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1. Introduction.14

1.1. Motivation. In this paper we consider solving a two-dimensional ellip-15

tic equation with smooth coefficients on a rectangular domain by high order finite16

difference schemes, which are constructed via using suitable quadrature in the classi-17

cal continuous finite element method on a rectangular mesh. Consider the following18

model problem as an example: a variable coefficient Poisson equation −∇·(a(x)∇u) =19

f, a(x) > 0 on a square domain Ω = (0, 1)× (0, 1) with homogeneous Dirichlet bound-20

ary conditions. The variational form is to find u ∈ H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}21

satisfying22

A(u, v) = (f, v), ∀v ∈ H1
0 (Ω),23

where A(u, v) =
∫∫

Ω
a∇u · ∇vdxdy, (f, v) =

∫∫
Ω
fvdxdy. Let h be the mesh size of24

an uniform rectangular mesh and V h0 ⊆ H1
0 (Ω) be the continuous finite element space25

consisting of piecewise Qk polynomials (i.e., tensor product of piecewise polynomials26

of degree k), then the C0-Qk finite element solution is defined as uh ∈ V h0 satisfying27

(1.1) A(uh, vh) = (f, vh), ∀vh ∈ V h0 .28

Standard error estimates of (1.1) are ‖u − uh‖1 ≤ Chk‖u‖k+1 and ‖u − uh‖0 ≤29

Chk+1‖u‖k+1 where ‖ · ‖k denotes Hk(Ω)-norm, see [5]. For k ≥ 2, O(hk+1) su-30

perconvergence for the gradient at Gauss quadrature points and O(hk+2) supercon-31

vergence for functions values at Gauss-Lobatto quadrature points were proven for32

one-dimensional case in [11, 2, 1] and for two-dimensional case in [8, 17, 4, 14].33

When implementing the scheme (1.1), integrals are usually approximated by34

quadrature. The most convenient implementation is to use (k + 1) × (k + 1) Gauss-35

Lobatto quadrature because they not only are superconvergence points but also can36

define all the degree of freedoms of Lagrangian Qk basis. See Figure 1 for the case37

k = 2. Such a quadrature scheme can be denoted as finding uh ∈ V h0 satisfying38

(1.2) Ah(uh, vh) = 〈f, vh〉h, ∀vh ∈ V h0 ,39
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2 H. LI AND X. ZHANG

where Ah(uh, vh) and 〈f, vh〉h denote using tensor product of (k + 1)-point Gauss-40

Lobatto quadrature for integrals A(uh, vh) and (f, vh) respectively.41

(a) The quadrature points and a FEM
mesh

(b) The corresponding finite differ-
ence grid

Fig. 1. An illustration of Lagrangian Q2 element and the 3 × 3 Gauss-Lobatto quadrature.

It is well known that many classical finite difference schemes are exactly finite42

element methods with specific quadrature scheme, see [5]. We will write scheme43

(1.2) as an exact finite difference type scheme in Section 7 for k = 2. Such a finite44

difference scheme not only provides an efficient and also convenient way for assembling45

the stiffness matrix especially for a variable coefficient problem, but also with has46

advantages inherited from the variational formulation, such as symmetry of stiffness47

matrix and easiness of handling boundary conditions in high order schemes. This is48

the variational approach to construct a high order accurate finite difference scheme .49

Classical quadrature error estimates imply that standard finite element error es-50

timates still hold for (1.2), see [7, 5]. The focus of this paper is to prove that the51

superconvergence of function values at Gauss-Lobatto points still holds. To be more52

specific, for Dirichlet type boundary conditions, we will show that (1.2) with k ≥ 253

is a (k + 2)-th order accurate finite difference scheme in the discrete 2-norm under54

suitable smoothness assumptions on the exact solution and the coefficients.55

In this paper, the main motivation to study superconvergence is to use it for56

constructing (k + 2)-th order accurate finite difference schemes. For such a task,57

superconvergence points should define all degree of freedoms over the whole compu-58

tational domain including boundary points. For high order finite element methods,59

this seems possible only on quite structured meshes such as rectangular meshes for60

a rectangular domain and equilateral triangles for a hexagonal domain, even though61

there are numerous superconvergence results for interior cells in unstructured meshes.62

1.2. Related work and difficulty in using standard tools. To illustrate63

our perspectives and difficulties, we focus on the case k = 2 in the following. For64

computing the bilinear form in the scheme (1.1), another convenient implementation65

is to replace the smooth coefficient a(x, y) by a piecewise Q2 polynomial aI(x, y) ob-66

tained by interpolating a(x, y) at the quadrature points in each cell shown in Figure67

1. Then one can compute the integrals in the bilinear form exactly since the inte-68

grand is a polynomial. Superconvergence of function values for such an approximated69

coefficient scheme was proven in [13] and the proof can be easily extended to higher70

order polynomials and three-dimensional cases. This result might seem surprising71

since interpolation error a(x, y) − aI(x, y) is of third order. On the other hand, all72

the tools used in [13] are standard in the literature.73

From a practical point of view, (1.2) is more interesting since it gives a genuine74
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SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 3

finite difference scheme. It is straightforward to use standard tools in the literature for75

showing superconvergence still holds for accurate enough quadrature. Even though76

the 3×3 Gauss-Lobatto quadrature is fourth order accurate, the standard quadrature77

error estimates cannot be used directly to establish the fourth order accuracy of (1.2),78

as will be explained in detail in Remark 3.8 in Section 3.2.79

We can also rewrite (1.2) for k = 2 as a finite difference scheme but its local80

truncation error is only second order as will be shown in Section 7.4. The phenomenon81

that truncation errors have lower orders was named supraconvergence in the literature.82

The second order truncation error makes it difficult to establish the fourth order83

accuracy following any traditional finite difference analysis approaches.84

To construct high order finite difference schemes from variational formulation, we85

can also consider finite element method with P 2 basis on a regular triangular mesh86

in which two adjacent triangles form a rectangle [18]. Superconvergence of function87

values in C0-P 2 finite element method at the three vertices and three edge centers can88

be proven [4, 17]. See also [10]. Even though the quadrature using only three edge89

centers is third order accurate, error cancellations happen on two adjacent triangles90

forming a rectangle, thus fourth order accuracy of the corresponding finite difference91

scheme is still possible. However, extensions to construct higher order finite difference92

schemes are much more difficult.93

1.3. Contributions and organization of the paper. The main contribution94

is to give the proof of the (k+2)-th order accuracy of (1.2) with k ≥ 2, which is an easy95

construction of high order finite difference schemes for variable coefficient problems.96

An important step is to obtain desired sharp quadrature estimate for the bilinear97

form, for which it is necessary to count in quadrature error cancellations between98

neighboring cells. Conventional quadrature estimating tools such as the Bramble-99

Hilbert Lemma only give the sharp estimate on each cell thus cannot be used directly.100

A key technique in this paper is to apply the Bramble-Hilbert Lemma after integration101

by parts on proper interpolation polynomials to allow error cancellations.102

The paper is organized as follows. In Section 2, we introduce our notations and103

assumptions. In Section 3, standard quadrature estimates are reviewed. Supercon-104

vergence of bilinear forms with quadrature is shown in Section 4. Then we prove105

the main result for homogeneous Dirichlet boundary conditions in Section 5 and for106

nonhomogeneous Dirichlet boundary conditions in Section 6. Section 7 provides a107

simple finite difference implementation of (1.2). Section 8 contains numerical tests.108

Concluding remarks are given in Section 9.109

2. Notations and assumptions.110

2.1. Notations and basic tools. We will use the same notations as in [13]:111

• We only consider a rectangular domain Ω = (0, 1)× (0, 1) with its boundary112

denoted as ∂Ω.113

• Only for convenience, we assume Ωh is an uniform rectangular mesh for Ω̄114

and e = [xe − h, xe + h] × [ye − h, ye + h] denotes any cell in Ωh with cell115

center (xe, ye). The assumption of an uniform mesh is not essential to the116

discussion of superconvergence. All superconvergence results in this paper117

can be easily extended to continuous finite element method with Qk element118

on a quasi-uniform rectangular mesh, but not on a generic quadrilateral mesh119

or any curved mesh.120

• Qk(e) =

{
p(x, y) =

k∑
i=0

k∑
j=0

pijx
iyj , (x, y) ∈ e

}
is the set of tensor product of121
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4 H. LI AND X. ZHANG

polynomials of degree k on a cell e.122

• V h = {p(x, y) ∈ C0(Ωh) : p|e ∈ Qk(e), ∀e ∈ Ωh} denotes the continuous123

piecewise Qk finite element space on Ωh.124

• V h0 = {vh ∈ V h : vh = 0 on ∂Ω}.125

• The norm and seminorms for W k,p(Ω) and 1 ≤ p < +∞, with standard
modification for p = +∞:

‖u‖k,p,Ω =

 ∑
i+j≤k

∫∫
Ω

|∂ix∂jyu(x, y)|pdxdy

1/p

,

|u|k,p,Ω =

 ∑
i+j=k

∫∫
Ω

|∂ix∂jyu(x, y)|pdxdy

1/p

,

[u]k,p,Ω =

(∫∫
Ω

|∂kxu(x, y)|pdxdy +

∫∫
Ω

|∂kyu(x, y)|pdxdy
)1/p

.

Notice that [u]k+1,p,Ω = 0 if u is a Qk polynomial.126

• For simplicity, sometimes we may use ‖u‖k,Ω, |u|k,Ω and [u]k,Ω denote norm127

and seminorms for Hk(Ω) = W k,2(Ω).128

• When there is no confusion, Ω may be dropped in the norm and seminorms,129

e.g., ‖u‖k = ‖u‖k,2,Ω.130

• For any vh ∈ V h, 1 ≤ p < +∞ and k ≥ 1, we will abuse the notation to
denote the broken Sobolev norm and seminorms by the following
symbols

‖vh‖k,p,Ω :=

(∑
e

‖vh‖pk,p,e

) 1
p

, |vh|k,p,Ω :=

(∑
e

|vh|pk,p,e

) 1
p

, [vh]k,p,Ω :=

(∑
e

[vh]pk,p,e

) 1
p

.

• Let Z0,e denote the set of (k + 1)× (k + 1) Gauss-Lobatto points on a cell e.131

• Z0 =
⋃
e Z0,e denotes all Gauss-Lobatto points in the mesh Ωh.132

• Let ‖u‖2,Z0
and ‖u‖∞,Z0

denote the discrete 2-norm and the maximum norm133

over Z0 respectively:134

‖u‖2,Z0
=

h2
∑

(x,y)∈Z0

|u(x, y)|2
 1

2

, ‖u‖∞,Z0
= max

(x,y)∈Z0

|u(x, y)|.135

• For a continuous function f(x, y), let fI(x, y) denote its piecewise Qk La-136

grange interpolant at Z0,e on each cell e, i.e., fI ∈ V h satisfies:137

f(x, y) = fI(x, y), ∀(x, y) ∈ Z0.138

• P k(t) denotes the set of polynomial of degree k of variable t.139

• (f, v)e denotes the inner product in L2(e) and (f, v) denotes the inner product140

in L2(Ω):141

(f, v)e =

∫∫
e

fv dxdy, (f, v) =

∫∫
Ω

fv dxdy =
∑
e

(f, v)e.142
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SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 5

• 〈f, v〉e,h denotes the approximation to (f, v)e by using (k+ 1)× (k+ 1)-point143

Gauss Lobatto quadrature with k ≥ 2 for integration over cell e.144

• 〈f, v〉h denotes the approximation to (f, v) by using (k + 1) × (k + 1)-point145

Gauss Lobatto quadrature with k ≥ 2 for integration over each cell e.146

• K̂ = [−1, 1]× [−1, 1] denotes a reference cell.147

• For f(x, y) defined on e, consider f̂(s, t) = f(sh+ xe, th+ ye) defined on K̂.148

Let f̂I denote the Qk Lagrange interpolation of f̂ at the (k + 1) × (k + 1)149

Gauss Lobatto quadrature points on K̂.150

• (f̂ , v̂)K̂ =
∫∫
K̂
f̂ v̂ dsdt.151

• 〈f̂ , v̂〉K̂ denotes the approximation to (f̂ , v̂)K̂ by using (k+ 1)× (k+ 1)-point152

Gauss-Lobatto quadrature.153

• On the reference cell K̂, for convenience we use the superscript h over the
ds or dt to denote we use (k + 1)-point Gauss-Lobatto quadrature on the
corresponding variable. For example,∫∫

K̂

f̂dhsdt =

∫ 1

−1

[w1f̂(−1, t) + wk+1f̂(1, t) +

k∑
i=2

wif̂(xi, t)]dt.

Since (f̂ v̂)I coincides with f̂ v̂ at the quadrature points, we have∫∫
K̂

(f̂ v̂)Idxdy =

∫∫
K̂

(f̂ v̂)Id
hxdhy =

∫∫
K̂

f̂ v̂dhxdhy = 〈f̂ , v̂〉K̂ .

The following are commonly used tools and facts:154

• For two-dimensional problems,

hk−2/p|v|k,p,e = |v̂|k,p,K̂ , hk−2/p[v]k,p,e = [v̂]k,p,K̂ , 1 ≤ p ≤ ∞.

• Inverse estimates for polynomials:155

(2.1) ‖vh‖k+1,e ≤ Ch−1‖vh‖k,e, ∀vh ∈ V h, k ≥ 0.156

• Sobolev’s embedding in two and three dimensions: H2(K̂) ↪→ C0(K̂).157

• The embedding implies

‖f̂‖0,∞,K̂ ≤ C‖f̂‖k,2,K̂ , ∀f̂ ∈ Hk(K̂), k ≥ 2,

‖f̂‖1,∞,K̂ ≤ C‖f̂‖k+1,2,K̂ , ∀f̂ ∈ Hk+1(K̂), k ≥ 2.

• Cauchy-Schwarz inequalities in two dimensions:158

∑
e

‖u‖k,e‖v‖k,e ≤

(∑
e

‖u‖2k,e

) 1
2
(∑

e

‖v‖2k,e

) 1
2

, ‖u‖k,1,e = O(h)‖u‖k,2,e.159

• Poincaré inequality: let ū be the average of u ∈ H1(Ω) on Ω, then160

|u− ū|0,p,Ω ≤ C|∇u|0,p,Ω, p ≥ 1.161

If ū is the average of u ∈ H1(e) on a cell e, we have162

|u− ū|0,p,e ≤ Ch|∇u|0,p,e, p ≥ 1.163
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• For k ≥ 2, the (k + 1) × (k + 1) Gauss-Lobatto quadrature is exact for164

integration of polynomials of degree 2k − 1 ≥ k + 1 on K̂.165

• Define the projection operator Π̂1 : û ∈ L1(K̂)→ Π̂1û ∈ Q1(K̂) by166

(2.2)

∫∫
K̂

(Π̂1û)wdsdt =

∫∫
K̂

ûwdsdt,∀w ∈ Q1(K̂).167

Notice that all degree of freedoms of Π̂1û can be represented as a linear168

combination of
∫∫
K̂
û(s, t)p(s, t)dsdt for p(s, t) = 1, s, t, st, thus the H1(K̂)169

(orH2(K̂)) norm of Π̂1û are determined by
∫∫
K̂
û(s, t)p(s, t)dsdt. By Cauchy-170

Schwarz inequality |
∫∫
K̂
û(s, t)p̂(s, t)dsdt| ≤ ‖û‖0,2,K̂‖p̂‖0,2,K̂ ≤ C‖û‖0,2,K̂ ,171

we have ‖Π1û‖1,2,K̂ ≤ C‖û‖0,2,K̂ , which means Π̂1 is a continuous linear172

mapping from L2(K̂) to H1(K̂). By a similar argument, one can show Π̂1 is173

a continuous linear mapping from L2(K̂) to H2(K̂).174

2.2. Coercivity and elliptic regularity. We consider the elliptic variational175

problem of finding u ∈ H1
0 (Ω) to satisfy176

(2.3) A(u, v) :=

∫∫
Ω

(∇vTa∇u+ b∇uv + cuv) dxdy = (f, v),∀v ∈ H1
0 (Ω),177

where a =

(
a11 a12

a21 a22

)
is real symmetric positive definite and b = [b1 b2]. Assume

the coefficients a, b and c are smooth with uniform upper bounds, thus A(u, v) ≤
C‖u‖1‖v‖1 for any u, v ∈ H1

0 (Ω). We denote λa as the smallest eigenvalues of a.
Assume λa has a positive lower bound and ∇ · b ≤ 2c, so that coercivity of the
bilinear form can be easily achieved. Since

(b · ∇u, v) =

∫
∂Ω

uvb · nds− (∇ · (vb), u) =

∫
∂Ω

uvb · nds− (b · ∇v, u)− (v∇ · b, u),

we have178

(2.4) 2(b · ∇v, v) + 2(cv, v) =

∫
∂Ω

v2b · nds+ ((2c−∇ · b)v, v) ≥ 0, ∀v ∈ H1
0 (Ω).179

By the equivalence of two norms | · |1 and ‖ · ‖1 for the space H1
0 (Ω) (see [5]), we180

conclude that the bilinear form A(u, v) = (a∇u,∇v) + (b · ∇u, v) + (cu, v) satisfies181

coercivity A(v, v) ≥ C‖v‖1 for any v ∈ H1
0 (Ω).182

The coercivity can also be achieved if we assume |b| < 4λac. By Young’s inequal-
ity

|(b · ∇v, v)| ≤
∫∫

Ω

|b · ∇v|2

4c
+ c|v|2dxdy ≤

(
|b|2

4c
∇v,∇v

)
+ (cv, v),

we have183

(2.5)

A(v, v) ≥ (a∇v,∇v)+(cv, v)−|(b·∇v, v)| ≥
(

(λa −
|b|2

4c
)∇v,∇v

)
> 0, ∀v ∈ H1

0 (Ω).184

Let A∗ be the dual operator of A, i.e., A∗(u, v) = A(v, u). We need to assume185

the elliptic regularity holds for the dual problem of (2.3) :186

(2.6) w ∈ H1
0 (Ω), A∗(w, v) = (f, v), ∀v ∈ H1

0 (Ω) =⇒ ‖w‖2 ≤ C‖f‖0,187

where C is independent of w and f . See [16, 9] for the elliptic regularity with Lipschitz188

continuous coefficients on a Lipschitz domain.189
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3. Quadrature error estimates. In the following, we will use ˆ for a function190

to emphasize the function is defined on or transformed to the reference cell K̂ =191

[−1, 1]× [−1, 1] from a mesh cell.192

3.1. Standard estimates. The Bramble-Hilbert Lemma for Qk polynomials193

can be stated as follows, see Exercise 3.1.1 and Theorem 4.1.3 in [6]:194

Theorem 3.1. If a continuous linear mapping Π̂ : Hk+1(K̂) → Hk+1(K̂) satis-195

fies Π̂v̂ = v̂ for any v̂ ∈ Qk(K̂), then196

(3.1) ‖û− Π̂û‖k+1,K̂ ≤ C[û]k+1,K̂ , ∀û ∈ Hk+1(K̂).197

Thus if l(·) is a continuous linear form on the space Hk+1(K̂) satisfying l(v̂) = 0,∀v̂ ∈198

Qk(K̂), then199

|l(û)| ≤ C‖l‖′
k+1,K̂

[û]k+1,K̂ , ∀û ∈ Hk+1(K̂),200

where ‖l‖′
k+1,K̂

is the norm in the dual space of Hk+1(K̂).201

By applying Bramble-Hilbert Lemma, we have the following standard quadrature202

estimates. See Theorem 2.3 and Theorem 2.4 in [13] for the detailed proof.203

Theorem 3.2. For a sufficiently smooth function a(x, y) ∈ H2k(e) and k ≥ 2, let204

m is an integer satisfying k ≤ m ≤ 2k, we have205 ∫∫
e

a(x, y)dxdy −
∫∫

e

aI(x, y)dxdy = O(hm+1)[a]m,e = O(hm+2)[a]m,∞,e.206

Theorem 3.3. If f ∈ Hk+2(Ω) with k ≥ 2, then

(f, vh)− 〈f, vh〉h = O(hk+2)‖f‖k+2‖vh‖2, ∀vh ∈ V h.

Remark 3.4. By the Theorem 3.1, on the reference cell K̂, for a(x, y) ∈ Hk+2(e)207

and k ≥ 2, we have208

(3.2)

∫∫
K̂

â(s, t)− âI(s, t)dsdt ≤ C[â]k+2,K̂ ≤ C[â]k+2,∞,K̂ ,209

and210

(3.3) ‖â− âI‖k+1,K̂ ≤ C[â]k+1,K̂ .211

The following two results are also standard estimates obtained by applying the212

Bramble-Hilbert Lemma.213

Lemma 3.5. If f ∈ H2(Ω) or f ∈ V h, we have (f, vh)−〈f, vh〉h = O(h2)|f |2‖vh‖0, ∀vh ∈214

V h.215

Proof. For simplicity, we ignore the subscript in vh. Let E(f) denote the quadra-216

ture error for integrating f(x, y) on e. Let Ê(f̂) denote the quadrature error for217

integrating f̂(s, t) = f(xe + sh, ye + th) on the reference cell K̂. Due to the embed-218

ding H2(K̂) ↪→ C0(K̂), we have219

|Ê(f̂ v̂)| ≤ C|f̂ v̂|0,∞,K̂ ≤ C|f̂ |0,∞,K̂ |v̂|0,∞,K̂ ≤ C‖f̂‖2,K̂‖v̂‖0,K̂ .220
221

Thus the mapping f̂ → E(f̂ v̂) is a continuous linear form on H2(K̂) and its norm is

bounded by C‖v̂‖0,K̂ . If f̂ ∈ Q1(K̂), then we have Ê(f̂ v̂) = 0. By the Bramble-Hilbert
Lemma Theorem 3.1 on this continuous linear form, we get

|Ê(f̂ v̂)| ≤ C[f̂ ]2,K̂‖v̂‖0,K̂ .
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So on a cell e, we get222

(3.4) E(fv) = h2Ê(f̂ v̂) ≤ Ch2[f̂ ]2,K̂‖v̂‖0,K̂ ≤ Ch
2|f |2,e‖v‖0,e.223

Summing over all elements and use Cauchy-Schwarz inequality, we get the desired224

result.225

Theorem 3.6. Assume all coefficients of (2.3) are in W 2,∞(Ω). We have226

A(zh, vh)−Ah(zh, vh) = O(h)‖vh‖2‖zh‖1, ∀vh, zh ∈ V h.227

Proof. Following the same arguments as in the proof of Lemma 3.4, we have

E(fv) ≤ Ch2|f |2,e‖v‖0,e,∀f, v ∈ V h.

Let f = a11(vh)x and v = (zh)x in the estimate above, we get228

|(a11(zh)x, (vh)x)− 〈a11(zh)x, (vh)x〉h| ≤ Ch2‖a11(vh)x‖2‖(zh)x‖0229

≤Ch2‖a11‖2,∞‖vh‖3|zh|1 ≤ Ch‖a11‖2,∞‖vh‖2|zh|1,230231

where the inverse estimate (2.1) is used in the last inequality. Similarly, we have232

(a12(zh)x, (vh)y)− 〈a12(zh)x, (vh)y〉h = Ch‖a12‖2,∞‖vh‖2|zh|1,233

(a22(zh)y, (vh)y)− 〈a22(zh)y, (vh)y〉h = Ch‖a22‖2,∞‖vh‖2|zh|1,234

(b1(zh)x, vh)− 〈b1(zh)x, vh〉h = Ch‖b1‖2,∞‖vh‖2|zh|0,235

(b2(zh)y, vh)− 〈b2(zh)y, vh〉h = Ch‖b2‖2,∞‖vh‖2|zh|0,236

(czh, vh)− 〈czh, vh〉h = Ch‖c‖2,∞‖vh‖1|zh|0,237238

which implies239

A(zh, vh)−Ah(zh, vh) = O(h)‖vh‖2‖zh‖1.240

3.2. A refined consistency error. In this subsection, we will show how to241

establish the desired consistency error estimate for smooth enough coefficients:242

A(u, vh)−Ah(u, vh) =

{
O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h0
O(hk+ 3

2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h
.243

Theorem 3.7. Assume a(x, y) ∈W k+2,∞(Ω), u ∈ Hk+3(Ω), k ≥ 2, then

(a∂xu, ∂xvh)− 〈a∂xu, ∂xvh〉h =

{
O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h0 ,(3.5a)

O(hk+ 3
2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h,(3.5b)

(a∂xu, ∂yvh)− 〈a∂xu, ∂yvh〉h =

{
O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h0 ,(3.6a)

O(hk+ 3
2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h,(3.6b)

244

(3.7) (a∂xu, vh)− 〈a∂xu, vh〉h = O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h0 ,245

246

(3.8) (au, vh)− 〈au, vh〉h = O(hk+2)‖a‖k+2,∞‖u‖k+2‖vh‖2, ∀vh ∈ V h0 .247
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Remark 3.8. We emphasize that Theorem 3.7 cannot be proven by applying the
Bramble-Hilbert Lemma directly. Consider the constant coefficient case a(x, y) ≡ 1
and k = 2 as an example,

(∂xu, ∂xvh)− 〈∂xu, ∂xvh〉h =
∑
e

(∫∫
e

ux(vh)xdxdy −
∫∫

e

ux(vh)xd
hxdhy

)
.

Since the 3× 3 Gauss-Lobatto quadrature is exact for integrating Q3 polynomials, by248

Theorem 3.1 we have249 ∣∣∣∣∫∫
e

ux(vh)xdxdy −
∫∫

e

ux(vh)xd
hxdhy

∣∣∣∣ =

∣∣∣∣∫∫
K̂

ûs(v̂h)sdsdt−
∫∫

K̂

ûs(v̂h)sd
hsdht

∣∣∣∣ ≤ C[ûs(v̂h)s]4,K̂ .250

Notice that v̂h is Q2 thus (v̂h)stt does not vanish and [(v̂h)s]4,K̂ ≤ C|v̂h|3,K̂ . So by251

Bramble-Hilbert Lemma for Qk polynomials, we can only get252 ∫∫
e

ux(vh)xdxdy −
∫∫

e

ux(vh)xd
hxdhy = O(h4)‖u‖5,e‖vh‖3,e.253

Thus by Cauchy-Schwarz inequality after summing over e, we only have254

(∂xu, ∂xvh)− 〈∂xu, ∂xvh〉h = O(h4)‖u‖5‖vh‖3.255

In order to get the desired estimate involving only the broken H2-norm of vh, we256

will take advantage of error cancellations between neighboring cells through integra-257

tion by parts.258

Proof. For simplicity, we ignore the subscript h of vh in this proof and all the259

following v are in V h which are Qk polynomials in each cell. First, by Theorem 3.3,260

we easily obtain (3.7) and (3.8):261

(aux, v)− 〈aux, v〉h = O(hk+2)‖aux‖k+2‖v‖2 = O(hk+2)‖a‖k+2,∞‖u‖k+3‖v‖2,262

263

(au, v)− 〈au, v〉h = O(hk+2)‖au‖k+2‖v‖2 = O(hk+2)‖a‖k+2,∞‖u‖k+2‖v‖2.264

We will only discuss (aux, vx) − 〈aux, vx〉h and the same discussion also applies to265

derive (3.6a) and (3.6b).266

Since we have267

(aux, vx)− 〈aux, vx〉h =
∑
e

(∫∫
e

auxvxdxdy −
∫∫

e

auxvxd
hxdhy

)
268

=
∑
e

(∫∫
K̂

âûsv̂sdsdt−
∫∫

K̂

âûsv̂sd
hsdht

)
=
∑
e

(∫∫
K̂

âûsv̂sdsdt−
∫∫

K̂

(âûs)I v̂sd
hsdht

)
,269

270

where we use the fact âûsv̂s = (âûs)I v̂s on the Gauss-Lobatto quadrature points. For
fixed t, (âûs)I v̂s is a polynomial of degree 2k−1 w.r.t. variable s, thus the (k+1)-point
Gauss-Lobatto quadrature is exact for its s-integration, i.e.,∫∫

K̂

(âûs)I v̂sd
hsdht =

∫∫
K̂

(âûs)I v̂sdsd
ht.
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10 H. LI AND X. ZHANG

To estimate the quadrature error we introduce some intermediate values then do271

interpretation by parts,272 ∫∫
K̂

âûsv̂sdsdt−
∫∫

K̂

(âûs)I v̂sd
hsdht(3.9)273

=

∫∫
K̂

âûsv̂sdsdt−
∫∫

K̂

(âûs)I v̂sdsdt+

∫∫
K̂

(âûs)I v̂sdsdt−
∫∫

K̂

(âûs)I v̂sdsd
ht

(3.10)

274

=

∫∫
K̂

[âûs − (âûs)I ] v̂sdsdt+

(∫∫
K̂

[(âûs)I ]s v̂dsd
ht−

∫∫
K̂

[(âûs)I ]s v̂dsdt

)(3.11)

275

+

(∫ 1

−1

(âûs)I v̂dt

∣∣∣∣s=1

s=−1

−
∫ 1

−1

(âûs)I v̂d
ht

∣∣∣∣s=1

s=−1

)
= I + II + III.(3.12)276

277

For the first term in (3.12), let v̂s be the cell average of v̂s on K̂, then278

I =

∫∫
K̂

(âûs − (âûs)I) v̂sdsdt+

∫∫
K̂

(âûs − (âûs)I) (v̂s − v̂s)dsdt.279
280

By (3.2) we have281 ∣∣∣∣∫∫
K̂

(âûs − (âûs)I) v̂sdsdt

∣∣∣∣ ≤ C[âûs]k+2,K̂

∣∣v̂s∣∣ = O(hk+2)‖â‖k+2,∞,e‖û‖k+3,e‖v̂‖1,e.282

By Cauchy-Schwarz inequality, the Bramble-Hilbert Lemma on interpolation error283

and Poincaré inequality, we have284 ∣∣∣∣∫∫
K̂

(âûs − (âûs)I) (v̂s − v̂s)dsdt
∣∣∣∣ ≤ |âûs − (âûs)I |0,K̂ |v̂s − v̂s|0,K̂285

≤C[âûs]k+1,K̂ |v̂|2,K̂ = O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e‖v‖2,e.286
287

Thus we have288

I = O(hk+2)‖a‖k+2,∞,e‖u‖k+3,e‖v‖2,e.289

For the second term in (3.12), we can estimate it the same way as in the proof of
Theorem 2.4. in [13]. For each v̂ ∈ Qk(K̂) we can define a linear form on Hk(K̂) as

Êv̂(f̂) =

∫∫
K̂

(F̂I)sv̂dsdt−
∫∫

K̂

(F̂I)sv̂dsd
ht,

where F̂ is an antiderivative of f̂ w.r.t. variable s. Due to the linearity of interpo-
lation operator and differentiating operation, Êv̂ is well defined. By the embedding
H2(K̂) ↪→ C0(K̂), we have

Êv̂(f̂) ≤ C‖F̂‖0,∞,K̂‖v̂‖0,∞,K̂ ≤ C‖f̂‖0,∞,K̂‖v̂‖0,∞,K̂ ≤ C‖f̂‖2,K̂‖v̂‖0,K̂ ≤ C‖f̂‖k,K̂‖v̂‖0,K̂ ,

where we use the fact that all the norms on Qk(K̂) are equivalent to derive the first
inequality. The above inequalities imply that the mapping Êv̂ is a continuous linear
form on Hk(K̂). With projection Π1 defined in (2.2), we have

Êv̂(f̂) = Êv̂−Π1v̂(f̂) + ÊΠ1v̂(f̂), ∀v̂ ∈ Qk(K̂).

This manuscript is for review purposes only.



SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 11

Notice that F̂ by definition is an antiderivative of f̂ w.r.t. only variable s. If f̂ ∈
Qk−1(K̂), then F̂I is a polynomial of degree only k − 1 w.r.t. to variable t thus
(F̂I)s ∈ Qk−1(K̂). The quadrature is exact for polynomials of degree 2k − 1, thus
Qk−1(K̂) ⊂ ker Êv̂−Π1v̂. So by the Bramble-Hilbert Lemma, we get

Êv̂−Π1v̂(f̂) ≤ C[f ]k,K̂‖v̂ −Π1v̂‖0,K̂ ≤ C[f ]k,K̂ |v̂|2,K̂ ,

and we also have

ÊΠ1v̂(f̂) =

∫∫
K̂

(F̂I)sΠ1v̂dsdt−
∫∫

K̂

(F̂I)sΠ1v̂dsd
ht = 0.

Thus we have290 ∫∫
K̂

[(âûs)I ]s v̂dsd
ht−

∫∫
K̂

[(âûs)I ]s v̂dsdt = −Êv̂((âûs)s) = −Êv̂−Π1v̂((âûs)s)291

≤C[(âûs)s]k,K̂ |v̂h|2,K̂ ≤ C|âûs|k+1,K̂ |v̂|2,K̂ = O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e|v|2,e292
293

Now we only need to discuss the line integral term. Let L2 and L4 denote the left294

and right boundary of Ω and let le2 and le4 denote the left and right edge of element295

e or lK̂2 and lK̂4 for K̂. Since (âûs)I v̂ mapped back to e will be 1
h (aux)Iv which is296

continuous across le2 and le4, after summing over all elements e, the line integrals along297

the inner edges are canceled out and only the line integrals on L2 and L4 remain.298

For a cell e adjacent to L2, consider its reference cell K̂, and define a linear form

Ê(f̂) =
∫ 1

−1
f̂(−1, t)dt−

∫ 1

−1
f̂(−1, t)dht, then we have

Ê(f̂ v̂) ≤ C|f̂ |
0,∞,lK̂2

|v̂|
0,∞,lK̂2

≤ C‖f̂‖
2,lK̂2
‖v̂‖

0,lK̂2
,

which means that the mapping f̂ → Ê(f̂ v̂) is continuous with operator norm less299

than C‖v̂‖
0,lK̂2

for some C. Clearly we have300

Ê(f̂ v̂) = Ê(f̂Π1v̂) + Ê(f̂(v̂ −Π1v̂)).301302

By the Theorem 3.1 we get303

Ê((âûs)I(v̂ −Π1v̂)) ≤ C[(âûs)I ]k,lK̂2
[v̂]

2,lK̂2
≤ C(|âûs − (âûs)I |k,lK̂2 + |âûs|k,lK̂2 )[v̂]

2,lK̂2
304

≤(|âûs|k+1,lK̂2
+ |âûs|k,lK̂2 )[v̂]

2,lK̂2
= O(hk+2)‖a‖k+1,∞,le2‖u‖k+2,le2

[v]2,le2 ,305306

where the first inequality comes from the accuracy of the (k+1)-point Gauss-Lobatto307

quadrature rule, i.e. Ê(f̂) = 0, ∀f̂ ∈ Q2k−1(K̂). The (k + 1)-point Gauss-Lobatto308

quadrature rule also gives309

Ê((âûs)IΠ1v̂) = 0.310311

For the third term in (3.12), we sum them up over all the elements. Then for the312

line integral along L2313 ∑
e∩L2 6=∅

∫ 1

−1

(âûs)I(−1, t)v̂(−1, t)dt−
∑

e∩L2 6=∅

∫ 1

−1

(âûs)I(−1, t)v̂(−1, t)dht314

=
∑

e∩L2 6=∅

Ê((âûs)I v̂) =
∑

e∩L2 6=∅

O(hk+2)‖a‖k+1,∞,le2‖u‖k+2,le2
|v|2,le2 .315

316
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12 H. LI AND X. ZHANG

Let sα and ωα (α = 1, 2, · · · , k + 2) denote the quadrature points and weights in317

(k+ 2)-point Gauss-Lobatto quadrature rule for s ∈ [−1, 1]. Since v̂2
tt(s, t) ∈ Q2k(K̂),318

(k + 2)-point Gauss-Lobatto quadrature is exact for s-integration thus319 ∫ 1

−1

∫ 1

−1

v̂2
tt(s, t)dsdt =

k+2∑
α=1

ωα

∫ 1

−1

v̂2
tt(sα, t)dt,320

which implies321

(3.13)

∫ 1

−1

v̂2
tt(±1, t)dt ≤ C

∫ 1

−1

∫ 1

−1

v̂2
tt(s, t)dsdt,322

thus323

h
1
2 |v|2,le2 ≤ C[v]2,e.324325

By Cauchy-Schwarz inequality and trace inequality, we have326

∑
e∩L2 6=∅

(∫ 1

−1

(âûs)I v̂dt

∣∣∣∣s=1

s=−1

−
∫ 1

−1

(âûs)I v̂d
ht

∣∣∣∣s=1

s=−1

)
327

=
∑

e∩L2 6=∅

O(hk+2)‖a‖k+1,∞,le2‖u‖k+2,le2
|v|2,le2328

=
∑

e∩L2 6=∅

O(hk+ 3
2 )‖a‖k+1,∞,le2‖u‖k+2,le2

|v|2,e = O(hk+ 3
2 )‖a‖k+1,∞,Ω‖u‖k+2,L2

|v|2,Ω329

=O(hk+ 3
2 )‖a‖k+1,∞,Ω‖u‖k+3,Ω|v|2,Ω.330331

Combine all the estimates above, we get (3.5b). Since the 1
2 order loss is only due332

to the line integral along the boundary ∂Ω. If v ∈ V h0 , vyy = 0 on L2 and L4 so we333

have (3.5a).334

4. Superconvergence of bilinear forms. The M-type projection in [3, 4] is335

a very convenient tool for discussing the superconvergence of function values. Let336

up be the M-type Qk projection of the smooth exact solution u and its definition337

will be given in the following subsection. To establish the superconvergence of the338

original finite element method (1.1) for a generic elliptic problem (2.3) with smooth339

coefficients, one can show the following superconvergence of bilinear forms, see [4, 14]340

(see also [13] for a detailed proof):341

A(u− up, vh) =

{
O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h0 ,
O(hk+ 3

2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h.
342

In this section we will show the superconvergence of the bilinear form Ah:

Ah(u− up, vh) =

{
O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h0 ,(4.1a)

O(hk+ 3
2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h.(4.1b)

4.1. Definition of M-type projection. We first recall the definition of M-type343

projection. More detailed definition can also be found in [13]. Legendre polynomials344

on the reference interval [−1, 1] are given as345

lk(t) =
1

2kk!

dk

dtk
(t2 − 1)k : l0(t) = 1, l1(t) = t, l2(t) =

1

2
(3t2 − 1), · · · ,346
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which are L2-orthogonal to one another. Define their antiderivatives as M-type poly-347

nomials:348

Mk+1(t) =
1

2kk!

dk−1

dtk−1
(t2−1)k : M0(t) = 1,M1(t) = t,M2(t) =

1

2
(t2−1),M3(t) =

1

2
(t3−t), · · · .349

which satisfy the following properties:350

• If j − i 6= 0,±2, then Mi(t) ⊥Mj(t), i.e.,
∫ 1

−1
Mi(t)Mj(t)dt = 0.351

• Roots of Mk(t) are the k-point Gauss-Lobatto quadrature points for [−1, 1].352

Since Legendre polynomials form a complete orthogonal basis for L2([−1, 1]), for any353

f̂(t) ∈ H1([−1, 1]), its derivative f̂ ′(t) can be expressed as Fourier-Legendre series354

f̂ ′(t) =

∞∑
j=0

b̂j+1lj(t), b̂j+1 = (j +
1

2
)

∫ 1

−1

f̂ ′(t)lj(t)dt.355

The one-dimensional M-type projection is defined as f̂k(t) =
∑k
j=0 b̂jMj(t), where356

b̂0 = f̂(1)+f̂(−1)
2 is determined by b̂1 = f̂(1)−f̂(−1)

2 so that f̂k(±1) = f̂(±1). We have357

f̂(t) = lim
k→∞

f̂k(t) =
∞∑
j=0

b̂jMj(t). The remainder R̂[f̂ ]k(t) of one-dimensional M-type358

projection is359

R̂[f̂ ]k(t) = f̂(t)− f̂k(t) =

∞∑
j=k+1

b̂jMj(t).360

For a function f̂(s, t) ∈ H2(K̂) on the reference cell K̂ = [−1, 1] × [−1, 1], its361

two-dimensional M-type expansion is given as362

f̂(s, t) =

∞∑
i=0

∞∑
j=0

b̂i,jMi(s)Mj(t),363

where364

b̂0,0 =
1

4
[f̂(−1,−1) + f̂(−1, 1) + f̂(1,−1) + f̂(1, 1)],365

b̂0,j , b̂1,j =
2j − 1

4

∫ 1

−1

[f̂t(1, t)± f̂t(−1, t)]lj−1(t)dt, j ≥ 1,366

b̂i,0, b̂i,1 =
2i− 1

4

∫ 1

−1

[f̂s(s, 1)± f̂s(s,−1)]li−1(s)ds, i ≥ 1,367

b̂i,j =
(2i− 1)(2j − 1)

4

∫∫
K̂

f̂st(s, t)li−1(s)lj−1(t)dsdt, i, j ≥ 1.368
369

The M-type Qk projection of f̂ on K̂ and its remainder are defined as370

f̂k,k(s, t) =

k∑
i=0

k∑
j=0

b̂i,jMi(s)Mj(t), R̂[f̂ ]k,k(s, t) = f̂(s, t)− f̂k,k(s, t).371

The M-type Qk projection is equivalent to the point-line-plane interpolation used in372

[15, 14]. See Theorem 3.1 in [13] for the proof of the following fact:373

Theorem 4.1. For k ≥ 2, the M-type Qk projection is equivalent to the Qk point-374

line-plane projection Π defined as follows:375
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1. Πû = û at four corners of K̂ = [−1, 1]× [−1, 1].376

2. Πû− û is orthogonal to polynomials of degree k − 2 on each edge of K̂.377

3. Πû− û is orthogonal to any v̂ ∈ Qk−2(K̂) on K̂.378

For f(x, y) on e = [xe − h, xe + h]× [ye − h, ye + h], let f̂(s, t) = f(sh + xe, th + ye)379

then the M-type Qk projection of f on e and its remainder are defined as380

fk,k(x, y) = f̂k,k(
x− xe
h

,
y − ye
h

), R[f ]k,k(x, y) = f(x, y)− fk,k(x, y).381

Now consider a function u(x, y) ∈ Hk+2(Ω), let up(x, y) denote its piecewise M-type382

Qk projection on each element e in the mesh Ωh. The first two properties in Theorem383

4.1 imply that up(x, y) on each edge of e is uniquely determined by u(x, y) along that384

edge. So up(x, y) is a piecewise continuous Qk polynomial on Ωh.385

M-type projection has the following properties. See Theorem 3.2, Lemma 3.1 and386

Lemma 3.2 in [13] for the proof.387

Theorem 4.2. For k ≥ 2,388

‖u− up‖2,Z0
= O(hk+2)‖u‖k+2, ∀u ∈ Hk+2(Ω).389

390
‖u− up‖∞,Z0

= O(hk+2)‖u‖k+2,∞, ∀u ∈W k+2,∞(Ω).391

Lemma 4.3. For f̂ ∈ Hk+1(K̂), k ≥ 2,392

1. |R̂[f̂ ]k,k|0,∞,K̂ ≤ C[f̂ ]k+1,K̂ , |∂sR̂[f̂ ]k,k|0,∞,K̂ ≤ C[f̂ ]k+1,K̂ .393

2. R̂[f̂ ]k+1,k+1−R̂[f̂ ]k,k = Mk+1(t)
∑k
i=0 b̂i,k+1Mi(s)+Mk+1(s)

∑k+1
j=0 b̂k+1,jMj(t).394

3. |b̂i,k+1| ≤ Ck|f̂ |k+1,2,K̂ , |b̂k+1,i| ≤ Ck|f̂ |k+1,2,K̂ , 0 ≤ i ≤ k + 1.395

4. If f̂ ∈ Hk+2(K̂), then |b̂i,k+1| ≤ Ck|f̂ |k+2,2,K̂ , 1 ≤ i ≤ k + 1.396

4.2. Estimates of M-type projection with quadrature.397

Lemma 4.4. Assume f̂(s, t) ∈ Hk+3(K̂), k ≥ 2,398

〈R̂[f̂ ]k+1,k+1 − R̂[f̂ ]k,k, 1〉K̂ = 0, |〈∂sR̂[f̂ ]k+1,k+1, 1〉K̂ | ≤ C|f̂ |k+3,K̂ .399

Proof. First, we have400

〈R̂[f̂ ]k+1,k+1 − R̂[f̂ ]k,k, 1〉K̂ = 〈Mk+1(t)
k∑
i=0

b̂i,k+1Mi(s) +Mk+1(s)
k+1∑
j=0

b̂k+1,jMj(t), 1〉K̂ = 0401

402

due to the fact that roots of Mk+1(t) are the (k+ 1)-point Gauss-Lobatto quadrature403

points for [−1, 1].404

We have405

〈∂sR̂[f̂ ]k+1,k+1, 1〉K̂406

=〈∂sR̂[f̂ ]k+2,k+2, 1〉K̂ − 〈∂s(R̂[f̂ ]k+2,k+2 − R̂[f̂ ]k+1,k+1), 1〉K̂407

=〈∂sR̂[f̂ ]k+2,k+2, 1〉K̂ − 〈Mk+2(t)

k+1∑
i=0

b̂i,k+2M
′
i(s) +M ′k+2(s)

k+2∑
j=0

b̂k+2,jMj(t), 1〉K̂408

=〈∂sR̂[f̂ ]k+2,k+2, 1〉K̂ − 〈Mk+2(t)

k∑
i=0

b̂i+1,k+2li(s), 1〉K̂ + 〈lk+1(s)

k+2∑
j=0

b̂k+2,jMj(t), 1〉K̂ .409

410
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Then by Lemma 4.3,411

|〈∂sR̂[f̂ ]k+2,k+2, 1〉K̂ | ≤ C|f̂ |k+3,K̂ .412

Notice that we have 〈lk+1(s)
∑k+2
j=0 b̂k+2,jMj(t), 1〉K̂ = 0 since the (k+1)-point Gauss-

Lobatto quadrature for s-integration is exact and lk+1(s) is orthogonal to 1. Lemma

4.3 implies |b̂i+1,k+2| ≤ C[f̂ ]k+3,K̂ for i ≥ 0, thus we have

|〈Mk+2(t)

k∑
i=0

b̂i+1,k+2li(s), 1〉K̂ | ≤ C[f̂ ]k+3,K̂ .

Lemma 4.5. Assume a(x, y) ∈W k,∞(Ω), u(x, y) ∈ Hk+3(Ω) and k ≥ 2. Then413

〈a(u− up)x, (vh)x〉h = O(hk+2)‖a‖2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h.414

Proof. As before, we ignore the subscript of vh for simplicity. We have

〈a(u− up)x, vx〉h =
∑
e

〈a(u− up)x, vx〉e,h,

and on each cell e,415

〈a(u− up)x, vx〉e,h = 〈(R[u]k,k)x, avx〉e,h = 〈(R̂[û]k,k)s, âv̂s〉K̂416

=〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ + 〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂s〉K̂ .(4.2)417418

For the first term in (4.2), we have419

〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = 〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ + 〈(R̂[û]k+1,k+1)s, â(v̂s − v̂s)〉K̂ .420421

By Lemma 4.4,422

〈(R̂[û]k+1,k+1)s, â v̂s〉K̂ ≤ C|â|0,∞|û|k+3,K̂ |v̂|1,K̂ .423

By Lemma 4.3,424

|(R̂[û]k+1,k+1)s|0,∞,K̂ ≤ C[û]k+2,K̂ .425

By Bramble-Hilbert Lemma Theorem 3.1 we have426

〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = 〈(R̂[û]k+1,k+1)s, â v̂s〉K̂ + 〈(R̂[û]k+1,k+1)s, (â− â)v̂s〉K̂427

≤C(|â|0,∞|û|k+3,K̂ |v̂|1,K̂ + |â− â|0,∞|û|k+2,K̂ |v̂|1,K̂)428

≤C(|â|0,∞|û|k+3,K̂ |v̂|1,K̂ + |â|1,∞|û|k+2,K̂ |v̂|1,K̂) = O(hk+2)‖a‖1,∞,e‖u‖k+3,e‖v‖1,e,429
430

and431

〈(R̂[û]k+1,k+1)s, â(v̂s − v̂s)〉K̂ ≤ C[û]k+2,2,K̂ |â|0,∞,K̂ |v̂s − v̂s|0,∞,K̂432

≤C[û]k+2,2,K̂ |â|0,∞,K̂ |v̂s − v̂s|0,2,K̂ = O(hk+2)[u]k+2,2,e|a|0,∞,e|v|2,2,e.433
434

Thus,435

(4.3) 〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = O(hk+2)‖a‖1,∞,e|u|k+3,2,e‖v‖2,e.436
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For the second term in (4.2), we have437

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂s〉K̂438

=− 〈(Mk+1(t)

k∑
i=0

b̂i,k+1Mi(s) +Mk+1(s)

k+1∑
j=0

b̂k+1,jMj(t))s, âv̂s〉K̂439

=− 〈Mk+1(t)

k−1∑
i=0

b̂i+1,k+1li(s) + lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂s〉K̂440

=− 〈Mk+1(t)

k−1∑
i=0

b̂i+1,k+1li(s), âv̂s〉K̂ − 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂s〉K̂ .(4.4)441

442

Since Mk+1(t) vanishes at (k + 1) Gauss-Lobatto points, we have

〈Mk+1(t)

k−1∑
i=0

b̂i+1,3li(s), âv̂s〉K̂ = 0.

For the second term in (4.4),443

〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂s〉K̂ = 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂s〉K̂ + 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), â(v̂s − v̂s)〉K̂444

=〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), (â− Π̂1â)v̂s〉K̂ + 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), (Π̂1â)v̂s〉K̂445

+ 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), (â− â)(v̂s − v̂s)〉K̂ + 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), â(v̂s − v̂s)〉K̂446

=〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), (â− Π̂1â)v̂s〉K̂ + 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), (â− â)(v̂s − v̂s)〉K̂ ,447

448

where the last step is due to the facts that (Π̂1â)v̂s and â(v̂s − v̂s) are polynomials449

of degree at most k − 1 with respect to variable s, the (k + 1)-point Gauss-Lobatto450

quadrature on s-integration is exact for polynomial of degree 2k − 1, and lk(s) is451

orthogonal to polynomials of lower degree. With Lemma 4.3, we have452

〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂s〉K̂ ≤ C|û|k+1,2,K̂(|â|2,∞|v̂|1,K̂ + |â|1,∞|v̂|2,K̂) = O(hk+2)‖a‖2,∞‖u‖k+1,e‖v‖2,e.

(4.5)

453

454

Combined with (4.3), we have proved the estimate.455

Lemma 4.6. Assume a(x, y) ∈W 2,∞(Ω), u(x, y) ∈ Hk+2(Ω) and k ≥ 2. Then456

〈a(u− up), vh〉h = O(hk+2)‖a‖2,∞‖u‖k+2‖vh‖2, ∀vh ∈ V h.457

Proof. As before, we ignore the subscript of vh for simplicity and

〈a(u− up), v〉h =
∑
e

〈a(u− up), v〉e,h.
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On each cell e we have458

〈a(u− up), v〉e,h = 〈R[u]k,k, av〉e,h = h2〈R̂[û]k,k, âv̂〉K̂ = h2〈R̂[û]k,k, âv̂ − âv̂〉K̂ + h2〈R̂[û]k,k, âv̂〉K̂ .
(4.6)

459460

For the first term in (4.6), due to the embedding H2(K̂) ↪→ C0(K̂), Bramble-Hilbert461

Lemma Theorem 3.1 and Lemma 4.3, we have462

h2〈R̂[û]k,k, âv̂ − âv̂〉K̂ ≤ Ch
2|R[û]k,k|∞|âv̂ − âv̂|∞ ≤ Ch2|û|k+1,K̂‖âv̂ − âv̂‖2,K̂463

≤ Ch2|û|k+1,K̂(‖âv̂ − âv̂‖L2(K̂) + |âv̂|1,K̂ + |âv̂|2,K̂)464

≤ Ch2|û|k+1,K̂(|âv̂|1,K̂ + |âv̂|2,K̂) = O(hk+2)‖a‖2,∞,e‖u‖k+1,e‖v‖2,e.465
466

For the second term in (4.6), we have467

h2〈R̂[û]k+1,k+1, âv̂〉K̂ = h2〈R̂[û]k+1,k+1, âv̂〉K̂ − h
2〈R̂[û]k+1,k+1 − R̂[û]k,k, âv̂〉K̂ .468469

By Lemma 4.3 and Lemma 4.4 we have470

h2〈R̂[û]k+1,k+1, âv̂〉K̂ ≤ Ch
2|û|k+2,K̂ |âv̂|0,K̂ = O(hk+2)‖a‖0,∞,e‖u‖k+2,e‖v‖0,e,471

and472

h2〈R̂[û]k+1,k+1 − R̂[û]k,k, âv̂〉K̂ = 0.473

Thus, we have 〈a(u− up), vh〉h = O(hk+2)‖a‖2,∞‖u‖k+2‖vh‖2.474

Lemma 4.7. Assume a ∈W 2,∞(Ω), u ∈ Hk+3(Ω) and k ≥ 2. Then475

〈a(u− up)x, vh〉h = O(hk+2)‖a‖2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h.476

Proof. As before, we ignore the subscript in vh and we have

〈a(u− up)x, v〉h =
∑
e

〈a(u− up)x, v〉e,h.

On each cell e, we have477

〈a(u− up)x, v〉e,h = 〈(R[u]k,k)x, av〉e,h = h〈(R̂[û]k,k)s, âv̂〉K̂478

=h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ − h〈(R̂[û]k+1,k+1 − R̂[û]k,k)s, âv̂〉K̂ .(4.7)479480

For the first term in (4.7), we have481

〈(R̂[û]k+1,k+1)s, âv̂〉K̂ ≤ 〈(R̂[û]k+1,k+1)s, âv̂〉K̂ + 〈(R̂[û]k+1,k+1)s, âv̂ − âv̂〉K̂482483

Due to Lemma 4.4,484

h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ ≤ Ch‖a‖0,∞|u|k+3,K̂‖v‖0,K̂ = O(hk+2)‖a‖0,∞‖u‖k+3,e‖v‖0,e,485

and by the same arguments as in the proof of Lemma 4.6 we have486

h〈(R̂[û]k+1,k+1)s, âv̂ − âv̂〉K̂ ≤ Ch|(R[û]k+1,k+1)s|∞|âv̂ − âv̂|∞ ≤ Ch|û|k+2,K̂‖âv̂ − âv̂‖2,K̂487

≤Ch|û|k+2,K̂(‖âv̂ − âv̂‖L2(K̂) + |âv̂|1,K̂ + |âv̂|2,K̂) ≤ Ch|û|k+2,K̂(|âv̂|1,K̂ + |âv̂|2,K̂) = O(hk+2)‖a‖2,∞‖u‖k+2,e‖v‖2,e.488489

Thus490

(4.8) h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ = O(hk+2)‖a‖2,∞‖u‖k+3,e‖v‖2,e.491
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For the second term in (4.7), we have492

〈(R̂[û]k+1,k+1 − R̂[û]k,k)s, âv̂〉K̂493

=〈(Mk+1(t)

k∑
i=0

b̂i,k+1Mi(s) +Mk+1(s)

k+1∑
j=0

b̂k+1,jMj(t))s, âv̂〉K̂494

=〈Mk+1(t)

k−1∑
i=0

b̂i+1,k+1li(s) + lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂〉K̂495

=〈Mk+1(t)

k−1∑
i=0

b̂i+1,k+1li(s), âv̂〉K̂ + 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂〉K̂496

=〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂〉K̂ ,497

498

where the last step is due to that Mk+1(t) vanishes at (k + 1) Gauss-Lobatto points.499

Then500

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ = 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂〉K̂501

=〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂ − Π̂1(âv̂)〉K̂ + 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), Π̂1(âv̂)〉K̂502

=〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂ − Π̂1(âv̂)〉K̂ ,503

504

where the last step is due to the facts that Π̂1(âv̂) is a linear function in s thus the505

(k+1)-point Gauss-Lobatto quadrature on s-variable is exact, and lk(s) is orthogonal506

to linear functions.507

By Lemma 4.3 and Theorem 3.1, we have508

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ = 〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂ − Π̂1(âv̂)〉K̂509

≤C|u|k+1,K̂ |âv̂|2,K̂ ≤ C|u|k+1,K̂(|â|2,∞,K̂ |v̂|0,K̂ + |â|1,∞,K̂ |v̂|1,K̂ + |â|0,∞|v̂|2,K̂)510
511

Thus512

(4.9) h〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ = O(hk+2)‖a‖2,∞‖u‖k+1,e‖v‖2,e.513

By (4.8) and (4.9) and sum up over all the cells, we get the desired estimate.514

Lemma 4.8. Assume a(x, y) ∈W 4,∞(Ω), u(x, y) ∈ Hk+3(Ω) and k ≥ 2. Then

〈a(u− up)x, (vh)y〉h =

{
O(hk+ 3

2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h,(4.10a)

O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h0 .(4.10b)

Proof. We ignore the subscript in vh and we have

〈a(u− up)x, vy〉h =
∑
e

〈a(u− up)x, vy〉e,h,
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and on each cell e515

〈a(u− up)x, vy〉e,h = 〈(R[u]k,k)x, avy〉e,h = 〈(R̂[û]k,k)s, âv̂t〉K̂516

=〈(R̂[û]k+1,k+1)s, âv̂t〉K̂ + 〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t〉K̂ .(4.11)517518

By the same arguments as in the proof of Lemma 4.5, we have519

(4.12) 〈(R̂[û]k+1,k+1)s, âv̂t〉K̂ = O(hk+2)‖a‖1,∞|u|k+3,2,e‖v‖2,e,520

and521

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t〉K̂ = −〈lk(s)

k+1∑
j=0

b̂k+1,jMj(t), âv̂t〉K̂ .522

523

For simplicity, we define

b̂k+1(t) :=
k+1∑
j=0

b̂k+1,jMj(t).

then by the third and fourth estimates in Lemma 4.3, we have524

|b̂k+1(t)| ≤ C
k+1∑
j=0

|b̂k+1,j | ≤ C|û|k+1,K̂ ,525

|b̂(m)
k+1(t)| ≤ C

k+1∑
j=m

|b̂k+1,j | ≤ C|û|k+2,K̂ , 1 ≤ m,526

527

where b̂
(m)
k+1(t) is the m-th derivative of b̂k+1(t). We use the same technique in the528

proof of Theorem 3.7 and we let lk = lk(s), bk+1 = bk+1(t) in the following,529

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t〉K̂ = −〈lk(s)b̂k+1(t), âv̂t〉K̂530

=−
∫∫

K̂

lk(s)b̂k+1(t)âv̂td
hsdht = −

∫∫
K̂

(lk b̂k+1â)I v̂td
hsdht531

=−
∫∫

K̂

(lk b̂k+1â)I v̂td
hsdht+

∫∫
K̂

lk b̂k+1âv̂tdsdt−
∫∫

K̂

lk b̂k+1âv̂tdsdt,532
533

and534

−
∫∫

K̂

(lk b̂k+1â)I v̂td
hsdht+

∫∫
K̂

lk b̂k+1âv̂tdsdt535

=

∫∫
K̂

[
lk b̂k+1â− (lk b̂k+1â)I

]
v̂tdsdt+

∫∫
K̂

(lk b̂k+1â)I v̂tdsdt−
∫∫

K̂

(lk b̂k+1â)I v̂td
hsdt536

=

∫∫
K̂

[
lk b̂k+1â− (lk b̂k+1â)I

]
v̂tdsdt+

∫∫
K̂

∂t(lk b̂k+1â)I v̂d
hsdt−

∫∫
K̂

∂t(lk b̂k+1â)I v̂dsdt537

+

(∫ 1

−1

(lk b̂k+1â)I v̂ds

∣∣∣∣t=1

t=−1

−
∫ 1

−1

(lk b̂k+1â)I v̂d
hs

∣∣∣∣t=1

t=−1

)
= I + II + III.538

539

After integration by parts with respect to the variable s, we have540 ∫∫
K̂

lk(s)b̂k+1(t)âv̂tdsdt = −
∫∫

K̂

Mk+1(s)b̂k+1(t)(âsv̂t + âv̂st)dsdt,541
542
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which is exactly the same integral estimated in the proof of Lemma 3.7 in [13]. By543

the same proof of Lemma 3.7 in [13], after summing over all elements, we have the544

estimate for the term
∫∫
K̂
lk(s)b̂k+1(t)âv̂tdsdt:545

∑
e

∫∫
K̂

lk(s)b̂k+1(t)âv̂tdsdt =

{
O(hk+ 3

2 )‖a‖k+2,∞‖u‖k+3‖v‖2, ∀v ∈ V h,
O(hk+2)‖a‖k+2,∞‖u‖k+3‖v‖2, ∀v ∈ V h0 .

546

Then we can do similar estimation as in Theorem 3.7 for I, II, III separately.547

For term I, by Theorem 3.1 and the estimate (3.2), we have548 ∫∫
K̂

[
lk b̂k+1â− (lk b̂k+1â)I

]
v̂tdsdt549

=

∫∫
K̂

[
lk b̂k+1â− (lk b̂k+1â)I

]
v̂tdsdt+

∫∫
K̂

[
lk b̂k+1â− (lk b̂k+1â)I

]
(v̂t − v̂t)dsdt550

≤C
[
lk b̂k+1â

]
k+2,K̂

|v̂|1,K̂ + C
[
lk b̂k+1â

]
k+1,K̂

|v̂|2,K̂551

≤C

(
k+2∑
m=2

|â|m,∞,K̂ max
t∈[−1,1]

|b̂k+1(t)|

)
|v̂|1,K̂ + C

(
k+2∑
m=0

|â|m,∞,K̂ max
t∈[−1,1]

|b̂(k+2−m)
k+1 (t)|

)
|v̂|1,K̂552

+C

(
k+1∑
m=1

|â|m,∞,K̂ max
t∈[−1,1]

|b̂k+1(t)|

)
|v̂|2,K̂ + C

(
k+1∑
m=0

|â|m,∞,K̂ max
t∈[−1,1]

|b̂(k+1−m)
k+1 (t)|

)
|v̂|2,K̂553

=O(hk+2)‖a‖k+2,∞‖u‖k+2,e‖v‖2,e.554555

For term II, as in the proof of Theorem 3.7, we define the linear form as

Êv̂(f̂) =

∫∫
K̂

(F̂I)tv̂dsdt−
∫∫

K̂

(F̂I)tv̂d
hsdt,

for each v̂ ∈ Qk(K̂) and F̂ is an antiderivative of f̂ w.r.t. variable t. We can easily see
that Êv̂ is well defined and Êv̂ is a continuous linear form on Hk(K̂). With projection
Π̂1 defined in (2.2), we have

Êv̂(f̂) = Êv̂−Π̂1v̂
(f̂) + ÊΠ̂1v̂

(f̂), ∀v̂ ∈ Qk(K̂).

Since Qk−1(K̂) ⊂ ker Êv̂−Π̂1v̂
thus

Êv̂−Π̂1v̂
(f̂) ≤ C[f ]k,K̂‖v̂ − Π̂1v̂‖0,K̂ ≤ C[f ]k,K̂ |v̂|2,K̂

and

ÊΠ̂1v̂
(f̂) =

∫∫
K̂

(F̂I)tΠ̂1v̂dsdt−
∫∫

K̂

(F̂I)tΠ̂1v̂d
hsdt = 0.

Thus we have556 ∫∫
K̂

∂t(lk b̂k+1â)I v̂d
hsdt−

∫∫
K̂

∂t(lk b̂k+1â)I v̂dsdt = −Êv̂((lk b̂k+1â)t)557

=− Êv̂−Π1v̂((lk b̂k+1â)t) ≤ C[(lk b̂k+1â)t]k,K̂ |v̂h|2,K̂ = O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e|v|2,e.558559

Now we only need to discuss term III. Let L1 and L3 denote the top and bottom560

boundaries of Ω and let le1, le3 denote the top and bottom edges of element e (and lK̂1561
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and lK̂3 for K̂). Notice that after mapping back to the cell e we have562

bk+1(ye + h) = b̂k+1(1) =

k+1∑
j=0

b̂k+1,jMj(1) = b̂k+1,0 + b̂k+1,1563

= (k +
1

2
)

∫ 1

−1

∂sû(s, 1)lk(s)ds = (k +
1

2
)

∫ xe+h

xe−h
∂xu(x, ye + h)lk(

x− xe
h

)dx,564

565

and similarly we get bk+1(ye−h) = b̂k+1(−1) = (k+ 1
2 )
∫ xe+h

xe−h ∂xu(x, ye−h)lk(x−xe

h )dx.

Thus the term l(x−xe

h )bk+1(y)av is continuous across the top and bottom edges of
cells. Therefore, if summing over all elements e, the line integral on the inner edges
are cancelled out. So after summing over all elements, the line integral reduces to
two line integrals along L1 and L3. We only need to discuss one of them. For a
cell e adjacent to L1, consider its reference cell K̂ and define linear form Ê(f̂) =∫ 1

−1
f̂(s, 1)ds−

∫ 1

−1
f̂(s, 1)dhs, then we have

Ê(f̂ v̂) ≤ C|f̂ |
0,∞,lK̂1

|v̂|
0,∞,lK̂1

≤ C‖f̂‖
2,lK̂1
‖v̂‖

0,lK̂1
,

thus the mapping f̂ → Ê(f̂ v̂) is continuous with operator norm less than C‖v̂‖
0,lK̂1

566

for some C. Since Ê((âûs)IΠ̂1v̂) = 0 we have567 ∑
e∩L1 6=∅

∫ 1

−1

(lk b̂k+1â)I v̂ds−
∫ 1

−1

(lk b̂k+1â)I v̂d
hs568

=
∑

e∩L1 6=∅

Ê((lk b̂k+1â)I v̂) =
∑

e∩L1 6=∅

Ê((lk b̂k+1â)I(v̂ − Π̂1v̂)) ≤
∑

e∩L1 6=∅

C[(lk b̂k+1â)I ]k,lK̂1
[v̂]

2,lK̂1
569

≤
∑

e∩L1 6=∅

C(|lk b̂k+1â− (lk b̂k+1â)I |k,lK̂1 + |lk b̂k+1â|k,lK̂1 )[v̂]
2,lK̂1

570

≤
∑

e∩L1 6=∅

(|lk b̂k+1â|k+1,lK̂1
+ |lk b̂k+1â|k,lK̂1 )[v̂]

2,lK̂1
≤

∑
e∩L1 6=∅

C‖â‖k,∞,K̂ |b̂k+1(1)|[v̂]
2,lK̂1

,571

572

where the first inequality is derived from Ê(f̂(v̂ − Π̂1v̂)) = 0,∀f̂ ∈ Qk−1(K̂) and573

Theorem 3.1.574

Since lk(t) = 1
2kk!

dk

dtk
(t2 − 1)k, after integration by parts k times,

b̂k+1(1) = (k +
1

2
)

∫ 1

−1

∂su(s, 1)lk(s)dx = (−1)k(k +
1

2
)

∫ 1

−1

∂k+1
s u(s, 1)L(s)ds,

where L(s) is a polynomial of degree 2k by taking antiderivatives of lk(s) k times.575

Then by Cauchy-Schwarz inequality we have576

b̂k+1(1) ≤ C
(∫ 1

−1

|∂k+1
s û(s, 1)|2ds

) 1
2

≤ Chk+ 1
2 |u|k+1,le1

.577
578

By (3.13), we get |v̂|
2,lK̂1

= h
3
2 |v̂|2,le1 ≤ Ch|v|2,e. Thus we have579

∑
e∩L1 6=∅

∫ 1

−1

(lk b̂k+1â)I v̂ds−
∫ 1

−1

(lk b̂k+1â)I v̂d
hs ≤

∑
e∩L1 6=∅

C‖â‖k,∞,K̂ |b̂k+1(1)||v̂|
2,lK̂1

580

=O(hk+ 3
2 )

∑
e∩L1 6=∅

‖a‖k,∞|u|k+1,le1
|v|2,e = O(hk+ 3

2 )‖a‖k,∞|u|k+1,L1
‖v‖2,Ω = O(hk+ 3

2 )‖a‖k,∞‖u‖k+2,Ω‖v‖2,Ω,581

582
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where the trace inequality ‖u‖k+1,∂Ω ≤ C‖u‖k+2,Ω is used.583

Combine all the estimates above, we get (4.10a). Since the 1
2 order loss is only584

due to the line integral along L1 and L3, on which vxx = 0 if v ∈ V h0 , we get (4.10b).585

By all the discussions in this subsection, we have proven (4.1a) and (4.1b).586

5. Homogeneous Dirichlet Boundary Conditions.587

5.1. V h-ellipticity. In order to discuss the scheme (1.2), we need to show Ah588

satisfies V h-ellipticity589

(5.1) ∀vh ∈ V h0 , C‖vh‖21 ≤ Ah(vh, vh).590

We first consider the Vh-ellipticity for the case b ≡ 0.591

Lemma 5.1. Assume the coefficients in (2.3) satisfy that b ≡ 0, both c(x, y) and592

the eigenvalues of a(x, y) have a uniform upper bound and a uniform positive lower593

bound, then there exist two constants C1, C2 > 0 independent of mesh size h such that594

∀vh ∈ V h0 , C1‖vh‖21 ≤ Ah(vh, vh) ≤ C2‖vh‖21.595

Proof. Let Z0,K̂ denote the set of (k + 1)× (k + 1) Gauss-Lobatto points on the

reference cell K̂. First we notice that the set Z0,K̂ is a Qk(K̂)-unisolvent subset. Since
the Gauss-Lobatto quadrature weights are strictly positive, we have

∀p̂ ∈ Qk(K̂),

2∑
i=1

〈∂ip̂, ∂ip̂〉K̂ = 0 =⇒ ∂ip̂ = 0 at quadrature points,

where i = 1, 2 represents the spatial derivative on variable xi respectively. Since
∂ip̂ ∈ Qk(K̂) and it vanishes on a Qk(K̂)-unisolvent subset, we have ∂ip̂ ≡ 0. As a con-
sequence,

√∑n
i=1〈∂ip̂, ∂ip̂〉h defines a norm over the quotient space Qk(K̂)/Q0(K̂).

Since that | · |1,K̂ is also a norm over the same quotient space, by the equivalence of
norms over a finite dimensional space, we have

∀p̂ ∈ Qk(K̂), C1|p̂|21,K̂ ≤
n∑
i=1

〈∂ip̂, ∂ip̂〉K̂ ≤ C2|p̂|21,K̂ .

On the reference cell K̂, by the assumption on the coefficients, we have

C1|v̂h|21,K̂ ≤ C1

n∑
i

〈∂iv̂h, ∂iv̂h〉K̂ ≤
n∑

i,j=1

(
〈âij∂iv̂h, ∂j v̂h〉K̂ + 〈ĉv̂h, v̂h〉K̂

)
≤ C2‖v̂h‖21,K̂

Mapping these back to the original cell e and summing over all elements, by596

the equivalence of two norms | · |1 and ‖ · ‖1 for the space H1
0 (Ω) ⊃ V h0 [5], we get597

C1‖vh‖21 ≤ Ah(vh, vh) ≤ C2‖vh‖21.598

For discussing Vh-ellipticity when b is nonzero, by Young’s inequality we have599

|〈b · ∇vh, vh〉h| ≤
∑
e

∫∫
e

(b · ∇vh)2

4c
+ c|vh|2dhxdhy ≤ 〈

|b|2

4c
∇vh,∇vh〉h + 〈cvh, vh〉h.600

601

Thus we have602

〈a∇vh,∇vh〉h + 〈b · ∇vh, vh〉h + 〈cvh, vh〉h ≥ 〈λa∇vh,∇vh〉h − 〈
|b|2

4c
∇vh,∇vh〉h,603

604

where λa is smallest eigenvalue of a. Then we have the following Lemma605
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Lemma 5.2. Assume 4λac > |b|2, then there exists a constant C > 0 independent606

of mesh size h such that607

∀vh ∈ V h0 , Ah(vh, vh) ≥ C‖vh‖21.608

5.2. Standard estimates for the dual problem. In order to apply the Aubin-609

Nitsche duality argument for establishing superconvergence of function values, we need610

certain estimates on a proper dual problem. Define θh := uh − up. Then we consider611

the dual problem: find w ∈ H1
0 (Ω) satisfying612

(5.2) A∗(w, v) = (θh, v), ∀v ∈ H1
0 (Ω),613

where A∗(·, ·) is the adjoint bilinear form of A(·, ·) such that

A∗(u, v) = A(v, u) = (a∇v,∇u) + (b · ∇v, u) + (cv, u).

Let wh ∈ V h0 be the solution to614

(5.3) A∗h(wh, vh) = (θh, vh), ∀vh ∈ V h0 .615

Notice that the right hand side of (5.3) is different from the right hand side of the616

scheme (1.2).617

We need the following standard estimates on wh for the dual problem.618

Theorem 5.3. Assume all coefficients in (2.3) are in W 2,∞(Ω). Let w be defined619

in (5.2), wh be defined in (5.3), and θh = uh − up. Assume elliptic regularity (2.6)620

and V h ellipticity holds, we have621

‖w − wh‖1 ≤ Ch‖w‖2,622

‖wh‖2 ≤ C‖θh‖0.

Proof. By V h ellipticity, we have C1‖wh − vh‖21 ≤ A∗h(wh − vh, wh − vh). By the623

definition of the dual problem, we have624

A∗h(wh, wh − vh) = (θh, wh − vh) = A∗(w,wh − vh), ∀vh ∈ V h0 .625

Thus for any vh ∈ V h0 , by Theorem 3.6, we have626

C1‖wh − vh‖21 ≤ A∗h(wh − vh, wh − vh)627

=A∗(w − vh, wh − vh) + [A∗h(wh, wh − vh)−A∗(w,wh − vh)] + [A∗(vh, wh − vh)−A∗h(vh, wh − vh)]628

=A∗(w − vh, wh − vh) + [A(wh − vh, vh)−Ah(wh − vh, vh)]629

≤C‖w − vh‖1‖wh − vh‖1 + Ch‖vh‖2‖wh − vh‖1.630631

Thus632

(5.4) ‖w − wh‖1 ≤ ‖w − vh‖1 + ‖wh − vh‖1 ≤ C‖w − vh‖1 + Ch‖vh‖2.633

Now consider Π1w ∈ V h0 where Π1 is the piecewise Q1 projection and its definition634

on each cell is defined through (2.2) on the reference cell. By the Bramble Hilbert635

Lemma Theorem 3.1 on the projection error, we have636

(5.5) ‖w −Π1w‖1 ≤ Ch‖w‖2, ‖w −Π1w‖2 ≤ C‖w‖2,637
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thus ‖Π1w‖2 ≤ ‖w‖2 + ‖w − Π1w‖2 ≤ C‖w‖2. By setting vh = Π1w, from (5.4) we638

have639

(5.6) ‖w − wh‖1 ≤ C‖w −Π1w‖1 + Ch‖Π1w‖2 ≤ Ch‖w‖2.640

By the inverse estimate on the piecewise polynomial wh −Π1w, we get641

(5.7) ‖wh‖2 ≤ ‖wh −Π1w‖2 + ‖Π1w − w‖2 + ‖w‖2 ≤ Ch−1‖wh −Π1w‖1 + C‖w‖2.642

By (5.5) and (5.6), we also have643

‖wh −Π1w‖1 ≤ ‖w −Π1w‖1 + ‖w − wh‖1 ≤ Ch‖w‖2.(5.8)644645

With (5.7), (5.8) and the elliptic regularity ‖w‖2 ≤ C‖θh‖0, we get646

‖wh‖2 ≤ C‖w‖2 ≤ C‖θh‖0.647

5.3. Superconvergence of function values.648

Theorem 5.4. Assume aij , bi, c ∈ W k+2,∞(Ω) and u(x, y) ∈ Hk+3(Ω), f(x, y) ∈649

Hk+2(Ω) with k ≥ 2. Assume elliptic regularity (2.6) and V h ellipticity holds. Then650

uh, the numerical solution from scheme (1.2), is a (k + 2)-th order accurate approx-651

imation to the exact solution u in the discrete 2-norm over all the (k + 1) × (k + 1)652

Gauss-Lobatto points:653

‖uh − u‖2,Z0 = O(hk+2)(‖u‖k+3,Ω + ‖f‖k+2,Ω).654

Proof. By Theorem 3.7 and Theorem 3.3, for any vh ∈ V h0 ,655

Ah(u− uh, vh) = [A(u, vh)−Ah(uh, vh)] + [Ah(u, vh)−A(u, vh)]
= A(u, vh)−Ah(uh, vh) +O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2
= [(f, vh)− 〈f, vh〉h] +O(hk+2)‖u‖k+3‖vh‖2 = O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖vh‖2.

656

Let θh = uh − up, then θh ∈ V h0 due to the properties of the M-type projection. So657

by (4.1a) and Theorem 5.3, we get658

‖θh‖20 = (θh, θh) = Ah(θh, wh) = Ah(uh − u,wh) +Ah(u− up, wh)659

=Ah(u− up, wh) +O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖wh‖2660

=O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖wh‖2 = O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖θh‖0,661662

thus663

‖uh − up‖0 = ‖θh‖0 = O(hk+2)(‖u‖k+3 + ‖f‖k+2).664

Finally, by the equivalence of the discrete 2-norm on Z0 and the L2(Ω) norm in665

finite-dimensional space V h and Theorem 4.2, we obtain666

‖uh − u‖2,Z0
≤ ‖uh − up‖2,Z0

+ ‖up − u‖2,Z0
≤ C‖uh − up‖0 + ‖up − u‖2,Z0

667

= O(hk+2)(‖u‖k+3 + ‖f‖k+2).668669
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Remark 5.5. To extend the discussions to Neumann type boundary conditions,670

due to (4.1b) and Theorem 3.7, one can only prove (k + 3
2 )-th order accuracy:671

‖uh − u‖2,Z0 = O(hk+ 3
2 )(‖u‖k+3 + ‖f‖k+2).672

On the other hand, for solving a general elliptic equation, only O(hk+ 3
2 ) superconver-673

gence at all Lobatto point can be proven for Neumann boundary conditions even for674

the full finite element scheme (1.1), see [4].675

Remark 5.6. All key discussions can be extended to three-dimensional cases. For676

instance, M-type expansion has been used for discussing superconvergence for the three-677

dimensional case [4]. The most useful technique in Section 3.2 to obtain desired678

consistency error estimate is to derive error cancellations between neighboring cells679

through integration by parts on suitable interpolation polynomials, which still seems680

possible on rectangular meshes in three dimensions.681

6. Nonhomogeneous Dirichlet Boundary Conditions. We consider a two-682

dimensional elliptic problem on Ω = (0, 1)2 with nonhomogeneous Dirichlet boundary683

condition,684

(6.1)
−∇ · (a∇u) + b · ∇u+ cu = f on Ω

u = g on ∂Ω.
685

Assume there is a function ḡ ∈ H1(Ω) as a smooth extension of g so that ḡ|∂Ω = g.686

The variational form is to find ũ = u− ḡ ∈ H1
0 (Ω) satisfying687

(6.2) A(ũ, v) = (f, v)−A(ḡ, v), ∀v ∈ H1
0 (Ω).688

In practice, ḡ is not used explicitly. By abusing notations, the most convenient689

implementation is to consider690

g(x, y) =

{
0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y), if (x, y) ∈ ∂Ω,
691

and gI ∈ V h which is defined as the Qk Lagrange interpolation at (k + 1) × (k + 1)692

Gauss-Lobatto points for each cell on Ω of g(x, y). Namely, gI ∈ V h is the piecewise693

P k interpolation of g along the boundary grid points and gI = 0 at the interior grid694

points. The numerical scheme is to find ũh ∈ V h0 , s.t.695

(6.3) Ah(ũh, vh) = 〈f, vh〉h −Ah(gI , vh), ∀vh ∈ V h0 .696

Then uh = ũh + gI will be our numerical solution for (6.1). Notice that (6.3) is697

not a straightforward approximation to (6.2) since ḡ is never used. Assuming elliptic698

regularity and V h ellipticity hold, we will show that uh − u is of (k + 2)-th order in699

the discrete 2-norm over all (k + 1)× (k + 1) Gauss-Lobatto points.700

6.1. An auxiliary scheme. In order to discuss the superconvergence of (6.3),701

we need to prove the superconvergence of an auxiliary scheme. Notice that we discuss702

the auxiliary scheme only for proving the accuracy of (6.3). In practice one should not703

implement the auxiliary scheme since (6.3) is a much more convenient implementation704

with the same accuracy.705

Let ḡp ∈ V h be the piecewise M-type Qk projection of the smooth extension706

function ḡ, and define gp ∈ V h as gp = ḡp on ∂Ω and gp = 0 at all the inner grids.707

The auxiliary scheme is to find ũ∗h ∈ V h0 satisfying708

(6.4) Ah(ũ∗h, vh) = 〈f, vh〉h −Ah(gp, vh), ∀vh ∈ V h0 ,709
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Then u∗h = ũ∗h+gp is the numerical solution for problem (6.2). Define θh = u∗h−up,710

then by Theorem 4.1 we have θh ∈ V h0 . Following Section 5.2, define the following711

dual problem: find w ∈ H1
0 (Ω) satisfying712

(6.5) A∗(w, v) = (θh, v), ∀v ∈ H1
0 (Ω).713

Let wh ∈ V h0 be the solution to714

(6.6) A∗h(wh, vh) = (θh, vh), ∀vh ∈ V h0 .715

Notice that the dual problem has homogeneous Dirichlet boundary conditions. By716

Theorem 3.7, Theorem 3.3, for any vh ∈ V h0 ,717

Ah(u− u∗h, vh) = [A(u, vh)−Ah(u∗h, vh)] + [Ah(u, vh)−A(u, vh)]
= A(u, vh)−Ah(u∗h, vh) +O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2
= [(f, vh)− 〈f, vh〉h] +O(hk+2)‖u‖k+3‖vh‖2 = O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖vh‖2.

718

By (4.1a) and Theorem 5.3, we get719

‖θh‖20 = (θh, θh) = Ah(θh, wh) = Ah(u∗h − u,wh) +Ah(u− up, wh)720

=Ah(u− up, wh) +O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖wh‖2721

=O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖wh‖2 = O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖θh‖0,722723

thus ‖u∗h−up‖0 = ‖θh‖0 = O(hk+2)(‖u‖k+3 + ‖f‖k+2). So Theorem 5.4 still holds for724

the auxiliary scheme (6.4):725

(6.7) ‖u∗h − u‖2,Z0 = O(hk+2)(‖u‖k+3 + ‖f‖k+2).726

6.2. The main result. In order to extend Theorem 5.4 to (6.3), we only need727

to prove728

‖uh − u∗h‖0 = O(hk+2).729

The difference between (6.4) and (6.3) is730

(6.8) Ah(ũ∗h − ũh, vh) = Ah(gI − gp, vh), ∀vh ∈ V h0 .731

We need the following Lemma.732

Lemma 6.1. Assuming u ∈ Hk+4(Ω) for k ≥ 2, with gI and gp being defined as733

in this Section, then we have734

(6.9) Ah(gI − gp, vh) = O(hk+2)‖u‖k+4,Ω‖vh‖2,Ω, ∀vh ∈ V h0 .735

Proof. For simplicity, we ignore the subscript h of vh in this proof and all the736

following v are in V h.737

Notice that gI − gp ≡ 0 in interior cells. Thus we only consider cells adjacent738

to ∂Ω. Let L1, L2, L3 and L4 denote the top, left, bottom and right boundary edges739

of Ω̄ = [0, 1] × [0, 1] respectively. Without loss of generality, we consider cell e =740

[xe−h, xe+h]× [ye−h, ye+h] adjacent to the left boundary L2, i.e., xe−h = 0. Let741

le1, l
e
2, l

e
3 and le4 denote the top, left, bottom and right boundary edges of e respectively.742

On l2 ⊂ L2, Let φij(x, y), i, j = 0, 1, . . . , k, be Lagrange basis functions on743

edge le2 for the (k + 1) × (k + 1) Gauss-Lobatto points in cell e. Then gI − gp =744

This manuscript is for review purposes only.



SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 27∑k
i,j=0 λijφij(x, y) and |λij | ≤ ‖gI − gp‖∞,Z0

. Due to Sobolev’s embedding, we have745

u ∈W k+2,∞(Ω). By Theorem 4.2, we have746

‖gI − gp‖∞,Z0 ≤ ‖u− up‖∞,Z0 = O(hk+2)‖u‖k+2,∞,Ω = O(hk+2)‖u‖k+4,Ω.747748

Thus we get ∀v ∈ V h0 ,749

〈a(gI − gp)x, vx〉e = 〈a
k∑

i,j=0

λijφij(x, y)x, vx〉e ≤ C‖a‖∞,Ω max
i,j
|λij ||〈

k∑
i,j=0

φij(x, y)x, vx〉e|.750

751

Since for polynomials on K̂ all the norm are equivalent, we have752

|〈
k∑

i,j=0

φij(x, y)x, vx〉e| = |〈
k∑

i,j=0

φ̂ij(s, t)s, v̂s〉K̂ | ≤ C|v̂s|∞,K̂ ≤ C|v|1,K̂ = C|v|1,e,753

754

which implies755

〈a(gI − gp)x, vx〉h ≤ C‖a‖∞,Ω
∑
e

max
i,j
|λij ||v|1,e = O(hk+2)‖a‖∞,Ω‖u‖k+4,Ω‖v‖2,Ω756

757

Similarly, for any v ∈ V h0 , we have758

〈a(gI − gp)y, vy〉h =O(hk+2)‖a‖∞‖u‖k+4‖v‖2,759

〈a(gI − gp)x, vy〉h =O(hk+2)‖a‖∞‖u‖k+4‖v‖2,760

〈b · ∇(gI − gp), v〉h =O(hk+2)‖b‖∞‖u‖k+4‖v‖2,761

〈c(gI − gp), v〉h =O(hk+2)‖c‖∞‖u‖k+4‖v‖2.762

Thus we conclude that763

Ah(gI − gp, vh) = O(hk+2)‖u‖k+4‖vh‖2, ∀vh ∈ V h0 .764

By (6.8) and Lemma 6.1, we have765

(6.10) Ah(ũ∗h − ũh, vh) = O(hk+2)‖u‖k+4‖vh‖2, ∀vh ∈ V h0 .766

Let θh = ũ∗h− ũh ∈ V h0 . Following Section 5.2, define the following dual problem: find767

w ∈ H1
0 (Ω) satisfying768

(6.11) A∗(w, v) = (θh, v), ∀v ∈ H1
0 (Ω).769

Let wh ∈ V h0 be the solution to770

(6.12) A∗h(wh, vh) = (θh, vh), ∀vh ∈ V h0 .771

By (6.10) and Theorem 5.3, we get772

‖θh‖20 = (θh, θh) = A∗h(wh, θh) = Ah(ũ∗h−ũh, wh) = O(hk+2)‖u‖k+4‖wh‖2 = O(hk+2)‖u‖k+4‖θh‖0,773

thus ‖ũ∗h− ũh‖0 = ‖θh‖0 = O(hk+2)‖u‖k+4. By equivalence of norms for polynomials,774

we have775

(6.13) ‖ũ∗h − ũh‖2,Z0 ≤ C‖ũ∗h − ũh‖0 = O(hk+2)‖u‖k+4,Ω.776

Notice that both ũh and ũ∗h are constant zero along ∂Ω, and uh|∂Ω = gI is the777

Lagrangian interpolation of g along ∂Ω. With (6.7), we have proven the following778

main result.779
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Theorem 6.2. Assume elliptic regularity (2.6) and V h ellipticity holds. For a780

nonhomogeneous Dirichlet boundary problem (6.1), with suitable smoothness assump-781

tions for k ≥ 2, aij , bi, c ∈ W k+2,∞(Ω), the exact solution of (6.2) u(x, y) = ũ+ ḡ ∈782

Hk+4(Ω) and f(x, y) ∈ Hk+2(Ω), the numerical solution uh by scheme (6.3) is a783

(k + 2)-th order accurate approximation to u in the discrete 2-norm over all the784

(k + 1)× (k + 1) Gauss-Lobatto points:785

‖uh − u‖2,Z0
= O(hk+2)(‖u‖k+4 + ‖f‖k+2).786

7. Finite difference implementation. In this section we present the finite787

difference implementation of the scheme (6.3) for the case k = 2 on a uniform mesh.788

The finite difference implementation of the nonhomogeneous Dirichlet boundary value789

problem is based on a homogeneous Neumann boundary value problem, which will790

be discussed first. We demonstrate how it is derived for the one-dimensional case791

then give the two-dimensional implementation. It provides efficient assembling of the792

stiffness matrix and one can easily implement it in MATLAB. Implementations for793

higher order elements or quasi-uniform meshes can be similarly derived, even though794

it will no longer be a conventional finite difference scheme on a uniform grid.795

7.1. One-dimensional case. Consider a homogeneous Neumann boundary value796

problem −(au′)′ = f on [0, 1], u′(0) = 0, u′(1) = 0, and its variational form is to seek797

u ∈ H1([0, 1]) satisfying798

(au′, v′) = (f, v), ∀v ∈ H1([0, 1]).(7.1)799800

Consider a uniform mesh xi = ih, i = 0, 1, . . . , n + 1, h = 1
n+1 . Assume n is odd

and let N = n+1
2 . Define intervals Ik = [x2k, x2k+2] for k = 0, . . . , N − 1 as a finite

element mesh for P 2 basis. Define

V h = {v ∈ C0([0, 1]) : v|Ik ∈ P 2(Ik), k = 0, . . . , N − 1}.

Let {vi}n+1
i=0 ⊂ V h be a basis of V h such that vi(xj) = δij , i, j = 0, 1, . . . , n+ 1. With801

3-point Gauss-Lobatto quadrature, the C0-P 2 finite element method for (7.1) is to802

seek uh ∈ V h satisfying803

〈au′h, v′i〉h = 〈f, vi〉h, i = 0, 1, . . . , n+ 1.(7.2)804805

Let uj = uh(xj), aj = a(xj) and fj = f(xj) then uh(x) =
n+1∑
j=0

ujvj(x). We have

n+1∑
j=0

uj〈av′j , v′i〉h = 〈au′h, v′j〉h = 〈f, vi〉h =

n+1∑
j=0

fj〈vj , vi〉h, i = 0, 1, . . . , n+ 1.

The matrix form of this scheme is S̄ū = M̄ f̄ , where806

ū =
[
u0, u1, . . . , un, un+1

]T
, f̄ =

[
f0, f1, . . . , fn, fn+1

]T
,807808

the stiffness matrix S̄ is has size (n + 2) × (n + 2) with (i, j)-th entry as 〈av′i, v′j〉h,809

and the lumped mass matrix M is a (n+ 2)× (n+ 2) diagonal matrix with diagonal810

entries h
(

1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)
.811

Next we derive an explicit representation of the matrix S̄. Since basis functions812

vi ∈ V h and uh(x) are not C1 at the knots x2k (k = 1, 2, . . . , N − 1), their derivatives813
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at the knots are double valued. We will use superscripts + and − to denote derivatives814

obtained from the right and from the left respectively, e.g., v′+2k and v′−2k+2 denote the815

derivatives of v2k and v2k+2 respectively in the interval Ik = [x2k, x2k+2]. Then in the816

interval Ik = [x2k, x2k+2] we have the following representation of derivatives817

(7.3)

 v′+2k(x)
v′2k+1(x)
v′−2k+2(x)

 =
1

2h

−3 4 −1
−1 0 1
1 −4 3

 v2k(x)
v2k+1(x)
v2k+2(x)

 .818

By abusing notations, we use (vi)
′
2k to denote the average of two derivatives of vi

at the knots x2k:

(vi)
′
2k =

1

2
[(v′i)

−
2k + (v′i)

+
2k].

Let [vi] denote the difference between the right derivative and left derivative:

[v′i]0 = [v′i]n+2 = 0, [v′i]2k := (v′i)
+
2k − (v′i)

−
2k, k = 1, 2, . . . , N − 1.

Then at the knots, we have819

(7.4) (v′i)
−
2k(v′j)

−
2k + (v′i)

+
2k(v′j)

+
2k = 2(v′i)2k(v′j)2k +

1

2
[vi]2k[vj ]2k.820

We also have821

(7.5)

〈av′j , v′i〉I2k = h

[
1

3
a2k(v′j)

+
2k(v′i)

+
2k +

4

3
a2k+1(v′j)2k+1(v′i)2k+1 +

1

3
a2k+2(v′j)

−
2k+2(v′i)

−
2k+2

]
.822

Let vi denote a column vector of size n + 2 consisting of grid point values of vi(x).
Plugging (7.4) into (7.5), with (7.3), we get

〈av′j , v′i〉h =

N−1∑
k=0

〈av′j , v′i〉I2k =
1

h
vTi (DTWAD + ETWAE)vj ,

where A is a diagonal matrix with diagonal entries a0, a1, . . . , an, an+1, and823

W =diag
(

1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)
(n+2)×(n+2)

,824

D =
1

2



−3 4 −1
−1 0 1
1
2 −2 0 2 − 1

2
−1 0 1
1
2 −2 0 2 − 1

2
−1 0 1

. . .
. . .

. . .
−1 0 1
1
2 −2 0 2 − 1

2
−1 0 1
1 −4 3


(n+2)×(n+2)

, E =
1

2



0 0 0
0 0 0
− 1

2 2 −3 2 − 1
2

0 0 0
− 1

2 2 −3 2 − 1
2

0 0 0

. . .
. . .

. . .
0 0 0
− 1

2 2 −3 2 − 1
2

0 0 0
0 0 0


(n+2)×(n+2)

.825

826

Since {vi}ni=0 are the Lagrangian basis for V h, we have827

(7.6) S̄ =
1

h
(DTWAD + ETWAE).828

Now consider the one-dimensional Dirichlet boundary value problem:829

−(au′)′ =f on [0, 1],830

u(0) = σ1, u(1) = σ2.831832
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Consider the same mesh as above and define

V h0 = {v ∈ C0([0, 1]) : v|Ik ∈ P 2(Ik), k = 0, . . . , N − 1; v(0) = v(1) = 0}.

Then {vi}ni=1 ⊂ V h is a basis of V h0 for {vi}n+1
i=0 defined above. The one-dimensional833

version of (6.3) is to seek uh ∈ V h0 satisfying834

〈au′h, v′i〉h = 〈f, vi〉h − 〈ag′I , v′i〉h, i = 1, 2, . . . , n,

gI(x) = σ0v0(x) + σ1vn+1(x).
(7.7)835

Notice that we can obtain (7.7) by simply setting uh(0) = σ0 and uh(1) = σ1 in (7.2).836

So the finite difference implementation of (7.7) is given as follows:837

1. Assemble the (n+ 2)× (n+ 2) stiffness matrix S̄ for homogeneous Neumann838

problem as in (7.6).839

2. Let S denote the n × n submatrix S̄(2 : n + 1, 2 : n + 1), i.e., [S̄ij ] for840

i, j = 2, · · · , n+ 1.841

3. Let l denote the n × 1 submatrix S̄(2 : n + 1, 1) and r denote the n × 1842

submatrix S̄(2 : n+ 1, n+ 2), which correspond to v0(x) and vn+1(x).843

4. Let u =
[
u1 u2 · · · un

]T
and f =

[
f1 f2 · · · fn

]T
. Define w =844 [

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

]
as a column vector of size n. The scheme (7.7) can be845

implemented as846

Su = hwT f − σ0l− σ1r.847

7.2. Notations and tools for the two-dimensional case. We will need two848

operators:849

• Kronecker product of two matrices: if A is m× n and B is p× q, then A⊗B850

is mp× nq give by851

A⊗B =

a11B · · · a1nB
...

...
...

am1B · · · amnB

 .852

• For a m× n matrix X, vec(X) denotes the vectorization of the matrix X by853

rearranging X into a vector column by column.854

The following properties will be used:855

1. (A⊗B)(C ⊗D) = AC ⊗BD.856

2. (A⊗B)−1 = A−1 ⊗B−1.857

3. (BT ⊗A)vec(X) = vec(AXB).858

4. (A⊗B)T = AT ⊗BT .859

Consider a uniform grid (xi, yj) for a rectangular domain Ω̄ = [0, 1]× [0, 1] where860

xi = ihx, i = 0, 1, . . . , nx+1, hx = 1
nx+1 and yj = jhy, j = 0, 1, . . . , ny+1, hy = 1

ny+1 .861

Assume nx and ny are odd and let Nx = nx+1
2 and Ny =

ny+1
2 . We consider rect-

angular cells ekl = [x2k, x2k+2]× [y2l, y2l+2] for k = 0, . . . , Nx−1 and l = 0, . . . , Ny−1
as a finite element mesh for Q2 basis. Define

V h = {v ∈ C0(Ω) : v|ekl
∈ Q2(ekl), k = 0, . . . , Nx − 1, l = 0, . . . , Ny − 1},

V h0 = {v ∈ C0(Ω) : v|ekl
∈ Q2(ekl), k = 0, . . . , Nx − 1, l = 0, . . . , Ny − 1; v|∂Ω ≡ 0}.
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For the coefficients a(x, y) =

(
a11 a12

a21 a22

)
, b = [b1 b2] and c in the elliptic862

operator (2.3), consider their grid point values in the following form:863

Akl =


a00 a01 . . . a0,nx+1

a10 a11 . . . a1,nx+1

...
...

...
any+1,0 any+1,1 . . . any+1,,nx+1


(ny+2)×(nx+2)

, aij = akl(xj , yi), k, l = 1, 2,864

865

866

Bm =


b00 b01 . . . b0,nx+1

b10 b11 . . . b1,nx+1

...
...

...
bny+1,0 bny+1,1 . . . bny+1,nx+1


(ny+2)×(nx+2)

, bij = bm(xj , yi), m = 1, 2,867

868

869

C =


c00 c01 . . . c0,nx+1

c10 c11 . . . c1,nx+1

...
...

...
cny+1,0 cny+1,1 . . . cny+1,nx+1


(ny+2)×(nx+2)

, cij = c(xj , yi).870

871

Let diag(x) denote a diagonal matrix with the vector x as diagonal entries and872

define873

W̄x = diag
(

1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)
(nx+2)×(nx+2)

,874

875
W̄y = diag

(
1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)
(ny+2)×(ny+2)

,876

877
Wx = diag

(
4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

)
nx×nx

,Wy = diag
(

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

)
ny×ny

.878

Let s = x or y, we define the D and E matrices with dimension (ns + 2)× (ns + 2)879

for each variable:880

Ds =
1

2



−3 4 −1
−1 0 1
1
2 −2 0 2 − 1

2
−1 0 1
1
2 −2 0 2 − 1

2
−1 0 1

. . .
. . .

. . .
−1 0 1
1
2 −2 0 2 − 1

2
−1 0 1
1 −4 3


, Es =

1

2



0 0 0
0 0 0
− 1

2 2 −3 2 − 1
2

0 0 0
− 1

2 2 −3 2 − 1
2

0 0 0

. . .
. . .

. . .
0 0 0
− 1

2 2 −3 2 − 1
2

0 0 0
0 0 0


.881

882

Define an inflation operator Infl : Rny×nx −→ R(ny+2)×(nx+2) by adding zeros:883

Infl(U) =

0 · · · 0
... U

...
0 · · · 0


(ny+2)×(nx+2)

884

and its matrix representation is given as Ĩx ⊗ Ĩy where885

Ĩx =

 0
Inx×nx

0


(nx+2)×nx

, Ĩy =

 0
Iny×ny

0


(ny+2)×ny

.886
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Its adjoint is a restriction operator Res : R(ny+2)×(nx+2) −→ Rny×nx as

Res(X) = X(2 : ny + 1, 2 : nx + 1) ,∀X ∈ R(ny+2)×(nx+2),

and its matrix representation is ĨTx ⊗ ĨTy .887

7.3. Two-dimensional case. For Ω̄ = [0, 1]2 we first consider an elliptic equa-888

tion with homogeneous Neumann boundary condition:889

−∇ · (a∇u) + b∇u+ cu =f on Ω,(7.8)890

a∇u · n =0 on ∂Ω.(7.9)891892

The variational form is to find u ∈ H1(Ω) satisfying893

(7.10) A(u, v) = (f, v), ∀v ∈ H1(Ω).894

The C0-Q2 finite element method with 3 × 3 Gauss-Lobatto quadrature is to find895

uh ∈ V h satisfying896

(7.11) 〈a∇uh,∇vh〉h + 〈b∇uh, vh〉h + 〈cuh, vh〉h = 〈f, vh〉h, ∀vh ∈ V h,897

Let Ū be a (ny + 2) × (nx + 2) matrix such that its (j, i)-th entry is Ū(j, i) =898

uh(xi−1, yj−1), i = 1, . . . , nx + 2, j = 1, . . . , ny + 2. Let F̄ be a (ny + 2) × (nx + 2)899

matrix such that its (j, i)-th entry is F̄ (j, i) = f(xi−1, yj−1). Then the matrix form900

of (7.11) is901

(7.12) S̄vec(Ū) = M̄vec(F̄ ), M̄ = hxhyW̄x ⊗ W̄y, S̄ =

2∑
k,l=1

Skla +

2∑
m=1

Smb + Sc,902

where903

S11
a =

hy
hx

(DT
x ⊗ Iy)diag(vec(W̄yA

11W̄x))(Dx ⊗ Iy) +
hy
hx

(ETx ⊗ Iy)diag(vec(W̄yA
11W̄x))(Ex ⊗ Iy),904

S12
a = (DT

x ⊗ Iy)diag(vec(W̄yA
12W̄x))(Ix ⊗Dy) + (ETx ⊗ Iy)diag(vec(W̄yA

12W̄x))(Ix ⊗ Ey),905

S21
a = (Ix ⊗DT

y )diag(vec(W̄yA
21W̄x))(Dx ⊗ Iy) + (Ix ⊗ ETy )diag(vec(W̄yA

21W̄x))(Ex ⊗ Iy),906

S22
a =

hx
hy

(Ix ⊗DT
y )diag(vec(W̄yA

22W̄x))(Ix ⊗Dy) +
hx
hy

(Ix ⊗ ETy )diag(vec(W̄yA
22W̄x))(Ix ⊗ Ey),907

S1
b = hydiag(vec(W̄yB

1W̄x))(Dx ⊗ Iy), S2
b = hxdiag(vec(W̄yB

2W̄x))(Ix ⊗Dy),908

Sc = hxhydiag(vec(W̄yCW̄x).909910

Now consider the scheme (6.3) for nonhomogeneous Dirichlet boundary condi-911

tions. Its numerical solution can be represented as a matrix U of size ny × nx with912

(j, i)-entry U(j, i) = uh(xi, yj) for i = 1, · · · , nx; j = 1, · · · , ny. Similar to the one-913

dimensional case, its stiffness matrix can be obtained as the submatrix of S̄ in (7.12).914

Let Ḡ be a (ny + 2) by (nx + 2) matrix with (j, i)-th entry as Ḡ(j, i) = g(xi−1, yj−1),915

where916

g(x, y) =

{
0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y), if (x, y) ∈ ∂Ω.
917

In particular, Ḡ(j + 1, i + 1) = 0 for j = 1, . . . , ny, i = 1, . . . , nx. Let F be a matrix918

of size ny× nx with (j, i)-entry as F (j, i) = f(xi, yj) for i = 1, · · · , nx; j = 1, · · · , ny.919

Then the scheme (6.3) becomes920

(7.13) (ĨTx ⊗ ĨTy )S̄(Ĩx ⊗ Ĩy)vec(U) = (Wx ⊗Wy)vec(F )− (ĨTx ⊗ ĨTy )S̄vec(Ḡ).921
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Even though the stiffness matrix is given as S = (ĨTx ⊗ ĨTy )S̄(Ĩx ⊗ Ĩy), S should be922

implemented as a linear operator in iterative linear system solvers. For example, the923

matrix vector multiplication (ĨTx ⊗ ĨTy )S11
a (Ĩx⊗ Ĩy)vec(U) is equivalent to the following924

linear operator from R
ny×nx to Rny×nx:925

hy
hx
ĨTy

{
Iy

(
[W̄yA

11W̄x] ◦ [Iy(ĨyUĨ
T
x )DT

x ]
)
Dx + Iy

(
[W̄yA

11W̄x] ◦ [Iy(ĨyUĨ
T
x )ETx ]

)
Ex

}
Ĩx,926

where ◦ is the Hadamard product (i.e., entrywise multiplication).927

7.4. The Laplacian case. For one-dimensional constant coefficient case with928

homogeneous Dirichlet boundary condition, the scheme can be written as a classical929

finite difference scheme Hu = f with930

H = M−1S =
1

h2



2 −1
−2 7

2 −2 1
4

−1 2 −1
1
4 −2 7

2 −2 1
4

−1 2 −1

. . .
. . .

1
4 −2 7

2 −2
−1 2

931

In other words, if xi is a cell center, the scheme is932

−ui−1 + 2ui − ui+1

h2
= fi,933

and if xi is a knot away from the boundary, the scheme is934

ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2

4h2
= fi.935

It is straightforward to verify that the local truncation error is only second order.936

For the two-dimensional Laplacian case homogeneous Dirichlet boundary condi-937

tion, the scheme can be rewritten as938

(Hx ⊗ Iy) + (Ix ⊗Hy)vec(U) = vec(F ),939

where Hx and Hy are the same H matrix above with size nx × nx and ny × ny940

respectively. The inverse of (Hx ⊗ Iy) + (Ix ⊗Hy) can be efficiently constructed via941

the eigen-decomposition of small matrices Hx and Hy:942

1. Compute eigen-decomposition of Hx = TxΛxT
−1
x and Hy = TyΛyT

−1
y .943

2. The properties of Kronecker product imply that944

(Hx ⊗ Iy) + (Ix ⊗Hy) = (Tx ⊗ Ty)(Λx ⊗ Iy + Ix ⊗ Λy)(T−1
x ⊗ T−1

y ),945

thus946

[(Hx ⊗ Iy) + (Ix ⊗Hy)]−1 = (Tx ⊗ Ty)(Λx ⊗ Iy + Ix ⊗ Λy)−1(T−1
x ⊗ T−1

y ).947

3. It is nontrivial to determine whether H is diagonalizable. In all our numerical948

tests, H has no repeated eigenvalues. So if assuming Λx and Λy are diagonal949

matrices, the matrix vector multiplication [(Hx ⊗ Iy) + (Ix ⊗ Hy)]−1vec(F )950

can be implemented as a linear operator on F :951

(7.14) Ty([T−1
y F (T−1

x )T ]./Λ)TTx ,952

where Λ is a ny×nx matrix with (i, j)-th entry as Λ(i, j) = Λy(i, i)+Λx(j, j)953

and ./ denotes entry-wise division for two matrices of the same size.954
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For the 3D Laplacian, the matrix can be represented as Hx⊗ Iy ⊗ Iz + Ix⊗Hy ⊗955

Iz+Ix⊗Iy⊗Hz thus can be efficiently inverted through eigen-decomposition of small956

matrices Hx, Hy and Hz as well.957

Since the eigen-decomposition of small matrices Hx and Hy can be precomputed,958

and (7.14) costs only O(n3) for a 2D problem on a mesh size n×n, in practice (7.14)959

can be used as a simple preconditioner in conjugate gradient solvers for the following960

linear system equivalent to (7.13):961

(W−1
x ⊗W−1

y )(ĨTx ⊗ ĨTy )S̄(Ĩx⊗ Ĩy)vec(U) = vec(F )− (W−1
x ⊗W−1

y )(ĨTx ⊗ ĨTy )S̄vec(G),962

even though the multigrid method as reviewed in [19] is the optimal solver in terms963

of computational complexity.964

8. Numerical results. In this section we show a few numerical tests verifying965

the accuracy of the scheme (6.3) for k = 2 implemented as a finite difference scheme966

on a uniform grid. We first consider the following two dimensional elliptic equation:967

(8.1) −∇ · (a∇u) + b · ∇u+ cu = f on [0, 1]× [0, 2]968

where a =

(
a11 a12

a21 a22

)
, a11 = 10 + 30y5 +x cos y+y, a12 = a21 = 2 + 0.5(sin(πx) +

x3)(sin(πy) + y3) + cos(x4 + y3), a22 = 10 + x5, b = 0, c = 1 + x4y3, with an exact
solution

u(x, y) = 0.1(sin(πx) + x3)(sin(πy) + y3) + cos(x4 + y3).

The errors at grid points are listed in Table 1 for purely Dirichlet boundary969

condition and Table 2 for purely Neumann boundary condition. We observe fourth970

order accuracy in the discrete 2-norm for both tests, even though only O(h3.5) can971

be proven for Neumann boundary condition as discussed in Remark 5.5. Regarding972

the maximum norm of the superconvergence of the function values at Gauss-Lobatto973

points, one can only prove O(h3 log h) even for the full finite element scheme (1.1)974

since discrete Green’s function is used, see [4].975

Table 1
A 2D elliptic equation with Dirichlet boundary conditions. The first column is the number of

regular cells in a finite element mesh. The second column is the number of grid points in a finite
difference implementation, i.e., number of degree of freedoms.

FEM Mesh FD Grid l2 error order l∞ error order
2× 4 3× 7 3.94E-2 - 7.15E-2 -
4× 8 7× 15 1.23E-2 1.67 3.28E-2 1.12
8× 16 15× 31 1.46E-3 3.08 5.42E-3 2.60
16× 32 31× 63 1.14E-4 3.68 3.96E-4 3.78
32× 64 63× 127 7.75E-6 3.88 2.62E-5 3.92
64× 128 127× 255 5.02E-7 3.95 1.73E-6 3.92
128× 256 255× 511 3.23E-8 3.96 1.13E-7 3.94

Next we consider a three-dimensional problem −∆u = f with homogeneous
Dirichlet boundary conditions on a cube [0, 1]3 with the following exact solution

u(x, y, z) = sin(πx) sin(2πy) sin(3πz) + (x− x3)(y2 − y4)(z − z2).

See Table 3 for the performance of the finite difference scheme. There is no es-976

sential difficulty to extend the proof to three dimensions, even though it is not977
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Table 2
A 2D elliptic equation with Neumann boundary conditions.

FEM Mesh FD Grid l2 error order l∞ error order
2× 4 5× 9 1.38E0 - 2.27E0 -
4× 8 9× 17 1.46E-1 3.24 2.52E-1 3.17
8× 16 17× 33 7.49E-3 4.28 1.64E-2 3.94
16× 32 33× 65 4.31E-4 4.12 1.02E-3 4.01
32× 64 65× 129 2.61E-5 4.04 7.47E-5 3.78

very straightforward. Nonetheless we observe that the scheme is indeed fourth or-978

der accurate. The linear system is solved by the eigenvector method shown in979

Section 7.4. The discrete 2-norm over the set of all grid points Z0 is defined as980

‖u‖2,Z0 =
[
h3
∑

(x,y,z)∈Z0
|u(x, y, z)|2

] 1
2

.981

Table 3
−∆u = f in 3D with homogeneous Dirichlet boundary condition.

Finite Difference Grid l2 error order l∞ error order
7× 7× 7 1.51E-2 - 4.87E-2 -

15× 15× 15 9.23E-4 4.04 3.12E-3 3.96
31× 31× 31 5.68E-5 4.02 1.95E-4 4.00
63× 63× 63 3.54E-6 4.01 1.22E-5 4.00

127× 127× 127 2.21E-7 4.00 7.59E-7 4.00

Last we consider (8.1) with convection term and the coefficients b is incompress-

ible ∇ · b = 0: a =

(
a11 a12

a21 a22

)
, a11 = 100 + 30y5 + x cos y + y, a12 = a21 =

2 + 0.5(sin(πx) + x3)(sin(πy) + y3) + cos(x4 + y3), a22 = 100 + x5, b =

(
b1
b2

)
,

b1 = ψy, b2 = −ψx, ψ = x exp(x2 + y), c = 1 + x4y3, with an exact solution

u(x, y) = 0.1(sin(πx) + x3)(sin(πy) + y3) + cos(x4 + y3).

The errors at grid points are listed in Table 4 for Dirichlet boundary conditions.982

Table 4
A 2D elliptic equation with convection term and Dirichlet boundary conditions.

FEM Mesh FD Grid l2 error order l∞ error order
2× 4 3× 7 1.26E-1 - 2.71E-1 -
4× 8 7× 15 2.85E-2 2.15 9.70E-2 1.48
8× 16 15× 31 1.89E-3 3.92 7.25E-3 3.74
16× 32 31× 63 1.17E-4 4.01 4.01E-4 4.17
32× 64 63× 127 7.41E-6 3.98 2.54E-5 3.98

9. Concluding remarks. In this paper we have proven the superconvergence of983

function values in the simplest finite difference implementation of C0-Qk finite element984

method for elliptic equations. In particular, for the case k = 2 the scheme (6.3) can985

be easily implemented as a fourth order accurate finite difference scheme as shown in986
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Section 7. It provides only only an convenient approach for constructing fourth order987

accurate finite difference schemes but also the most efficient implementation of C0-Qk988

finite element method without losing superconvergence of function values. In a follow989

up paper [12], we will show that discrete maximum principle can be proven for the990

scheme (6.3) in the case k = 2 when solving a variable coefficient Poisson equation.991
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