
.

Example 3.2. The second test case for the Sedov point-blast wave example is the three-

dimensional spherical symmetric flow, i.e., we solve the equations (3.17) with d = 3. The

initial conditions are the same as in the previous example. The computational results at

t = 1 are shown in Figure 3.3. We again observe a well captured solution.

Example 3.3. The last test case for the Sedov point-blast wave example is the three-

dimensional cylindrical symmetric flow. The governing equations are

(rw)t + (rf(w))r + (rg(w))z = s(w)

12



r

de
n

si
ty

0 0.5 1
0

1

2

3

4

5

6

x

de
n

si
ty

0 0.5 1
0

1

2

3

4

5

6

Figure 3.2: Example 3.1: 2D Sedov blast. The left is the result of the third order positivity-
preserving RKDG method solving (3.17) with the mesh size ∆r = 1.1

160
; the right is the

projection along the line y = 0 of the result computed by the third order positivity-preserving
RKDG method solving the two-dimensional Euler equations in Cartesian coordinates [16]
on a 160 × 160 mesh over the square [0, 1.1] × [0, 1.1].
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Figure 3.3: Example 3.2: Spherical symmetric flow, 3D Sedov blast. The third order
positivity-preserving RKDG scheme with TVB limiter. The solid line is the exact solution.
Symbols are numerical solutions. ∆x = 1.1

600
.
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w =




ρ
m
n
E


 , f(w) =




m
ρu2 + p

ρuv
(E + p)u


 , g(w) =




n
ρuv

ρv2 + p
(E + p)v


 , s(w) =




0
p
0
0




with

m = ρu, n = ρv, E =
1

2
ρu2 +

1

2
ρv2 + ρe, p = (γ − 1)ρe.

The initial energy E0 is still taken as 0.979264 and the computational domain is [0, 1.2]×

[0, 1.2], see [16] for the boundary conditions. The computational results at t = 1 are shown

in Figure 3.4.
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(b) Projection to radical coordinates. The solid line
is the exact solution. Symbols are numerical solu-
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Figure 3.4: Example 3.3: Cylindrical symmetric flow, 3D Sedov blast. The third order
positivity-preserving RKDG scheme with TVB limiter on a 160 × 160 mesh.
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3.2 The Euler equations with gravity

The two-dimensional Euler equations with standard gravity in the y-direction for the ther-

mally ideal gases take the following form:



ρ
m
n
E




t

+




m
ρu2 + p

ρuv
(E + p)u




x

+




n
ρuv

ρv2 + p
(E + p)v




y

=




0
0

−ρg
−ρvg




with

m = ρu, n = ρv, E =
1

2
ρu2 +

1

2
ρv2 + ρe, p = (γ − 1)ρe.

By the same calculation as in Lemma 3.1, we get (2.14) for the gravity source as

∆t ≤ 1√
2γ(γ − 1)

c

g
, c =

√
γ

p

ρ
. (3.19)

Clearly, the right hand side of the time step restriction (3.19) is positive provided c > 0.

Example 3.4. We test a two-dimensional Riemann problem. The domain is [0, 2] × [0, 2].

Initially (ρ, u, p) = (7,−1, 0.2) if x ≤ 1; (ρ, u, p) = (7, 1, 0.2) if x ≥ 1, and v = 0 everywhere.

The boundary conditions for the top and the bottom are reflection, and the boundary con-

ditions for the left and the right are outflow. Without the gravity, i.e., g = 0, the exact

solution contains two rarefaction waves with vacuum emerging, see [8, 16]. Here we set

g = 1 to test the robustness of the positivity-preserving DG method since there are both low

pressure and low density in the solution. TVB limiter is not needed because there are no

shocks. The numerical results at t = 0.6 are shown in Figure 3.5, demonstrating very clean

and well resolved solutions. The RKDG scheme with only the TVB limiter will blow up for

any g.

3.3 The Euler equations with non-equilibrium chemistry

We consider the three species model with a more general equation of state in [14]. The model

involves three species, O2, O and N2 (ρ1 = ρO, ρ2 = ρO2
and ρ3 = ρN2

) with the reaction:

O2 + N2 
 O + O + N2.
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Figure 3.5: Example 3.4: The third order positivity-preserving RKDG scheme. The solid
line in (a), the contour lines in (b) and the surface in (c) are the numerical solution of the
400 × 400 mesh. The symbols in (a) are the one of the 80 × 80 mesh.
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The governing equations are



ρ1

ρ2

ρ3

ρu
E




t

+




ρ1u
ρ2u
ρ3u

ρu2 + p
(E + p)u




x

=




2M1ω
−M2ω

0
0
0




and

ρ =

3∑

s=1

ρs, p = RT

3∑

s=1

ρs

Ms
, E =

3∑

s=1

ρses(T ) + ρ1h
0
1 +

1

2
ρu2

where the enthalpy h0
1 is a constant, R is the universal gas constant, Ms is the molar mass

of species s, and the internal energy es(T ) = 3R/2Ms and 5R/2Ms for monoatomic and

diatomic species respectively. The rate of the chemical reaction is given by

ω =

(
kf(T )

ρ2

M2
− kb(T )

(
ρ1

M1

)2
)

3∑

s=1

ρs

Ms
, kf = CT−2e−E/T ,

kb = kf/ exp (b1 + b2 log z + b3z + b4z
2 + b5z

3), z = 10000/T

where bi, C and E are constants which can be found in [14, 3].

The eigenvalues of the Jacobian f ′(w) are (u, u, u, u + c, u − c) where c =
√

γ p
ρ

with

γ = 1 + p

T
P

3

s=1
ρse′

s(T )
. So if we take a0 = ||(|u| + c)||∞ in the Lax-Friedrichs flux (2.8), then

all the results in Section 2 will hold. The condition (2.14) for this source is

∆t <

{ ρ2

2M2ω
, if ω > 0

− ρ1

4M1ω
, if ω < 0

. (3.20)

Clearly, the right hand side of the time step restriction (3.20) is positive.

Example 3.5. This example is a shock tube problem for the reactive flows with high pressure

on the left and low pressure on the right initially in the chemical equilibrium (ω = 0). The

initial conditions are:

(pL, TL) = (1000N/m2, 8000K), (pR, TR) = (1N/m2, 8000K)

with zero velocity everywhere and the densities satisfying

ρO

2MO

+
ρO2

MO2

=
21

79

ρN2

MN2

,
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where MO = 0.016, MO2
= 0.032 and MN2

= 0.028. The initial densities of O, O2 and N2 are

5.251896311257204× 10−5, 3.748071704863518× 10−5 and 2.962489471973072× 10−4 on the

left, and 8.341661837019181×10−8, 9.455418692098664×10−11 and 2.748909430004963×10−7

on the right.

Low densities and low pressure will emerge in the solution, which may cause blow-ups for

the high order schemes. Our numerical solutions of the positivity-preserving RKDG scheme

with the TVB limiter at t = 0.0001 are shown in Figure 3.6. We obtain clean and grid

converged solutions for this test case.

3.4 High Mach number astrophysical jets with radiative cooling

To simulate the well-collimated supersonic outflow from a central compact object in astro-

physical context, namely, the gas flows and shock wave patterns which are revealed by the

Hubble Space Telescope images, one can implement theoretical models in a gas dynamics

simulator. We consider the two-dimensional model with radiative cooling in [4], which is

governed by




ρ
m
n
E




t

+




m
ρu2 + p

ρuv
(E + p)u




x

+




n
ρuv

ρv2 + p
(E + p)v




y

=




0
0
0

Λ(T )




with

m = ρu, n = ρv, E =
1

2
ρu2 +

1

2
ρv2 + ρe, p = (γ − 1)ρe = ρRT.

The cooling law is approximated by

Λ(T ) =

{
−Λ̃(p2 − p2

a) T > Ta

0 otherwise
,

where Pa and Ta are the ambient pressure and temperature and Λ̃ is a constant. The

condition (2.14) for this cooling term is

∆t ≤ p

2(γ − 1)Λ̃(p2 − p2
a)

if p > pa.
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The velocity of the gas flow in the simulation is extremely high, and the Mach number

could be hundreds or thousands. A big challenge for computation is, even for a state-of-the-

art high order scheme solving the system, negative pressure could appear since the internal

energy is very small compared to the huge kinetic energy. Moreover, the cooling source term

increases the difficulty to preserve the positivity of the pressure. Therefore, we have a strong

motivation to use the positivity-preserving schemes for this kind of problems.

Example 3.6. We compute a Mach 80 (i.e. the Mach number of the jet inflow is 80

with respect to the soundspeed in the jet gas) problem with the radiative cooling. γ is set

as 5/3 and Λ̃ = 8.776. The computation domain is [0, 0.8] × [0, 0.4], which is full of the

ambient gas with (ρ, u, v, p) = (5, 0, 0, 0.4127) initially. For the left boundary, (ρ, u, v, p) =

(5, 30, 0, 0.4127) if y ∈ [−0.05, 0.05] and (ρ, u, v, p) = (5, 0, 0, 0.4127) otherwise. The terminal

time is 0.028. The computation is performed on a 256 × 128 mesh. See Figure 3.7.

4 Concluding Remarks

In [16, 17], a general framework was established to construct high order schemes which can

preserve the positivity of density and pressure for the compressible Euler equations in the

gas dynamics. In this paper, we have shown that this framework also applies to a more

general equation of state. Moreover, we extend it to the Euler equations with various source

terms. We derived a sufficient condition for a high order finite volume scheme or the scheme

satisfied by the DG method to satisfy the positivity-preserving condition. The same limiter

in [16] can enforce it without destroying the high order accuracy.

With the addition of the positivity-preserving limiter in this paper, which involves small

additional computational cost, to the DG scheme or the finite volume scheme (e.g. ENO

and WENO), the numerical solutions will satisfy the positivity property in the sense that

the density and pressure of the cell average are positive under suitable CFL condition. We

have tested the third order Runge-Kutta DG method with the positivity-preserving limiter

for the Euler equations with four types of source terms: axial symmetry, gravity, chemical
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(a) Density

(b) Pressure

(c) Temperature

Figure 3.7: Simulation of Mach 80 jet with radiative cooling. The third order positivity-
preserving RKDG scheme with the TVB limiter. Scales are logarithmic.
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reactions and radiative cooling.
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