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SUPERCONVERGENCE OF HIGH ORDER FINITE DIFFERENCE
SCHEMES BASED ON VARIATIONAL FORMULATION FOR
ELLIPTIC EQUATIONS *

HAO LIT AND XIANGXIONG ZHANG T

Abstract. The classical continuous finite element method with Lagrangian Q¥ basis reduces to
a finite difference scheme when all the integrals are replaced by the (k4 1) x (k + 1) Gauss-Lobatto
quadrature. We prove that this finite difference scheme is (k + 2)-th order accurate in the discrete 2-
norm for an elliptic equation with Dirichlet boundary conditions, which is a superconvergence result
of function values. We also give a convenient implementation for the case k = 2, which is a simple
fourth order accurate elliptic solver on a rectangular domain.

Key words. Superconvergence, high order accurate discrete Laplacian, elliptic equations, finite
difference scheme based on variational formulation, Gauss-Lobatto quadrature.
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1. Introduction.

1.1. Motivation. In this paper we consider solving a two-dimensional ellip-
tic equation with smooth coeflicients on a rectangular domain by high order finite
difference schemes, which are constructed via using suitable quadrature in the classi-
cal continuous finite element method on a rectangular mesh. Consider the following
model problem as an example: a variable coefficient Poisson equation —V-(a(x)Vu) =
fya(x) > 0 on a square domain 2 = (0,1) x (0,1) with homogeneous Dirichlet bound-
ary conditions. The variational form is to find u € H(Q) = {v € HY(Q) : v|aq = 0}
satisfying

A(u,v) = (fﬂ)), Vv € Hé(Q)v

where A(u,v) = [[,aVu- Vudzdy, (f,v) = [[, fvdzdy. Let h be the mesh size of
an uniform rectangular mesh and VJ* C H}(2) be the continuous finite element space
consisting of piecewise Q* polynomials (i.e., tensor product of piecewise polynomials
of degree k), then the C°-QF finite element solution is defined as u; € V! satisfying

(1.1) A(uh,vh) = (f, vp), Yo € ‘/E)h.

Standard error estimates of (1.1) are ||u — up|1 < Ch*||ulpr1 and ||u — unllo <
Ch*¥*1||lu|x+1 where || - ||z denotes H*(Q)-norm, see [5]. For k > 2, O(h**!) su-
perconvergence for the gradient at Gauss quadrature points and O(h¥*+?2) supercon-
vergence for functions values at Gauss-Lobatto quadrature points were proven for
one-dimensional case in [11, 2, 1] and for two-dimensional case in [8, 17, 4, 14].

When implementing the scheme (1.1), integrals are usually approximated by
quadrature. The most convenient implementation is to use (k + 1) x (k + 1) Gauss-
Lobatto quadrature because they not only are superconvergence points but also can
define all the degree of freedoms of Lagrangian Q" basis. See Figure 1 for the case
k = 2. Such a quadrature scheme can be denoted as finding u;, € V! satisfying

(1.2) Ap(up,vp) = (fyon)n, Yo, € VY,
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2 H. LI AND X. ZHANG

where Ap(up,vr) and (f,vy), denote using tensor product of (k + 1)-point Gauss-
Lobatto quadrature for integrals A(up,vy) and (f,v,) respectively.

(a) The quadrature points and a FEM (b) The corresponding finite differ-
mesh ence grid

Fic. 1. An illustration of Lagrangian Q2 element and the 3 x 3 Gauss-Lobatto quadrature.

It is well known that many classical finite difference schemes are exactly finite
element methods with specific quadrature scheme, see [5]. We will write scheme
(1.2) as an exact finite difference type scheme in Section 7 for ¥ = 2. Such a finite
difference scheme not only provides an efficient and also convenient way for assembling
the stiffness matrix especially for a variable coefficient problem, but also with has
advantages inherited from the variational formulation, such as symmetry of stiffness
matrix and easiness of handling boundary conditions in high order schemes. This is
the variational approach to construct a high order accurate finite difference scheme .

Classical quadrature error estimates imply that standard finite element error es-
timates still hold for (1.2), see [7, 5]. The focus of this paper is to prove that the
superconvergence of function values at Gauss-Lobatto points still holds. To be more
specific, for Dirichlet type boundary conditions, we will show that (1.2) with k > 2
is a (k + 2)-th order accurate finite difference scheme in the discrete 2-norm under
suitable smoothness assumptions on the exact solution and the coefficients.

In this paper, the main motivation to study superconvergence is to use it for
constructing (k + 2)-th order accurate finite difference schemes. For such a task,
superconvergence points should define all degree of freedoms over the whole compu-
tational domain including boundary points. For high order finite element methods,
this seems possible only on quite structured meshes such as rectangular meshes for
a rectangular domain and equilateral triangles for a hexagonal domain, even though
there are numerous superconvergence results for interior cells in unstructured meshes.

1.2. Related work and difficulty in using standard tools. To illustrate
our perspectives and difficulties, we focus on the case k = 2 in the following. For
computing the bilinear form in the scheme (1.1), another convenient implementation
is to replace the smooth coefficient a(z,y) by a piecewise Q? polynomial ar(z,y) ob-
tained by interpolating a(z,y) at the quadrature points in each cell shown in Figure
1. Then one can compute the integrals in the bilinear form exactly since the inte-
grand is a polynomial. Superconvergence of function values for such an approximated
coefficient scheme was proven in [13] and the proof can be easily extended to higher
order polynomials and three-dimensional cases. This result might seem surprising
since interpolation error a(x,y) — as(x,y) is of third order. On the other hand, all
the tools used in [13] are standard in the literature.

From a practical point of view, (1.2) is more interesting since it gives a genuine
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SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 3

finite difference scheme. It is straightforward to use standard tools in the literature for
showing superconvergence still holds for accurate enough quadrature. Even though
the 3 x 3 Gauss-Lobatto quadrature is fourth order accurate, the standard quadrature
error estimates cannot be used directly to establish the fourth order accuracy of (1.2),
as will be explained in detail in Remark 3.8 in Section 3.2.

We can also rewrite (1.2) for k = 2 as a finite difference scheme but its local
truncation error is only second order as will be shown in Section 7.4. The phenomenon
that truncation errors have lower orders was named supraconvergence in the literature.
The second order truncation error makes it difficult to establish the fourth order
accuracy following any traditional finite difference analysis approaches.

To construct high order finite difference schemes from variational formulation, we
can also consider finite element method with P? basis on a regular triangular mesh
in which two adjacent triangles form a rectangle [18]. Superconvergence of function
values in C°-P? finite element method at the three vertices and three edge centers can
be proven [4, 17]. See also [10]. Even though the quadrature using only three edge
centers is third order accurate, error cancellations happen on two adjacent triangles
forming a rectangle, thus fourth order accuracy of the corresponding finite difference
scheme is still possible. However, extensions to construct higher order finite difference
schemes are much more difficult.

1.3. Contributions and organization of the paper. The main contribution
is to give the proof of the (k+2)-th order accuracy of (1.2) with & > 2, which is an easy
construction of high order finite difference schemes for variable coefficient problems.
An important step is to obtain desired sharp quadrature estimate for the bilinear
form, for which it is necessary to count in quadrature error cancellations between
neighboring cells. Conventional quadrature estimating tools such as the Bramble-
Hilbert Lemma only give the sharp estimate on each cell thus cannot be used directly.
A key technique in this paper is to apply the Bramble-Hilbert Lemma after integration
by parts on proper interpolation polynomials to allow error cancellations.

The paper is organized as follows. In Section 2, we introduce our notations and
assumptions. In Section 3, standard quadrature estimates are reviewed. Supercon-
vergence of bilinear forms with quadrature is shown in Section 4. Then we prove
the main result for homogeneous Dirichlet boundary conditions in Section 5 and for
nonhomogeneous Dirichlet boundary conditions in Section 6. Section 7 provides a
simple finite difference implementation of (1.2). Section 8 contains numerical tests.
Concluding remarks are given in Section 9.

2. Notations and assumptions.

2.1. Notations and basic tools. We will use the same notations as in [13]:

e We only consider a rectangular domain Q = (0,1) x (0,1) with its boundary
denoted as 0f).

e Only for convenience, we assume ), is an uniform rectangular mesh for Q
and e = [z, — h,x. + h] X [ye — h,ye + h] denotes any cell in Q; with cell
center (z¢,y.). The assumption of an uniform mesh is not essential to the
discussion of superconvergence. All superconvergence results in this paper
can be easily extended to continuous finite element method with Q* element
on a quasi-uniform rectangular mesh, but not on a generic quadrilateral mesh
or any curved mesh.

k

. QXe) = {pmy) -

0

pijz'y’, (z,y) € e} is the set of tensor product of
=0 j
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polynomials of degree k on a cell e.
VP = {p(x,y) € C°(Q) : ple € QF(e), Ve € Qi} denotes the continuous
piecewise QF finite element space on .

e Vi={v,€Vl:v,=0 on 0Q}.
e The norm and seminorms for W*?(Q) and 1 < p < +oo, with standard

modification for p = +oo:

1/p

lallipo = | 3 // 0L u(a,y)Pdady |

i+i<k

1/p

[ulkp.o = Z // |8183 u(z,y)|Pdedy ,

i+j=k

1/p
(i 2 = < / /Q hute.g) sy + [ [ I8§U(w7y)l”dxdy> .

Notice that [u]x41,p.0 = 0 if u is a QF polynomial.

For simplicity, sometimes we may use ||u||x.q, |u|ro and [u]; o denote norm

and seminorms for H*(Q) = W*2(Q).

When there is no confusion, 2 may be dropped in the norm and seminorms,
g llulle = llullx2,0-

For any v, € V", 1 < p < +00 and k > 1, we will abuse the notation to

denote the broken Sobolev norm and seminorms by the following

symbols

1
[vnllkp.a = <Z IIUhkpe> » vnlkpo (Zlvhlk,p,> N CAPXe 5(

o Let Zj . denote the set of (k+ 1) x (k+ 1) Gauss-Lobatto points on a cell e.

Zo =, Zo,e denotes all Gauss-Lobatto points in the mesh §y,.

o Let ||ull2,z, and ||u||co,z, denote the discrete 2-norm and the maximum norm

over Zj respectively:
lullozo = [B* > fu(z,y)l| o llulleo,zo = max |u(e,y)l.
(z,y)€Zo
(z,y)€Zo

For a continuous function f(z,y), let fr(x,y) denote its piecewise Q¥ La-
grange interpolant at Z . on each cell e, i.e., f; € V" satisfies:

f(z,y) :fj(l’,y), V(l‘,y) € Zp.

P*%(t) denotes the set of polynomial of degree k of variable ¢.
denotes the inner product in L?(e) and (f,v) denotes the inner product

©)
//fvdxdy, (f,v) // fodzdy = (f, V)e-

inL
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SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 5

(f,v)e,n denotes the approximation to (f,v). by using (k+1) x (k+ 1)-point
Gauss Lobatto quadrature with k& > 2 for integration over cell e.

(f,v)n denotes the approximation to (f,v) by using (k + 1) x (k + 1)-point
Gauss Lobatto quadrature with & > 2 for integration over each cell e.

K =[~1,1] x [~1,1] denotes a reference cell.

For f(z,y) defined on e, consider f(s,t) = f(sh + e, th +y.) defined on K.
Let f; denote the QF Lagrange interpolation of f at the (k+1) x(k+1)
Gauss Lobatto quadrature points on K.

(f,0) = [[z FOdsdt.

(f,) z denotes the approximation to (f, )z by using (k+ 1) x (k4 1)-point
Gauss-Lobatto quadrature.

On the reference cell K , for convenience we use the superscript h over the
ds or dt to denote we use (k + 1)-point Gauss-Lobatto quadrature on the
corresponding variable. For example,

1 k
// fdhsdt:/ wnf(—1,8) +wir F(L 1) + 3 wif (i, D]
K -1 i=2

Since ( f@) 1 coincides with ff) at the quadrature points, we have

//K( o) rdwdy = //K( Fo) rd zdty = //K Fodvad'y — (,9) ..

The following are commonly used tools and facts:

For two-dimensional problems,

W20l e = 10 ks P2 P[0l pe = (0], 50 1< <00
Inverse estimates for polynomials:
(2.1) lvrllkste < Ch Y onllke, Yon €V E>0.

Sobolev’s embedding in two and three dimensions: H2(K) — C°(K).
The embedding implies

oo e < ClSllyo s VS € HNE) k=2,

1F 1y vo.ic < Cllfllpsr o VF € HFHK) k> 2.

Cauchy-Schwarz inequalities in two dimensions:

1 1
2 2
ZIUIIk,eIIvIIk,eS(ZIIU@) <levlli,e> vl
€ € €

Poincaré inequality: let % be the average of u € H(£) on 2, then

ke = O)|ullkz2,e-

lu—tlopa < ClVulopo, p=1.
If 4 is the average of u € H!(e) on a cell e, we have

|u - a‘oypye < Ch|vu|0,p,e7 D= 1.

This manuscript is for review purposes only.
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6 H. LI AND X. ZHANG

e For k > 2, the (k + 1) x (k + 1) Gauss-Lobatto quadrature is exact for
integration of polynomials of degree 2k —1>k+1on K.
e Define the projection operator II; : & € L'(K) — II1a € Q*(K) by

(2.2) / /K (I ) wdsdt = / /K twdsdt, Yw € Q' (K).

Notice that all degree of freedoms of 1,4 can be represented as a linear
combination of [z a(s,t)p(s,t)dsdt for p(s,t) = 1,s,t,st, thus the H'(K)
(or H?(K)) norm of I are determined by [ [z a(s, t)p(s, t)dsdt. By Cauchy-
Schwarz inequality | [[x @(s,t)p(s, t)dsdt| < |[allg o g 1Dl iz < Clltllg o g

we have |IIial, , z < Cldl, 4 g, which means IT; is a continuous linear
mapping from L2(K) to H'(K). By a similar argument, one can show I is
a continuous linear mapping from L?(K) to H?(K).

2.2. Coercivity and elliptic regularity. We consider the elliptic variational
problem of finding u € H{ (2) to satisfy

(2.3) Au,v) == //Q(VvTaVu +bVuv + cuv) dedy = (f,v),Yo € H}(Q),

11,12
where a = 321 222> is real symmetric positive definite and b = [b
the coefficients a, b and ¢ are smooth with uniform upper bounds, thus A(u,v) <
Cllull1||v]|x for any u,v € H(2). We denote A\, as the smallest eigenvalues of a.
Assume A, has a positive lower bound and V - b < 2¢, so that coercivity of the

bilinear form can be easily achieved. Since

L $?]. Assume

(b-Vu,v)z/ uvb~nds—(V-(vb),u):/ wvb-nds — (b - Vv, u) — (vV - b, u),
a9 a0

we have

(2.4) 2(b-Vuv,v) +2(cv,v) = / v?b-nds + ((2¢ — V -b)v,v) >0, Yo € H}(Q).
o0

By the equivalence of two norms |- [; and || - ||; for the space H(Q) (see [5]), we
conclude that the bilinear form A(u,v) = (aVu, Vv) + (b - Vu,v) + (cu, v) satisfies
coercivity A(v,v) > C||v||; for any v € HE ().

The coercivity can also be achieved if we assume |b| < 4\ c. By Young’s inequal-

ity
VP 2
|(b-Vu,v)| < // [b- Vol + clv|?dzdy < <b|Vv,Vv> + (ev,v),

Q 4c 4c
we have
(2.5)

b 2

A(v,v) > (aVu, Vv)+(cv,v)—|(b-Vo,v)| > <(>\a - |4|C)VU,VU) >0, Yve H&(Q)I

Let A* be the dual operator of A, ie., A*(u,v) = A(v,u). We need to assume
the elliptic regularity holds for the dual problem of (2.3) :

(2.6) w € Hy(Q), A*(w,v) = (f,v), Vv e Hy(2) = |wll2 < C||fllo,

where C'is independent of w and f. See [16, 9] for the elliptic regularity with Lipschitz
continuous coefficients on a Lipschitz domain.
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3. Quadrature error estimates. In the following, we will use " for a function
to emphasize the function is defined on or transformed to the reference cell K =
[-1,1] x [-1,1] from a mesh cell.

3.1. Standard estimates. The Bramble-Hilbert Lemma for QF polynomials
can be stated as follows, see Exercise 3.1.1 and Theorem 4.1.3 in [6]:

THEOREM 3.1. If a continuous linear mapping I1: H*Y(K) — H"Y(K) satis-
fies 1o = 0 for any v € QF(K), then
(3.1) @ —Tal, g < Clily g g Vi€ HY(E).
Thus if 1(-) is a continuous linear form on the space H* 1 (K) satisfying [(0) = 0,V €

Q*(K), then R
@) < Clltllyy g @iz, Vo€ HMHEK),

where ||1| is the norm in the dual space of H*(K).

/

k+1,K
By applying Bramble-Hilbert Lemma, we have the following standard quadrature

estimates. See Theorem 2.3 and Theorem 2.4 in [13] for the detailed proof.

THEOREM 3.2. For a sufficiently smooth function a(z,y) € H**(e) and k > 2, let
m 1s an integer satisfying k < m < 2k, we have

//e a(z,y)dxdy — //e ar(z,y)dzdy = O(hm*l)[a]m@ _ O(hm+2)[a}m,oo,e-

THEOREM 3.3. If f € H*2(Q) with k > 2, then

(f,on) = (fron)n = OB )| fllerallvnll2,  Yon € V"

REMARK 3.4. By the Theorem 3.1, on the reference cell K, for a(x,y) € H*2(e)
and k > 2, we have

(3.2) // a(s,t) —ar(s,t)dsdt < C[d]k+2,f( < C[&]kﬁ,oo,f(’
K

and

(3.3) la = arlles & < Clalgy i

The following two results are also standard estimates obtained by applying the
Bramble-Hilbert Lemma.

LEMMA 3.5. If f € H2(Q) or f € V", we have (f,vi)—{f,vrn)n = Oh?)|fl2llvnllos
vh,

Proof. For simplicity, we ignore the subscript in v. Let E(f) denote the quadra-
ture error for integrating f(x,y) on e. Let E( f) denote the quadrature error for

integrating f(s,t) = f(ze + sh,ye + th) on the reference cell K. Due to the embed-
ding H?(K) — C°(K), we have

[E(f0)] < ClFoly o,z < Clflo,00,21010,00, 6 < CllF N2, & 1910, %-

Thus the mapping f — E(f9) is a continuous linear form on H2(K) and its norm is
bounded by C|[8]|, % If f € Q'(K), then we have E(f#) = 0. By the Bramble-Hilbert
Lemma Theorem 3.1 on this continuous linear form, we get

[E(fo)| < CLf)y & l18llg, 4

This manuscript is for review purposes only.
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8 H. LI AND X. ZHANG

222 So on a cell e, we get

223 (3.4) E(fv) = hQE(f ) < ChQ[ ]2 K”U”o k< Ch? ellvloe-

224 Summing over all elements and use Cauchy-Schwarz inequality, we get the desired
225  result. |
226 THEOREM 3.6. Assume all coefficients of (2.3) are in W*>(Q). We have

227 A(zh,vh) — Ah(zh,vh) = O(h)”’uhHQHZhHl, V”Uh,Zh S Vh.

Proof. Following the same arguments as in the proof of Lemma 3.4, we have
E(fv) < CR®|flaellvllo.e, Vf v e V™
228 Let f = a'*(vy), and v = (23), in the estimate above, we get

229 (@' (20)z, (vn)o) = (@' (zh)as (vR)2)n] < CR?[la™ (vn)a 2]l (28)z 0
339 <Ch?||a < Chlla"||2.0clvn 2] zn s,

232 where the inverse estimate (2.1) is used in the last inequality. Similarly, we have

233 (@'?(2n)z, (vn)y) = (@'?(2n)z, (vn)y)n = Chlla®?||2,c0llvnll2]2n 1,
234 (@ (2n)y, (vn)y) = (@ (2n)ys (VR )y)n = Chlla®||2,c0llvnl2|2n] 1,
235 (b (1) vn) — (" (2n) s vn ) = Ch|bY 12,00 [[n 12|28 0,
236 (6 (2n) > vn) = (b*(2n)y, vh)n = Ch||6?||2,00]|vnll2 |28 o,
33% (czp,vn) — {czn, vp)p =

239 which implies
240 A(zn,vn) — An(zn,vn) = O(R)||vn|l2llzn - a

241 3.2. A refined consistency error. In this subsection, we will show how to
242 establish the desired consistency error estimate for smooth enough coefficients:

O ) ullkssllvnll2,  VYon € V

243 Alu, — Ap(u, = 3
(v om) = Anfee on) {0<hk+z>||u||k+3|vh||2, Vo € VP

THEOREM 3.7. Assume a(z,y) € WkT2:°(Q), u € HF3(Q), k > 2, then

(2.2323 u, Ogvp) — (adyu, OxUp)p = {

O ) lallks 200 lullisslonllz,  Von € V',

3
O(h**2)[lallks2,00 lullkrallonllzs  Yon € VP,

(3.6a O |a U vpllz, Yo, € VE,
é %u Oyon) — (aBut, Bynn = ( k+§)|| k42,00 U]k +3]vnll2 h Oh
(3.6b O(h""2)|lallk+2,00 lullk+sllvnll2,  Von € V",
244
205 (3.7)  (adpu,vp) — (adpu, va)n = O(W"2)lallks2,00 [ullkssllvallz,  Von € Vi,
246
247 (3.8) (au,vn) — (au, vp)n, = O(h**?)||al k2 00lltllkr2llvnll2,  Von € Vi

This manuscript is for review purposes only.



SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 9
REMARK 3.8. We emphasize that Theorem 3.7 cannot be proven by applying the

Bramble-Hilbert Lemma directly. Consider the constant coefficient case a(z,y) = 1
and k = 2 as an example,

(Ot Dyvn) — (Dt Dvn = 3 ( J [ etwn)azay - [ ux(vh)mdhxdhy) .

248 Since the 3 x 3 Gauss-Lobatto quadrature is exact for integrating Q> polynomials, by

249  Theorem 3.1 we have
_ ‘// ﬂs(ﬁh)sdsdt—// i (Bp) o d" st
K K

250 ‘//ur(vh)xdzdy //uz(vh)zdhxdhy

251 Notice that p, is Q? thus (0p)st does not vanish and [(0n)sly g < Clonls . So by

< C[aswh)sh,fe-l

252 Bramble-Hilbert Lemma for QF polynomials, we can only get

253 //um(vh)mdmdy — //uw(vh)mdhmdhy = O(h4)||u||5,e||vh
e e

|3,e-

254 Thus by Cauchy-Schwarz inequality after summing over e, we only have
255 (Opt, Opvp) — (O, Do)y = O(AY)||ull5]|vn -

256 In order to get the desired estimate involving only the broken H2-norm of vy, we
257 will take advantage of error cancellations between neighboring cells through integra-
58 tion by parts.

259 Proof. For simplicity, we ignore the subscript ;, of v in this proof and all the
260 following v are in V" which are QF polynomials in each cell. First, by Theorem 3.3,
261 we easily obtain (3.7) and (3.8):

262 (atig, v) = (aug, v)n = O(h"*?)|laug | kr2llv]l2 = O(h**2) allks2,00llullkrslv]]2,
263
264 (au, v) = {au, v)n = OB ) aul|ks2lv]]2 = O™ )||al k200 llullis2llv]l2.

265 We will only discuss (aug,v;) — (au,,v,), and the same discussion also applies to
266 derive (3.6a) and (3.6b).
267 Since we have

268 (aty, Vz) — (QUZ, V) p = Z (// auzvdrdy — // auwvwdhxdhy)
269 = atisDgdsdt — / / dﬂs@sdhsdht) = < / / Gls0sdsdt — / / Qi {)sdhsdht> ;
270 ze: (/ /K K ze: K f(( ) |

where we use the fact ais0s = (G1s)0s on the Gauss-Lobatto quadrature points. For
fixed t, (Gt ) s is a polynomial of degree 2k—1 w.r.t. variable s, thus the (k+1)-point
Gauss-Lobatto quadrature is exact for its s-integration, i.e.,

/ / (adig) rogd" sd"t = / / (ddis) Osdsd"t.
K K

This manuscript is for review purposes only.



10 H. LI AND X. ZHANG

To estimate the quadrature error we introduce some intermediate values then do
272 interpretation by parts,

273 (3.9) // auvdsdtf// Gl ) 10 d"sd"t

(3.10)

274 = / / adlgdodsdt — / / (@iis) Dt + / / (ais) rdsdsdt — / / (@is) Dsdsdt

(3.11)

275 // (Gtis)) Dsdsdt + (// atis) 1 vdsdht — // vdsdt)

276 (3.12) + </1(aus)1vdt -

- / (aiig) pod"t
s=—1 -1

278 For the first term in (3.12), let , be the cell average of o, on K, then

279 I = // (Gtis) 1) Dsdsdt + // tis)1) (s — Ds)dsdt.
280

281 By (3.2) we have

282 ‘// (atis) )ﬁsdsdt‘ < Cladtis)

283 By Cauchy-Schwarz inequality, the Bramble-Hilbert Lemma on interpolation error
284 and Poincaré inequality, we have

- ' [ (@i = @) .~ Foydsa

389 SC[&ﬂs]kH,ﬂﬂzﬁ = O(hk+2)

>I+II+III.

s=—1

ellolle-

bs| = O(W* )|l 42,00.c |

< ‘&ﬂs - (dﬁ5)1|o,f<|@s - 675|0,[(

288 Thus we have
289 I = O(hF?)

For the second term in (3.12), we can estimate it the same way as in the proof of
Theorem 2.4. in [13]. For each ¥ € Q¥(K) we can define a linear form on H*(K) as

Ey(f) = / /K (Fr)sbdsdt — / /K (Fr)sodsd"t,

where F' is an antiderivative of f w.r.t. variable s. Due to the linearity of interpo-
lation operator and differentiating operation, Ej; is well defined. By the embedding
H?*(K) < C°(K), we have

Es(f) < ClF g oo, g 10ll0,00, & < CllAlo oo, i N0ll0,00 & < ClLAlz g 1000, < CllF g 100,51

where we use the fact that all the norms on QF(K) are equivalent to derive the first
inequality. The above inequalities imply that the mapping Ej; is a continuous linear
form on H*(K). With projection II; defined in (2.2), we have

= Boom,o(f) + Enyo(f), Vo € QF(K).

This manuscript is for review purposes only.
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Notice that F' by definition is an antiderivative of f w.r.t. only variable s. If f €
Qk 5 A) then FI is a polynomial of degree only £k — 1 w.r.t. to variable t thus
(F1)s Qk L(K). The quadrature is exact for polynomials of degree 2k — 1, thus
QF~ 1( ) C ker Ev m,5- S0 by the Bramble-Hilbert Lemma, we get

Ey- Hw(f) Clf ]k,f(”f’ - Hlf}”oj( < O[f]kj(wb,fc

and we also have

Em(f):// (FI)Sdesdtf// (F7) Iy odsd"t = 0.
K K
Thus we have

// atis)g vdsdht — // , Odsdt = Ey((adig)s) = —Ey_1,0((ats)s)

<Cl(@ds)sly, glonly 5 < C|au5|k+1,f(|v|2,f( = OB *2)|[all+1,00 e ull k42, V]2,

Now we only need to discuss the line integral term. Let Ly and L4 denote the left
and right boundary of (2 and let I5 and [§ denote the left and right edge of element
e or IX and IX for K. Since (ai);o mapped back to e will be +(aug) v which is
continuous across [§ and [§, after summing over all elements e, the line integrals along
the inner edges are canceled out and only the line integrals on Ly and L4 remain.

For a cell e adjacent to LQ, consider its reference cell K , and define a linear form

= [1 f(=1,t)dt — [, f(=1,t)d", then we have

E(79) < Clfly e 1000 oot < Ol g 1910 5

which means that the mapping f— E‘( f@) is continuous with operator norm less
than C||9|, ,x for some C. Clearly we have
"2

E(f9) = E(fTh6) + E(f(6 — T19)).
By the Theorem 3.1 we get
E((&'&S)I(@ - Hlﬁ)) < C[(““S) }k IK[ ]2 1k < C(|dﬂs - (&QS)Ilk’lg( + |d’&s|k7l§)[ﬁ]2’l§
<(ladsy, g+ 10ds] (0], 1 = OW* 2 || all ks 1,00 5 [l k2,05 [V] 2,15, |

where the first inequality comes from the accuracy of the (k+ 1)-point Gauss-Lobatto
quadrature rule, i.e. E(f) = 0,Vf € Q?** 1(K). The (k + 1)-point Gauss-Lobatto
quadrature rule also gives

E((atis) T1,0) = 0.

For the third term in (3.12), we sum them up over all the elements. Then for the
line integral along Lo

1 1
/(dﬂs)f(—l,t)f;(—l,t)dt— > /(&ﬂs)l(—l,t)ﬁ(—l,t)dht

60[]2#@ -1 eﬂLz;ﬁ@ -1
> E((ads) )= Y OB lallkr1o0usltllkr2as|vl2s-
eNLo#0) eNLa#)
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Let 5o and wy (= 1,2, ,k + 2) denote the quadrature points and weights in
(k 4 2)-point Gauss-Lobatto quadrature rule for s € [—1,1]. Since 93(s,t) € Q?*(K),
(k 4 2)-point Gauss-Lobatto quadrature is exact for s-integration thus

k+2

1l 1
/ / 07 (s,t)dsdt = Z wa/ 02, (50, t)dt,
—1J-1 ot —1

which implies

1 1 1
(3.13) / 02, (£1,t)dt < C/ / 02, (s, t)dsdt,
—-1J-1

-1

thus
h% |’U‘271§ S C[U}Z,&

By Cauchy-Schwarz inequality and trace inequality, we have

> (/1 (is) ot - 1 :1>

- / (aiis) pod™t
enLa0 \7 1 s=—1 -1
3
vlz,e = O(W2)[lallks1,00,0 |l k2,22 [v]2,0

= Y O allkr1.00.sllullkr2.50]2.05
eNLo#D

3
= > O )lallkr1.00.s luller2us
EﬂLQ#@

3
=O0(h**2)|allkt1,00.0ltllk+3.0(v]2,0.

Combine all the estimates above, we get (3.5b). Since the % order loss is only due
to the line integral along the boundary 9. If v € V, vyy = 0 on Ly and Ly so we
have (3.5a). O

4. Superconvergence of bilinear forms. The M-type projection in [3, 4] is
a very convenient tool for discussing the superconvergence of function values. Let
u, be the M-type Q" projection of the smooth exact solution w and its definition
will be given in the following subsection. To establish the superconvergence of the
original finite element method (1.1) for a generic elliptic problem (2.3) with smooth
coefficients, one can show the following superconvergence of bilinear forms, see [4, 14]
(see also [13] for a detailed proof):

O 2) ullgysllonll2,  Yon € Vi,
3
O(h*2)|Jullkgs|lvnll2,  Von € V.

Alu — up,vp) = {

In this section we will show the superconvergence of the bilinear form Ap:

(4.1a)
(4.1b)

O *2) |ullkssllvnlla,  Von € Vi,
O ) ullprslonllz,  Yon € V2.

Ap(u—up,vp) = {

4.1. Definition of M-type projection. We first recall the definition of M-type
projection. More detailed definition can also be found in [13]. Legendre polynomials
on the reference interval [—1, 1] are given as

1 dF

(8) = gy o (2 = DF 2 o(t) = L1 () = 615 (6) = 53— 1),
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which are L?-orthogonal to one another. Define their antiderivatives as M-type poly-
nomials:

1 gkt k 1 1
My (t) = WW(#_D c Mo(t) =1, My(t) = t, Mo(t) = 5(7:2—1),M3(t) = 5(t3—t),---

which satisfy the following properties:

o If j —i# 0,42, then M;(t) L M;(t), i.e., [1, M;(t)M;(t)dt = 0.

e Roots of My (t) are the k-point Gauss-Lobatto quadrature points for [—1,1].
Since Legendre polynomials form a complete orthogonal basis for L?([—1, 1]), for any
f(t) € H'(|-1,1]), its derivative f'(t) can be expressed as Fourier-Legendre series

()= Y bty b =G+ [ FOn@a
=0 -

The one-dimensional M-type projection is defined as fi(t) = E?:o b; M;(t), where
by = w is determined by by = W so that fi(£1) = f(£1). We have
f(t) = klim f@®) =3 l;ij(t). The remainder R[f]x(t) of one-dimensional M-type
projection is
RIfle(t) = f(t) = f) Z b M;(
j=k+1

For a function f(s,t) € H2(K) on the reference cell K = [—1,1] x [—1,1], its
two-dimensional M-type expansion is given as

=2 D b Mi(s)M(1),
=0 j7=0

where
boo = 31F(~1,-1)+ F(-1,1) + F(1,~1) + F(1,1)],

_ 2j—1 ! _
boﬁj,blj ] / 1 t + ft( )]ljfl(t)dt, Vi Z 1,
1

s -1 1
bi0,bi1 =

S 1 ifs( — )]ll_l(s)ds, ’LZ 1,

bij = (QZ_ 1)4(2 1) / fst s, )i (s)lj—1(t)dsdt, i, > 1.

The M-type Q¥ projection of f on K and its remainder are defined as
ko ko X R R
Frn(s,t) = Zzbi,jMi(S)Mj(t)v R[flkx(s,t) = f(s,t) = frn(s,t).
i=0 j=0

The M-type QF projection is equivalent to the point-line-plane interpolation used in
[15, 14]. See Theorem 3.1 in [13] for the proof of the following fact:

THEOREM 4.1. For k > 2, the M-type Q* projection is equivalent to the Q* point-
line-plane projection I1 defined as follows:
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1. Ia = 4 at four corners of K = [—1,1] x [-1,1]. R
2. IIu — @ s orthogonal to polynomials of degree k — 2 on each edge of K.
3. Ila — @ is orthogonal to any © € Q*~2(K) on K.

For f(z,y) on e = [z, — h,xc + h] X [ye — h,ye + h], let f(s,t) = f(sh+ e, th + y.)
then the M-type Q¥ projection of f on e and its remainder are defined as

> 2>
Il

-Te Yy — ye)

Frr(z,y) = fr, k( A 5

R[f]]@k(l’,y) = f(xvy) - fk,k(xvy)'

Now consider a function u(x,y) € H*2(Q), let u,(z,y) denote its piecewise M-type
Q" projection on each element e in the mesh . The first two properties in Theorem
4.1 imply that u,(z,y) on each edge of e is uniquely determined by u(z,y) along that
edge. So u,(z,y) is a piecewise continuous Q* polynomial on .

M-type projection has the following properties. See Theorem 3.2, Lemma 3.1 and
Lemma 3.2 in [13] for the proof.

THEOREM 4.2. For k > 2,
lu—wpll2, 2o = OB *2)|ullksz,  Yu € HM2(Q).

lu = uplloc,zo = O™ ) [[ullkt2,00,  Yu € WEF22(Q).

LEMMA 4.3. For f € H" (K ), k> 2,
B lkklo o it € ClUlksn o 10sRI Ity s < Clfliyr -

—_

|sz+1|<Ck|f\k+121<,|l;k+1z 0<i<k+1.
. If f € H**2(K), then Ibzk+l|<ck|f|k+22K’ l<i<k+1

INNUIIN

4.2. Estimates of M-type prOJectlon with quadrature.
LEMMA 4.4. Assume f(s,t) € H*3(K), k > 2,

(Rlflisths1 — Bl less g =0, [0 RIflrr1hrrs D] < C|f|k+3,f<~
Proof. First, we have

k+1

R flicsrier =Rl = Misr (1) zfzoAbz,mMz( )M (5) 22555 b i M ()

(R[fles1 k1 — RIFlks D = (Mg (t Zlh k1 Mi(s) + Myy1(s Zbk+1,] A1) =0

7=0

due to the fact that roots of My11(t) are the (k + 1)-point Gauss-Lobatto quadrature
points for [—1,1].
We have

(Os R flks1,h415 Dg

=(0s B[ flrs2,0+2, 1) & — (Os (B[ flit2,p42 — R[flbs1 k1), D
k+1 k+2

=(0sR[flr2hs2: 1) g — (Mipa(t Z biks2 M (5) + Miyo(s) Y brro i M;(t), 1)

k2
=(0s R[flrt2,k+2,1) g — (Miyo(t sz+1 et2li(s + (lkt1(s Zbk+2,j ) g
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Then by Lemma 4.3,
[Os R flkt2,k42, D | < Clf iy it u|

Notice that we have (I;11(s) Zfig biyo,; M;(t), 1) i = 0 since the (k+1)-point Gauss-
Lobatto quadrature for s-integration is exact and l;11(s) is orthogonal to 1. Lemma
4.3 implies [b;11 k+2| < C[f]; 5  for i > 0, thus we have

k
|<Mk+2(t) Z 8i+1,k+2li(3), 1>K| < C[f]k+3,K'
=0

LEMMA 4.5. Assume a(x,y) € WE=(Q), u(x,y) € H**3(Q) and k > 2. Then

(a(u = up)e, (vn)a)n = OW*?)|lall2,00llullissllonll2,  Von € VP

Proof. As before, we ignore the subscript of vy, for simplicity. We have

<a(u - up)am Vg)h = Z(a(u - up)wa U$>e’h7

and on each cell e,
(a(u—up)a, Va)en = ((RlUlrk)e, aVa)es = (Rlkr)s, Gds) g

(4.2) =((Bli]r1,041)s: a0s) g + (Rl x — R[] pr1,541)s5 00s) -

For the first term in (4.2), we have

((Rlalks1041)s,@05) g = (Rlilr1,k1)s, @05) g+ (R8s 1p41)s, 805 — B)) -

By Lemma 4.4,

(R[4 k41, 541)s5 ai&)}{ < C|d|0,00|a|k+3,f{‘@|1,f('

By Lemma 4.3,

(B4 1,541)5]0,00, & < Clilgyo 1
By Bramble-Hilbert Lemma Theorem 3.1 we have

(Rl 41,641) s, @05) g = (Rl s1,641) s> @ 0s) g + (RIA k4 1,041)s, (@ — @)0s) g

[
|&|0700|ﬂ|k+3,1%|@|1,1% +la— 5|0700|ﬂ|k+2,1%|17|1,1%)

<C(
<C(lalo,ool@ly i3 101 & +lalLooltly s #10], &) = O ) lall1,00ellullkssellv]ie,
and
<(R[ﬂ]k+1,k+1)sa a(ds — E»K < C[ﬁ]k+2,2,f(|d|0,oo,f(|ﬁ5 - {Tslo,oo,f(
SClily g0 i|0lo o 10 = Dslg 2. g = OB ) [u]kr2.2.e]a]0.00.c[V]2.2.-
Thus,
(4.3) (R[8)k11,541)5,80s) g = O(W*2) all1 00, [uliss2,¢|0]|2e-
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For the second term in (4.2), we have

(R[],

k— ém]k-&-l kt1)s, A0s)
k+1

(Mg (t Z biskr1 Mi(s) + Miy1 () D besr, s M (1))s, a0s)

k1
— (M (t Z bit1,k+1li(s) + (s Z biv1,M;(t), ads)
i=0
k-1 aee
(4.4) — (M4 (t Z bit1,k+1li(s = ((9) D bin 1M (1), ) -

Since My41(t) vanishes at (k 4+ 1) Gauss-Lobatto points, we have

Mk+1 ZbH_l 3l avs> =0.

For the second term in (4.4),

k+1

$) D by My(t
j=0

k+1

S) Z ZA)]H_L]‘M t
7=0

k+1

S) Z l;k;+1’jM t
7=0

k+1

()Y brr1 M;(1), (a
j=0

where the last step
of degree at most k

k+1 k+1

k+1
—ILa)ds) ¢ Zbk-H j I1,6)0,)
- k1 -
a — d)(’f)s — ’lA)S Zbk+1 N ( @S)>f{
k+1

- ﬁld)58>[( + <lk(5) Z I;k-‘rl,ij(t)a (d - a)({’s - 58»1%7

is due to the facts that (I1;a)d, and a(ds — 05) are polynomials
— 1 with respect to variable s, the (k + 1)-point Gauss-Lobatto

quadrature on s-integration is exact for polynomial of degree 2k — 1, and I(s) is
orthogonal to polynomials of lower degree. With Lemma 4.3, we have

(4.5)
k+1

S) Z IA)]H,LJ‘M
7=0

Combined with (4.3

t),a0s) g < Clitlyyy g (al2,001011 g + 1al1,001015, ) = O(W* ) [all2,00 [[ull 41,0

), we have proved the estimate. |

LEMMA 4.6. Assume a(x,y) € W2>=(Q), u(z,y) € H**2(Q) and k > 2. Then

(alu —up),va)n = O ) |allz,cclullisallvnllz,  Von € VP

Proof. As before, we ignore the subscript of vy, for simplicity and

(a(u —up), o) =Y {alu —up), v)en.

€
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On each cell e we have
(4.6)
<a(u — up), v>67h = (R[u]k,k, av}eyh = h2 <R[ﬁ]k7k, d@>f( = h2<R[ ]k ks av — CLU> -+ h2<R[ﬁ]k,k,%>f(l

For the first term in (4.6), due to the embedding H2(K) < C°(K), Bramble-Hilbert
Lemma Theorem 3.1 and Lemma 4.3, we have

W2 (R[a] e, 40 — @) g < Ch®| R[]k k]o0|ad — @bl < CR2Jit]y,, gl|ad —adl, ¢
< CR?filyyy g (|60 — a0l o ) + |a0], gz +1ad]y g )
< Oty g (100], g +[adly ) = OB ) [lallz.00,ellullkr,elo]2,e-

For the second term in (4.6), we have

W2 (Rlit]js1,k41,30) g = B2 (Rl kg1 641, a0) g — W2 (R[] pg1 kg1 — R[]k, G0) -
By Lemma 4.3 and Lemma 4.4 we have
W2 (R[i]ks1p11,00) g < ORPJilyyy gladly g = O ) |allocoelltllisz.elvllo.e,

and ) . _
h? (R[] k1,511 — Rl k,a0) 5 = 0.
Thus, we have (a(u — up), va)n = O(hF2)||all2,c0[w|lk+2]vn2- d

LEMMA 4.7. Assume a € W*>(Q), u € H**3(Q) and k > 2. Then

(a(u — up)e, vp)n = O(KFT2) Yo, € VI

Proof. As before, we ignore the subscript in v;, and we have

<a(u - up)wa U)h = Z(a(u - up)xa U>e,h~

€

On each cell e, we have

(a(u = up)z, V)en = (R[ulk i)z, av)e,n = h{(R] ,
(4.7) =h{(Rl@k+1,k41)s, 00) i — B{(R[]p41,041 — Rli]kk)s, @D

For the first term in (4.7), we have
(Rla]kr1p41)s0@0) g < ((RlAkr1041)s5@0) g + ((R[Aps1,041)5, @0 — @0)

Due to Lemma 4.4,

W{(Rlik41,541)5,00) g < Chllallo.solulyys 100 & = OB ) allo,colullkss.ellv

and by the same arguments as in the proof of Lemma 4.6 we have

(R[] 41,511)s, @0 — D) g < Ch|(R[]k11,541)s]00l@d — @Bl < Chlil],, g lad — ady 4

<Chlitly sy g (10 = a0l| 2 gy + |a0]y g + |a0]y z) < Chlly g 5 (180], g + 1001y g) = ORT2) allz,00|ullks2.e [V]|2e ]

Thus

(4.8) W((R[@]41,041)s,00) g = O [lallz,c0[ullirs.ellv]2.e-
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492 For the second term in (4.7), we have
193 ((Rlalks1p11 — Rl )s, a0)
k+1
494 Mk+1 Zbl k+1M +Mk+1(s)Zbk+17ij(t))s,&'lA}>f(
k41

495 =M1 (t Z biv1k+1li(s) + k(s Z brt1,;M;(t), av)

1=0

k-1 k1
196 Mk—i—l Zb“"l k+1l + <lk(5) Zbk+17ij(t)7dﬁ>f(

k+1 )

497 =(lr(s) Y b1 ;M (1), 46) g,
498 J=0

499 where the last step is due to that Mjy41(¢) vanishes at (k + 1) Gauss-Lobatto points.
500 Then

k41

501 (Rl g — Rl kp10e1)s, a0) 5 = (i(s Zbkm i)

k+1 k+1
502 =(lk(s) Y _ b1, M;(t), ab — Iy (ad)) Z bry1,;M;(t), 11 (a0)) o

k41
503 Z bit1,;M;(t), av — 111 (av)) &,
504
505 where the last step is due to the facts that ﬂl(&ﬁ) is a linear function in s thus the
506 (k+1)-point Gauss-Lobatto quadrature on s-variable is exact, and I (s) is orthogonal
507  to linear functions.
508 By Lemma 4.3 and Theorem 3.1, we have

k+1

509 ((Rl]k,r — Rl0]k+1,k41)s, GD) Z bry1,;M;(t), a0 — 11y (a0)) &
519 <Clulyyy,gladly g < C|u|k+1,f((‘a|2,oo,f(|v|0,f( +laly o, 51011, & + lalo,c0l0l5 £)
512 Thus

513 (4.9) BBk — Rl@ks1,641)s: a0) g = ORFT2)[lal|2,00 [ullet1,e][0]12,e-

514 By (4.8) and (4.9) and sum up over all the cells, we get the desired estimate. ad
LEMMA 4.8. Assume a(x,y) € WH>(Q), u(z,y) € H*T3(Q) and k > 2. Then

k43 h
(4.10&) <a(u . up) (Uh) >h _ O(hk+22)||a||k+2,<x>||u||k+3||vh||27 vvh S Vha
(4.10b) O(h" )l allk+2,00 ulltsllvnllz,  Von € V'

Proof. We ignore the subscript in v, and we have

(a(u = up)e, vy)n = Z(a(u = Up)a; Vy)e,h,

€
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515 and on each cell e

516 (@l = up)as vy)en = (Rlulkp)ws avy)en = ((R[A)k k)5, @)

5l (411) =((Rl@)k+1,641)s> a01) g + (R[5 — Rli]kr1,041) s ) -

519 By the same arguments as in the proof of Lemma 4.5, we have

520 (4.12) (Rlt]kt1,641)s @de) g = O ) a1 00 [t ks3,2, 0] 2,c,
521  and
k+1 R
522 (R[a)kk = R[@)k11,541)55008) g = —(l(8) D bir ;M (t), ) -
523 =

For simplicity, we define
k+1

bi g (t Z bry1,; M

524 then by the third and fourth estimates in Lemma 4.3, we have

k+1
525 b1 (B)] < C Y iy < Clitlyys
§=0
k+1
526 BRI < C Y brriy] < Clily 50 1< m,
527 j=m
528  where b,(€ +)1( t) is the m-th derivative of by, (t). We use the same technique in the

529 proof of Theorem 3.7 and we let I, = l;(s), br+1 = bg+1(¢) in the following,

530 (Rl ke — RlA)ks1,041)s, a0¢) R (8)brsa (1), 40r)

531 / / Ui (8)bps () at,d" sd"t = / / (Ikbpy1d) 0pd" sd"t

532 =— //A (lkbk_;,_l&)[’f}td hsdt + /f lkbk+1d@td8dt —/ R lkbk+1d@td8dt,
533 K K K

>34

535 // lkbk+1a )10d sdht—i—// lkbk+1avtd3dt
536 = / / zkbkﬂa—(lkbkﬂap @tdsdt+ / / (lxbry 1) 10, dsdt — / / (Lebgy1d) oy d" sdt
K K K

537 = / / [zkz}kﬂa—(lkékﬂa)]} Dydsdt + / Oy (bryr1d) rod" sdt — / Oy (Ibyyr1a) rodsdt
K K K

1 t=1 1 t=1
38+ / (lebgy10) ods — / (Ikbgy1d) rod" s =T+ IT+1III.
539 —1 t=—1 -1 t=—1
540 After integration by parts with respect to the variable s, we have
541 / ()b (1)t dsdt = — / My ()b (£)(asn + e dsdt,
542 K K
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which is exactly the same integral estimated in the proof of Lemma 3.7 in [13]. By

the same proof of Lemma 3.7 in [13], after summing over all elements, we have the
estimate for the term [y lx(s)bgy1(t)at,dsdt:

R O(hk+3 - Yo € VP
> //Al,c@)bkmt)a@tdsdt:{< Dlallcssellllssloll, o €V
- K

O(W**2)laller2,00 [ullisllv]l2, Vo € V3

Then we can do similar estimation as in Theorem 3.7 for I, I, 111 separately.
For term I, by Theorem 3.1 and the estimate (3.2), we have

//A |:lkl;k:+1& — (lki)k_;,_ld)[} Vedsdt

K

= //A [lkl;k-',-l& — (lki)k_;,_ld)]} Edsdt + //A [lki)k_;,_lfl - (lki)k_;,_ld)]} (f}t — ’lATt)det
K K

<C (b 11d) RS [libi 11 LY

te| 1,1]

k+2 k+2
~ 7 ~ ~ k42— ~
sc<2|a|m,m,f< max, |bk+1<t>|> |v|1,K+C<Z|a|m,oo,K a5 ’”<t>|> ol i

m=2 m=0

k+1 k+1
~ ~ k+1—m) ~
+C (Z e 85 i ( >|> ooz +C (Z il e e 00, (B >|> Ol
m=1

m=0

=O(h"*?)[lallis2.00[ullerz.ellv]2.e.

For term I1, as in the proof of Theorem 3.7, we define the linear form as

Byl f) = / /K (Fy)ebdsdt — / /K (By)od" sdt,

for each v € Q*(K) and F'i is an antiderivative of f w.r.t. variable t. We can easily see
that Fj is well defined and E; is a continuous linear form on H *(K). With projection
IT; defined in (2.2), we have

Eo(f) = Ey_p,o(f) + Eq o (f), Vo€ QM(K).

Since Q¥ (K) C ker EAﬁfﬁlﬁ thus

By ,5(f) < Olfly g0 = hllg ¢ < CIfly g1l 5

By o () = / /K (Fy)ll ddsdt — / /K ()il odPsdt = 0.

Thus we have

and

//A 8t(lki)k+1d)[f)dh8dt —/ R 8t(lk?)k+1&)[’f}d8dt = —Eﬁ((lk8k+1d)t)
K K
= — Ep-mo((kbr1@)e) < C[(Zkl;k'f‘ld)t]k’f{lﬁhb)f{ = O(W"*)|lallkt1,00 el r2.e[v]2,c ]

Now we only need to discuss term I11. Let Ly and L3 denote the top and bottorp
boundaries of Q and let I¢, I denote the top and bottom edges of element e (and ¥
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and z§ for K ). Notice that after mapping back to the cell e we have

k+1
bi+1(Ye + h) = bpy1(1) = Zbk+1,ij(1) = br+1,0 + brt1,1
j=0

1.t Teth T — X
=(k+ 7)/ Osu(s, 1)l (s)ds = (k + f)/ Ozu(z, ye + h)lk( )dx,
2) ), 2 ). h

and similarly we get b1 (ye—h) = bpp1(—1) = (k+1) ffj’: Dpu(, ye—h)l (5552 ) d.
Thus the term I(*5%<)bg11(y)av is continuous across the top and bottom edges of
cells. Therefore, if summing over all elements e, the line integral on the inner edges
are cancelled out. So after summing over all elements, the line integral reduces to
two line integrals along L; and Ls. We only need to discuss one of them. For a

cell e adjacent to Ly, consider its reference cell K and define linear form E( f) =
fil f(s,1)ds — fil f(s,1)d"s, then we have

E(f@) < C|f‘07oo7l{<|@|0,oo,l{( < C||f||27l{?||ﬁ||0’l{<7

thus the mapping f — E(fd) is continuous with operator norm less than Cllo]l, %
sty

0
for some C'. Since E((aiis)I116) = 0 we have

1 1
/ (Ipbg10) rods — / (Inbgyr0)rod"s
-1 -1

eNLi#0)

= Y E((kberra)0) = > E((kbpra) (6 — o)) < > C[(zkékﬂa),]k’l{—([@]m
eNLi#0 enLi#0 eNLi#D

< D Cllbiria — (kben@)il yx + libraidly iz )[6]y 1k

eNLy#0

< Z (llk8k+1&|k+1,l{<+|lk6k+1d|k,l{?)[ﬁ]2,l{?S Z C||&||k,oo,f(|l;k+1(1)”@}2’1{(7

eNLi#0 eNLi#0 I

where the first inequality is derived from E(f(d — I119)) = 0,Vf € Q¥ *(K) and
Theorem 3.1. .
Since I (t) = 525 4% (> — 1)¥, after integration by parts k times,

bear(1) = (k + %) /_1 Dvuls, V)le(s)dz = (—1)(k + %) /_1 95+ Lu(s, 1)L(s)ds,

where L(s) is a polynomial of degree 2k by taking antiderivatives of lx(s) k times.
Then by Cauchy-Schwarz inequality we have

1
2

1
bri1(1) < C </ |oF L (s, 1)|2ds) < OB % fu g e
-1

By (3.13), we get |’(A)|2’l{'< = h%|’f]|27l§ < Ch|v|z,. Thus we have

1 1
/(lkbkﬂd)]ﬁdsf/ (Ikbgy1a) rod"s < Z C||d||k,oo,1%|bk+1(1)|MQ,I{(
~1

eNLy#0 -1 eﬂL17§®

: 3 3
=00 *3) 37 lalkeclulisiiglvlze = OB allg,oolulirn,z, [vllz0 = OB 2)|allkoolullkreallvlo.o,
eNLy#D
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22 H. LI AND X. ZHANG

where the trace inequality |u||x+1,00 < C|lul/k+2,0 is used.
Combine all the estimates above, we get (4.10a). Since the % order loss is only
due to the line integral along Ly and Ls, on which v,, = 0 if v € V', we get (4.10b).0

By all the discussions in this subsection, we have proven (4.1a) and (4.1b).
5. Homogeneous Dirichlet Boundary Conditions.

5.1. V'-ellipticity. In order to discuss the scheme (1.2), we need to show A
satisfies V"-ellipticity

(5.1) Yuy, € Voh, CHU}LH% < Ah(vh,vh).

We first consider the Vj,-ellipticity for the case b = 0.

LEMMA 5.1. Assume the coefficients in (2.3) satisfy that b =0, both c¢(z,y) and
the eigenvalues of a(z,y) have a uniform upper bound and a uniform positive lower
bound, then there exist two constants Cy,Cs > 0 independent of mesh size h such that

Yor € Vo', Cillonli < An(on,vn) < Callonli-

Proof. Let Z, » denote the set of (k + 1) x (k + 1) Gauss-Lobatto points on the

reference cell K. First we notice that the set Zy i isa Q" (K)-unisolvent subset. Since
the Gauss-Lobatto quadrature weights are strictly positive, we have

2
Vp € Q ), Z D, O, =0 = 0;p = 0 at quadrature points,
i=1

where ¢ = 1,2 represents the spatial derivative on variable z; respectively. Since
9ip € Q¥(K) and it vanishes on a Q¥ (K)-unisolvent subset, we have 8;p = 0. Asa con-
sequence, /> (9;p, ;) defines a norm over the quotient space Q*(K)/Q°(K).

Since that | - |1’ & is also a norm over the same quotient space, by the equivalence of
norms over a finite dimensional space, we have

n

vhe QMK), Cilpl} 4 Z b, 0ip) i < Calpl? .

On the reference cell K, by the assumption on the coefficients, we have

n n
Crlonl} g < CL Y _(Bitn, 0on) g < Y ((@ij0idn, jon) g + (€0, o) ) < Collonllf 4
i ij=1

Mapping these back to the original cell e and summing over all elements, by
the equivalence of two norms |- |; and || - ||; for the space HZ(2) D V{ [5], we get
Cillvnll} < An(vn, va) < Collonlli- O

For discussing Vj-ellipticity when b is nonzero, by Young’s inequality we have
b - Vuy)? b|?
|(b - Vup, vp)n| < z@://e % + clop [Pd zd y < <%Vvh,Vvh>h + (cvh,vh>h.l

Thus we have

2
<aVvh, V’Uh>h + <b -V, Uh>h + <C1}h, Uh>h > <)\3Vvh, Vvh>h — < V’Uh, Vvh>

where A, is smallest eigenvalue of a. Then we have the following Lemma
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606 LEMMA 5.2. Assume 4\ac > |b|?, then there exists a constant C' > 0 independent
607  of mesh size h such that

608 Yoy, € Voh, Ah(vh,vh) > CthH%

609 5.2. Standard estimates for the dual problem. In order to apply the Aubin-
610  Nitsche duality argument for establishing superconvergence of function values, we need
611 certain estimates on a proper dual problem. Define 6}, := up — u,. Then we consider

612 the dual problem: find w € H}(Q) satisfying
613 (5.2) A*(w,v) = (Op,v), Yo € H}(Q),
where A*(-,-) is the adjoint bilinear form of A(-,-) such that
A*(u,v) = A(v,u) = (aVu, Vu) + (b - Vo, u) + (cv, u).
614 Let wy, € V' be the solution to
615 (5.3) Al (wh,vn) = (O, vn), Vo € Vi
616 Notice that the right hand side of (5.3) is different from the right hand side of the

617 scheme (1.2).
618 We need the following standard estimates on wy, for the dual problem.

619 THEOREM 5.3. Assume all coefficients in (2.3) are in W*>°(Q). Let w be defined
620 in (5.2), wy, be defined in (5.3), and 0, = up — up,. Assume elliptic reqularity (2.6)
621 and V" ellipticity holds, we have

622 lw —whl[1 < Chl|wl|2,

lwnllz < Cll0nllo-

623 Proof. By V" ellipticity, we have Ct ||[wy, — vn || < A} (wn — vp, wp — vp). By the
624  definition of the dual problem, we have

625 A,’:(wh,wh — 'Uh) = (Qh,wh — Uh) = A*(w,wh — Uh), Yoy, € %h.
626 Thus for any v;, € V', by Theorem 3.6, we have

627 Chllwp —vnl]F < Af(wp — vp, wp — vp)

628 =A"(w — vp, wp, — vp) + [AF (wp, wp, — vp) — A¥(w,wp, — vp)] + [A" (vp, wp — vp) — A} (Vn, wWh — vp)]
620 =A"(w — vp,wp, — vp) + [A(wp, — vp,vR) — Ap(wp — VR, V)]

630 <Cllw = vplh[fwp = vnlly + Chljonll2]lwn = val.

632 Thus
633 (5.4) lw —wr|1 < ||w—=wvrll1 + |wp — vrll1 < Cllw — vl + Chljvp]le.

634 Now consider II;w € Voh where II; is the piecewise Q' projection and its definition
635 on each cell is defined through (2.2) on the reference cell. By the Bramble Hilbert
636  Lemma Theorem 3.1 on the projection error, we have

637 (5.5) [w —Thw|y < Chllwllz,  |lw—Thwls < Cllwllz,
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24 H. LI AND X. ZHANG

thus ||ILyw|2 < ||w]l2 + |Jw — Thw]|ls < Cllw|2. By setting v, = IIyw, from (5.4) we
have

(5.6) [w = w1 < Cllw —Thwly + ChIhwl|z < Chljw|[2.
By the inverse estimate on the piecewise polynomial wy — II;w, we get
(5.7) llwnllz < llwn — Mwllz + [[Mw — w2 + [lw]ls < Ch™Hjwy, — Mw|y + Clluwll2.
By (5.5) and (5.6), we also have
(5.8) lwn = hw|)y < flw = hwl + [lw = wally < Chlwl.
With (5.7), (5.8) and the elliptic regularity ||w||2 < C||0n]l0, we get

[whllz < Cllwll2 < C||0r]lo-

5.3. Superconvergence of function values.

THEOREM 5.4. Assume a;j,bi,c € WF22(Q) and u(z,y) € H**3(Q), f(z,y) €
H*2(Q) with k > 2. Assume elliptic regularity (2.6) and V" ellipticity holds. Then
up, the numerical solution from scheme (1.2), is a (k + 2)-th order accurate approz-
imation to the exact solution w in the discrete 2-norm over all the (k+ 1) x (k+ 1)
Gauss-Lobatto points:

lun = ullo,z, = OW* ) ([[ullisz.0 + [ fllrs2.0)-
Proof. By Theorem 3.7 and Theorem 3.3, for any v, € VJ,

Ap(u —up,vp) = [A(u,vp) — Ap(un, vn)] + [An(u, vp) — A(u, vp)]
= A(u,vn) = Anp(un, vn) + O™ *2)||al[k+2,00]ulls+3]vnll2
[(f.0n) = (f,vn)n] + OB 2) [ullkssllvnlls = ORFF2) ([ullkss + 1 lls42) [onl2-

Let 0, = up — up, then 6, € VJ* due to the properties of the M-type projection. So
by (4.1a) and Theorem 5.3, we get

164115 = (6r,0n) = An(On, wn) = Ap(un — u, wn) + Ap(u — up, wp)
=An(u — up, wp) + O ([[ullkrs + || fllet2) lwnll2
=0 ) (ullets + | Fles2)llwnllz = OF2) (Jullits + || flle+2)10n o,

thus

lun, = upllo = 10nllo = O ) (lullers + [1Flli+2)-

Finally, by the equivalence of the discrete 2-norm on Z and the L?(Q) norm in
finite-dimensional space V" and Theorem 4.2, we obtain

lun — ull2,zy < llun —upll2,z, + llup — ull2,zy, < Cllun — upllo + [lup — ull2,z,
= O(W" ") (|lullkss + | fllk+2). O
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REMARK 5.5. To extend the discussions to Neumann type boundary conditions,
due to (4.1b) and Theorem 3.7, one can only prove (k + 2)-th order accuracy:

3
lun = ull2,z = OB 2) (Jullss + [1f]lk+2)-

On the other hand, for solving a general elliptic equation, only (’)(h’”%) superconver-
gence at all Lobatto point can be proven for Neumann boundary conditions even for
the full finite element scheme (1.1), see [/].

REMARK 5.6. All key discussions can be extended to three-dimensional cases. For
instance, M-type expansion has been used for discussing superconvergence for the three-
dimensional case [}]. The most useful technique in Section 3.2 to obtain desired
consistency error estimate is to derive error cancellations between neighboring cells
through integration by parts on suitable interpolation polynomials, which still seems
possible on rectangular meshes in three dimensions.

6. Nonhomogeneous Dirichlet Boundary Conditions. We consider a two-
dimensional elliptic problem on € = (0, 1)? with nonhomogeneous Dirichlet boundary
condition,

-V -(aVu)+b-Vu+cu = fon

(6.1) u =g on JN.

Assume there is a function g € H'(Q) as a smooth extension of g so that glsa = g.
The variational form is to find @ = u — g € Hg(Q) satisfying

(6.2) A, v) = (f,v) — A(g,v), Yo € H3(Q).

In practice, g is not used explicitly. By abusing notations, the most convenient
implementation is to consider

o if (z,y) € (0,1) x (0,1),
o) {g@c,y), it (2,y) €00,

and gr € V" which is defined as the Q* Lagrange interpolation at (k + 1) x (k + 1)
Gauss-Lobatto points for each cell on Q of g(z,y). Namely, g; € V" is the piecewise
P* interpolation of g along the boundary grid points and g; = 0 at the interior grid
points. The numerical scheme is to find @, € V', s.t.

(6.3) Ap(@n,vn) = (fyon)n — An(gr,vn),  Voun € V'

Then up = 4y + gr will be our numerical solution for (6.1). Notice that (6.3) is
not a straightforward approximation to (6.2) since g is never used. Assuming elliptic
regularity and V" ellipticity hold, we will show that up — u is of (k + 2)-th order in
the discrete 2-norm over all (k + 1) x (k4 1) Gauss-Lobatto points.

6.1. An auxiliary scheme. In order to discuss the superconvergence of (6.3),
we need to prove the superconvergence of an auxiliary scheme. Notice that we discuss
the auxiliary scheme only for proving the accuracy of (6.3). In practice one should not
implement the auxiliary scheme since (6.3) is a much more convenient implementation
with the same accuracy.

Let g, € V" be the piecewise M-type QF projection of the smooth extension
function g, and define g, € V" as g, = g, on 9Q and g, = 0 at all the inner grids.
The auxiliary scheme is to find @} € V{ satisfying

(6.4) An(@},vn) = (fyvn)n — An(gp,vn), Yo, € VY,
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Then uj, = 4} +g, is the numerical solution for problem (6.2). Define 0, = uj —u,,
then by Theorem 4.1 we have 6, € V. Following Section 5.2, define the following
dual problem: find w € H{(Q) satisfying

(6.5) A*(w,v) = (Op,v), Yo € HH Q).
Let wy, € V' be the solution to
(6.6) AZ(w;“vh) = (eh,’l}h)7 Yoy, € ‘/E)h.

Notice that the dual problem has homogeneous Dirichlet boundary conditions. By
Theorem 3.7, Theorem 3.3, for any v, € V',

Ap(u—ul,vp) = [Alu,vp) — Ap(ul, vp)] + [An(u, o) — A(u, vg)]
= A(u,vn) — An(uj, vn) + O(hF*2)||al 12,00 l[ullkrs]lon 2
= [(f,vn) = (fyon)n) + OBF ) Jul|yslvnlla = OB T2)(ullkss + | Fllkr2)llonl2-

By (4.1a) and Theorem 5.3, we get

164115 = (6n,01n) = An(On, wn) = Ap(uj, — u, wn) + Ap(u — up, wp)
=An(u—up,wn) + OB ) (Jullirs + | Flle+2) lwall2
=O(h* ) (lullets + || fllks2) [wnll2 = OB ) ([ullkrs + 11f |k+2) 10k ]lo,

thus [|u} —upllo = |0k llo = OR*2)(||ullk+3 + || fllk+2)- So Theorem 5.4 still holds for
the auxiliary scheme (6.4):

(6.7) i, = ull2,zo = O ) (lulliss + [1fllk+2)-

6.2. The main result. In order to extend Theorem 5.4 to (6.3), we only need
to prove
lun = ujllo = O(R**2).

The difference between (6.4) and (6.3) is
(6.8) Ap(@y, — Gn,vn) = An(gr — gp.vn),  Vou € Vi

We need the following Lemma.

LEMMA 6.1. Assuming u € H**4(Q) for k > 2, with gr and g, being defined as
in this Section, then we have

(6.9) An(g1 — gp,vn) = O ) Jullksaallvnllze, Vo, € Vg

Proof. For simplicity, we ignore the subscript ;, of v in this proof and all the
following v are in V",

Notice that gr — g, = 0 in interior cells. Thus we only consider cells adjacent
to 0. Let Ly, Lo, L3 and Ly denote the top, left, bottom and right boundary edges
of Q = [0,1] x [0, 1] respectively. Without loss of generality, we consider cell e =
[Te —h, T+ h] X [ye — h, ye + h] adjacent to the left boundary Lo, i.e., x, —h = 0. Let
¢,15,15 and [I§ denote the top, left, bottom and right boundary edges of e respectively.

On ly C Lo, Let ¢i(x,y),i,5 = 0,1,...,k, be Lagrange basis functions on
edge [5 for the (k + 1) x (k 4+ 1) Gauss-Lobatto points in cell e. Then g; — g, =
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Zf,j:o Aijdij(x,y) and [Aij| < [lgr — gpllco,z,- Due to Sobolev’s embedding, we have
u € WF+2:2(Q). By Theorem 4.2, we have
lgr = golloo,zo < Il = uplloc, 2, = O™ *?)[[ullkt 2,000 = OB ) |ullta,0-

Thus we get Vv € VI,

k k
(@91 = gp)a ve)e = (@ D Nijig (5, 9)er vede < Cllalloc.omax|higlI( Y 6ij (2, y)ar ve)el-
1,§=0 ’ i,§=0

Since for polynomials on K all the norm are equivalent, we have
k k
I Z $ij(%,Y)z, Va)el = |( Z Gij(8,1)s,0s) | < O|ﬁ3|oo7k < C‘U|17k = Clv[1e,
i,5=0 1,5=0

which implies

(6lg1 = )ar ) < Cllalloesn - max Nl = Ol [ulrsollo
Similarly, for any v € Vi, we have

(algs = 90)y o) =0l sl

(a(gr = gp)a vy)n =O(W*?)]|alloo|ullk1alv]l2,

(b- V(g1 = gp);v)n =O("*2)|[bl|oc [[t]lk14llv]|2,

(c(gr = gp), v)n =O(B* ) lc]lol[tell 44l v]|2-

Thus we conclude that
O

An(gr = gp,vn) = OW ) ullerallvnllz,  Von € V.
By (6.8) and Lemma 6.1, we have
(6.10) An(@;, = an, vn) = OW*2)||ullksallonllz, Vo € V5"

Let 0y, = uj, —up € V. Following Section 5.2, define the following dual problem: find
w € HY(Q) satisfying

(6.11) A*(w,v) = (O,v), Vv e HH Q).

Let wy, € VP be the solution to

(6.12) A5 (wp,vn) = (O, v1), Yo, € VI

By (6.10) and Theorem 5.3, we get

164115 = (6n, 6n) = 4G (wn, 6) = Ap (a5, ~an, wp) = O(W**2)||ullkrallwnlle = OB**2)[fullk+allbnllol]

thus ||} —@nllo = ||0nllo = O(RF2)||u||k+4. By equivalence of norms for polynomials,
we have
(6.13) 155, — anllz,z, < Clla;, — anllo = O(h**?)|lullran.

Notice that both %, and ) are constant zero along 9%, and up|asq = g5 is the
Lagrangian interpolation of g along 9. With (6.7), we have proven the following
main result.
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780 THEOREM 6.2. Assume elliptic reqularity (2.6) and V" ellipticity holds. For a
781 nonhomogeneous Dirichlet boundary problem (6.1), with suitable smoothness assump-
782 tions for k > 2, a;;,bi,c € WEF2%0(Q), the exact solution of (6.2) u(z,y) =4 +g €
783 H*4(Q) and f(z,y) € H*¥*2(Q), the numerical solution uj, by scheme (6.3) is a
784 (k + 2)-th order accurate approximation to w in the discrete 2-norm over all the
785 (k+1) x (k+ 1) Gauss-Lobatto points:

786 un = ull2,zo = O ) ([ullksa + | fllet2)-

787 7. Finite difference implementation. In this section we present the finite
788 difference implementation of the scheme (6.3) for the case k = 2 on a uniform mesh.
789  The finite difference implementation of the nonhomogeneous Dirichlet boundary value
790 problem is based on a homogeneous Neumann boundary value problem, which will
791  be discussed first. We demonstrate how it is derived for the one-dimensional case
792 then give the two-dimensional implementation. It provides efficient assembling of the
793  stiffness matrix and one can easily implement it in MATLAB. Implementations for
794 higher order elements or quasi-uniform meshes can be similarly derived, even though
795 it will no longer be a conventional finite difference scheme on a uniform grid.

796 7.1. One-dimensional case. Consider a homogeneous Neumann boundary valuelj
797 problem —(au')’ = f on [0,1],4'(0) = 0,%'(1) = 0, and its variational form is to seek
798w € HY([0,1]) satisfying

g (71) (au',0") = (f,0), Vo e HY([0,1)).
Consider a uniform mesh z; = ih, i = 0,1,...,n+ 1, h = n%‘_l Assume n is odd
and let N = ”T'H Define intervals I = [xak, Tok42] for Kk =0,...,N — 1 as a finite

element mesh for P2 basis. Define
Vi ={veC0,1]) : v|;, € P*(Ix),k=0,...,N —1}.

801 Let {v; Z’jol C V" be a basis of V" such that v;(z;) = &5, 3,5 = 0,1,...,n+ 1. With
802 3-point Gauss-Lobatto quadrature, the C°-P? finite element method for (7.1) is to
803 seek uy, € V! satisfying

gps (7.2) (aup,vi)p = (fividn, ©=0,1,...,n+1.

n+1
Let uj = up(z;), a; = a(z;) and f; = f(z;) then up(z) = > wjv;(x). We have
3=0

n+1 n+1
ZUj(G/U;,U»h = <au;L7v;>h = <f7 Ui>h = Z fj(vj7vi>h7 1= 0) 17 e n + 1
j=0 7=0

806 The matrix form of this scheme is Sa = Mf, where

_ T L T
Q[]{Z u= [UO,U1,~-aUmun+ﬂ ) f= [anf17"',fn7fn+1] )
509 the stiffness matrix S is has size (n +2) x (n + 2) with (i, )-th entry as (av], v})n,
810 and the lumped mass matrix M is a (n + 2) X (n + 2) diagonal matrix with diagonal
811 entries h (3,3,2,5,2,...,2,4,3). B
812 Next we derive an explicit representation of the matrix S. Since basis functions

813 v; € V" and up,(x) are not C1 at the knots oy, (k = 1,2,..., N — 1), their derivatives
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at the knots are double valued. We will use superscripts + and — to denote derivatives
obtained from the right and from the left respectively, e.g., vé‘}; and U'Qg 4o denote the
derivatives of vy, and vay o respectively in the interval I, = [xog, Zog42]. Then in the
interval I, = [2a, Z2k+2] We have the following representation of derivatives

W@ L [3 4 1] [ vl
(7.3) Uoppr (7) | = oh -1 0 1 V2k+1()
Voo () 1 =4 3| |vapra()

By abusing notations, we use (v;)5, to denote the average of two derivatives of v;
at the knots zop:

S5+ CDF]

Let [v;] denote the difference between the right derivative and left derivative:

(Ui)/zk =

[vilo = [Wilns2 = 0, [v]ar := (v)3;, — (v))gp, Kk =1,2,....N -1

Then at the knots, we have

_ _ 1
(7.4) (V) (V) ap + (013 (07)3), = 2(v]) 2k (v]) 2k + 5 vilzn[vj]on
We also have
(7.5)

1 /\+ "N+ 4 / / 1 I\— N —
(av}, vi) 1y, = h 3020(03)25,(03)3y, + 30201 (V5) 2041 (Vi) 2k 1 + S02042(V))gpp2 (V)22 | -

Let v; denote a column vector of size n + 2 consisting of grid point values of v;(x).
Plugging (7.4) into (7.5), with (7.3), we get

N-1
(av}, vi)n Z v}, V) 1, = h v (D"WAD + ETW AE)v;,
k=0

where A is a diagonal matrix with diagonal entries ag, as, ..., Gy, Gpt+1, and

_ 14 2 4 2 241
W_dzag<3737373737"'73)3’3)(n+2)><(,”+2)7
-3 4 —1
10 1 3373
1 20 2 -1 -32-32—-3
10 1 000
1 1 1
L1290 2 -1 1 -12-3 2 -1
D== -10 1 E=- 0 0 0
. 2 .
—1 0. 1 01 0
1 290 2 -1 -3 2
10 1
1 -4 3 (n+2) % (n+2)
Since {v;}1'_, are the Lagrangian basis for V", we have

1
(7.6) S = E(DTWAD + ETWAE).

Now consider the one-dimensional Dirichlet boundary value problem:

(oY
u(0) = oy,

=/ on [07 1]7
u(l) = os.
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Consider the same mesh as above and define

Vi = {v e ®(0,1]) : v|r, € P2(Ii),k=0,...,N —1;9(0) = v(1) = 0}.

Then {v;}}, C V" is a basis of V! for {v;}]f; defined above. The one-dimensional
version of (6.3) is to seek u; € V! satisfying

(7.7)

Notice
So the

1.

<au;mv£>h: <favi>h*<agllavz/‘>h7 t=1,2,...,n,

g1(x) = ogvo(x) + 01U 41 ().

that we can obtain (7.7) by simply setting up(0) = o¢ and up (1) = o1 in (7.2).
finite difference implementation of (7.7) is given as follows:
Assemble the (n +2) x (n + 2) stiffness matrix S for homogeneous Neumann
problem as in (7.6).

. Let S denote the n x n submatrix S(2 : n + 1,2 : n + 1), ie., [S] for

i,j=2,,n+1

. Let 1 denote the n x 1 submatrix S(2 : n + 1,1) and r denote the n x 1

submatrix S(2 : n + 1,1 + 2), which correspond to vo(x) and v, 1 (z).
Let u = [ul Uy - un}T and f = [fl fo - fn]T
[%, %, %, %, e % %} as a column vector of size n. The scheme (7.7) can be
implemented as

Define w =

Su=hwlf— ool — oqr.

7.2. Notations and tools for the two-dimensional case. We will need two
operators:
e Kronecker product of two matrices: if A is m xn and B is p X ¢, then A® B

is mp X nq give by

a11B alnB
A ® B — . .

amiB - amnB

e For a m x n matrix X, vec(X) denotes the vectorization of the matrix X by

rearranging X into a vector column by column.

The following properties will be used:

1
2
3

4

. (A® B)(C®D)=AC® BD.
. (A®B)"'=A"1'e B

. (BT ® A)vec(X) = vec(AX B).
. (A®B)T = AT @ BT.

Consider a uniform grid (z;,y;) for a rectangular domain Q = [0, 1] x [0, 1] where
1

wp =ihy,i=0,1,...,n,+1, hy = g and y; = jhy, 5 =0,1,...,ny+1, h, =

ny+1 :
Assume n, and n, are odd and let N, = 2t and N, = ny2+ L. We consider rect-
angular cells ey = [Zak, Topt2] X [Yo1, You42] for k=0,...,N,—land [ =0,...,N,—1

as a finite element mesh for Q2 basis. Define

Vi ={ve®Q) v, € Q*en)k=0,...,N, —1,1=0,...,N, — 1},

Vi ={veC’Q): v, € Q*ex)k=0,....,N, — 1,1 =0,...,N, — 1;v]p0 = 0}.
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11 12

¢ agg), b = [ %] and c in the elliptic

For the coefficients a(z,y) = 2 g

operator (2.3), consider their grid point values in the following form:

aopo ao1l a0,ny,+1
Akl _ aio aii Cll,n.m-i-l . ag = akl(xj,yi), k,l
Any+1,0  Gny+1,1 Uny+1nat1/ (n,42)x (n,+2)
boo bo1 bo,n,+1
bio b11 b1m,+1
B™ = : . o by = 0" (x5, v0),
bny+1,0  bny,t11 bny+1mat1/ (n, 12)x (mat2)
Co0 Co1 Co,ny+1
o C10 C11 Cl,n.z+1 = c(mj,yi).
Cny+1,0 Cny+1,1 Cny+1mat1/ (n,42)% (ny+2)

Let diag(x) denote a diagonal matrix with the vector x as diagonal entries and
define

T digo (Ll 4 2 42 241
Wx7d7/ag(3’3’3’3’3""’3’3’3)(nw+2)><(nw+2)’
T digo (L4 2 42 241
Wy*dza9(37373’373""’3’3’3)(ny+2)x(ny+2)’
o402 4 2 2 4 o402 42 2 4
Wzfd'Lag(g,g,g,g,...,g,g)nzx’nm,WyfdZag(§7§7§7§,...,§’§)ny><ny.

Let s = z or y, we define the D and E matrices with dimension (ns +2) X (ns + 2)
for each variable:
-3 4 -1

0 0 0
-10 1 ) 00 0
z =20 2 —3 -32-32-3%
-1 0 1 00 0
1 i 20 2 -1 1 -12-3 2 -3}
Dszf Lot ) Eszf 0 00
2 .- 2 ..
-1 0 1 0 0 0
1 20 2 -1 -3 2 —32-3
—-1 0 1 0 0 O
1 —4 3 000

Define an inflation operator Infl : R™*" — R("w+2)x(n=+2) iy adding zeros:
0 --- 0
InflU)=|: p
0 (my +2)x (ns+2)

and its matrix representation is given as I, ® I, where

_ 0 _ 0
Iat = Inzxnz 7Iy = Inyxny
0 (ne+2)Xng 0 (ny+2)Xny
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Its adjoint is a restriction operator Res : R("vt2)x(ne+2) __, R1y X1z gg
Res(X)=X(2:n,+1,2:n, +1) VX € R H2)x(ne+2),

887 and its matrix representation is I} ® Ig.

888 7.3. Two-dimensional case. For Q = [0, 1]? we first consider an elliptic equa-
889 tion with homogeneous Neumann boundary condition:

890 (7.8) -V - (aVu) +bVu+cu=f on Q,

895 (7.9) aVu-n =0 on 0.

893 The variational form is to find u € H'(Q) satisfying
894 (7.10) A(u,v) = (f,v), Yve HY(Q).

895 The CY-Q? finite element method with 3 x 3 Gauss-Lobatto quadrature is to find
896 up € VP satisfying

897 (7.11) (aVuh, V"Uh>h + <quh,'Uh>h + <cuh,vh>h = <f, "Uh>h; Yoy, € Vh,

898 Let U be a (ny +2) x (ny 4+ 2) matrix such that its (j,i)-th entry is U(j,i) =
899 up(wi—1,yj-1), 1= 1,...,mp + 2, =1,...,ny + 2. Let F' be a (n, +2) x (n, +2)

900 matrix such that its (j,4)-th entry is F'(j,4) = f(2i—1,yj—1). Then the matrix form
901 of (7.11) is

902 (7.12) Svec(U) = Mvec(F), M = h h,W, @ W,, S

Il
N
%
+
Mw
N
<3
+
%

903 where

>

B B h B B
004 S =YDl ®I,)diag(vec(W,A""W,))(D, ® I,) + h—y(EwT ® I,)diag(vec(Wy, A" W) (E, @ 1),

8

005 S22 = (DI @ I)diag(vec(Wy A" W,))(I, ® Dy) + (EL ® I,))diag(vec(W, A2 W,))(I, ® E,),

o6 S2' = (I, ® D] )diag(vec(W,A** W,))(Dy ® 1) + (I, ® E} )diag(vec(W, A W,))(E, ® 1),
. ‘ I h, , o

907 S22 = Z—(Iz ® D) )diag(vec(Wy A*W,))(I, ® Dy) + hf(lz ® E, )diag(vec(W, A W,)) (I, ® E,),
y y

008 Sp = hydiag(vec(W,B'W,))(D, ® I,,)), S = hydiag(vec(W,B*W,))(I, @ D),
900 S. = hyhydiag(vec(W,CW,,).

911 Now consider the scheme (6.3) for nonhomogeneous Dirichlet boundary condi-
912 tions. Its numerical solution can be represented as a matrix U of size ny X nx with
913 (j,4)-entry U(j,7) = up(xs,y;) for i = 1,--- ;nx;j = 1,--- ,ny. Similar to the one-
914 dimensional case, its stiffness matrix can be obtained as the submatrix of S in (7.12).
915 Let G be a (ny +2) by (n, +2) matrix with (j,4)-th entry as G(j,1) = g(zi—1,yj—1),
916 where
0, i (z,y)€(0,1)x(01),
g(a?, y) = .
{g(fﬂ,y), if (x,y) € 0.

918 In particular, G(j + 1,i +1) =0 for j = 1,... ,Ny, ©=1,...,n,. Let I be a matrix
919 of size ny x nx with (j,7)-entry as F'(j,i) = f(x;,y;) fori=1,--- ,nx;j=1,--- ,ny.
920 Then the scheme (6.3) becomes

021 (7.13)  (IF @ IS, @ I)vec(U) = (W, @ Wy)vec(F) — (IT ® I])Svec(G).
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922 Even though the stiffness matrix is given as S = (I7 ® IT)S(I, ® I,,), S should be
923 implemented as a linear operator in iterative linear system solvers. For example, the
924 matrix vector multiplication (I] @I])S4! (I, ® I, )vec(U) is equivalent to the following
925 linear operator from R™*"* to R™Y*"®:

h, ~ _ - ~ _ _ ~ ~
926 h*iff {Iy ([WyAHWx] © [Iy(IyUIg)Da::FD Dy + 1, ([WyAHWz] °© [Iy(IyU—rg)EzTD Ex} Iﬂml
927 where o is the Hadamard product (i.e., entrywise multiplication).

928 7.4. The Laplacian case. For one-dimensional constant coefficient case with
929 homogeneous Dirichlet boundary condition, the scheme can be written as a classical
930 finite difference scheme Hu = f with

2 -1
-2 7 -2 3
212 4
1 P27 -2
931 H=M15=-= Z12 O
2
151 o
212

932 In other words, if x; is a cell center, the scheme is

—Ui—1 +2u; — Ujp1
h2 - fia

934 and if x; is a knot away from the boundary, the scheme is

Uj—p — 8ui—1 + 14u; — 8uip1 + Uiqo

935 2 = f;.

936 It is straightforward to verify that the local truncation error is only second order.
937 For the two-dimensional Laplacian case homogeneous Dirichlet boundary condi-
938 tion, the scheme can be rewritten as

939 (Hy ® 1)) + (I ® Hy)vec(U) = vec(F),

940 where H, and H, are the same H matrix above with size n; x n, and ny, x n,
941 respectively. The inverse of (H, ® 1)) + (I, ® H,) can be efficiently constructed via
942 the eigen-decomposition of small matrices H, and H,:

943 1. Compute eigen-decomposition of H, = T, A, T, ! and H, = TyAyTy*.

944 2. The properties of Kronecker product imply that

945 (Ho ®Iy) + (L@ Hy) = (T 9 Ty)(Ae @ I + L @ Ay (T, ® Ty_1)>

946 thus

947 (He @ L) + (I @ H)] 7' = (L @ Ty)(Ae @ Iy + L @ Ay) TN (T @ T 7).
948 3. It is nontrivial to determine whether H is diagonalizable. In all our numerical
949 tests, H has no repeated eigenvalues. So if assuming A, and A, are diagonal
950 matrices, the matrix vector multiplication [(H, ® I,) + (I, @ Hy)] " 'vec(F)
951 can be implemented as a linear operator on F":

952 (7.14) T, ([T, ' F(T, )T/ NTY

953 where A is a n, x n, matrix with (¢, j)-th entry as A(i, j) = Ay (4,7) + Az (4, 7)

954 and ./ denotes entry-wise division for two matrices of the same size.
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For the 3D Laplacian, the matrix can be represented as H, ® [, ® I, + I, ® Hy ®
I.+ 1, ®1,® H, thus can be efficiently inverted through eigen-decomposition of small
matrices H;, H, and H, as well.

Since the eigen-decomposition of small matrices H, and H, can be precomputed,
and (7.14) costs only O(n?) for a 2D problem on a mesh size n x n, in practice (7.14)
can be used as a simple preconditioner in conjugate gradient solvers for the following
linear system equivalent to (7.13):

(W;l®Wy_1)(I~IT®INyT)§(I~w®fy)vec(U) = vec(F) — (W;1®Wy_1)(l~§®l~g)§vec(G),

even though the multigrid method as reviewed in [19] is the optimal solver in terms
of computational complexity.

8. Numerical results. In this section we show a few numerical tests verifying
the accuracy of the scheme (6.3) for & = 2 implemented as a finite difference scheme
on a uniform grid. We first consider the following two dimensional elliptic equation:

(8.1) —V-(aVu)+b-Vu+cu=f on[0,1] x [0,2]

where a = ( Zu 212 ), aj1 = 10+30y° + x cosy+y, aja = az; = 2+ 0.5(sin(7z) +
21 Q22

2 (sin(my) + y3) + cos(xz? + y3), aze = 10 +2°, b = 0, ¢ = 1 + z*y3, with an exact
solution
u(z,y) = 0.1(sin(rx) 4+ 2°)(sin(my) + y*) + cos(z* + 3*).

The errors at grid points are listed in Table 1 for purely Dirichlet boundary
condition and Table 2 for purely Neumann boundary condition. We observe fourth
order accuracy in the discrete 2-norm for both tests, even though only O(h3%) can
be proven for Neumann boundary condition as discussed in Remark 5.5. Regarding
the maximum norm of the superconvergence of the function values at Gauss-Lobatto
points, one can only prove O(h3logh) even for the full finite element scheme (1.1)
since discrete Green’s function is used, see [4].

TABLE 1
A 2D elliptic equation with Dirichlet boundary conditions. The first column is the number of
regqular cells in a finite element mesh. The second column is the number of grid points in a finite
difference implementation, i.e., number of degree of freedoms.

FEM Mesh | FD Grid | I? error order | I* error order
2x4 3xT7 3.94E-2 - 7.15E-2 -
4x8 7x 15 1.23E-2  1.67 3.28E-2 1.12
8 x 16 15 x 31 1.46E-3 3.08 | 5.42E-3  2.60
16 x 32 31 x 63 1.14E-4  3.68 3.96E-4 3.78
32 x 64 63 x 127 | 7.75E-6  3.88 | 2.62E-5  3.92
64 x 128 127 x 255 | 5.02E-7  3.95 1.73E-6  3.92
128 x 256 | 255 x 511 | 3.23E-8 3.96 | 1.13E-7 3.94
Next we consider a three-dimensional problem —Awu = f with homogeneous

Dirichlet boundary conditions on a cube [0, 1]® with the following exact solution
u(z,y, 2) = sin(rz) sin(27y) sin(372) + (x — ) (y* — y*)(z — 2?).

See Table 3 for the performance of the finite difference scheme. There is no es-
sential difficulty to extend the proof to three dimensions, even though it is not
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TABLE 2

A 2D elliptic equation with Neumann boundary conditions.

FEM Mesh | FD Grid | I error  order | ™ error order
2 x4 5%x9 1.38E0 - 2.27E0 -

4 x 8 9x 17 1.46E-1 3.24 2.52E-1 3.17

8 x 16 17 x 33 | 7.49E-3  4.28 1.64E-2 3.94

16 x 32 33 x65 | 4.31E-4 4.12 1.02E-3 4.01

32 X 64 65 x 129 | 2.61E-5 4.04 7.47E-5 3.78

978  very straightforward. Nonetheless we observe that the scheme is indeed fourth or-
979 der accurate. The linear system is solved by the eigenvector method shown in

980  Section 7.4. The discrete 2-norm over the set of all grid points Zy is defined as
1

2
051 Nllo 7o = [19 S ey e .2)]

TABLE 3
—Au = f in 8D with homogeneous Dirichlet boundary condition.

Finite Difference Grid | {2 error order | {* error order
TxXTxT 1.51E-2 - 4.87E-2 -

15 x 15 x 15 9.23E-4 4.04 | 3.12E-3  3.96

31 x 31 x 31 5.68E-5 4.02 | 1.95E-4 4.00

63 x 63 x 63 3.54E-6  4.01 1.22E-5  4.00

127 x 127 x 127 2.21E-7 4.00 | 7.59E-7 4.00

Last we consider (8.1) with convection term and the coefficients b is incompress-

ible V-b=0 a=/[ " ") 4, =100+ 30y° + xcosy +y, ai = az =
az1 a2

2 + 0.5(sin(mrx) + 23)(sin(my) + y3) + cos(x? + y3), aze = 100 + 2°, b = ( Zgl ),
2
b1 =y, by = 1y, ¥ = zexp(x? +y), c = 1+ 2y, with an exact solution

u(z,y) = 0.1(sin(rx) 4 2°)(sin(7y) + y*) + cos(z* + 33).
982 The errors at grid points are listed in Table 4 for Dirichlet boundary conditions.

TABLE 4
A 2D elliptic equation with convection term and Dirichlet boundary conditions.

FEM Mesh | FD Grid | {? error order | [ error order
2x4 3xT7 1.26E-1 - 2.71E-1 -
4x8 7 x 15 2.85E-2  2.15 9.70E-2 1.48
8 x 16 15x 31 | 1.89E-3 3.92 | 7.25E-3 3.74
16 x 32 31 x63 | 1.17E-4 4.01 | 4.01E4 4.17
32 x 64 63 x 127 | 741E-6  3.98 | 2.54E-5 3.98
983 9. Concluding remarks. In this paper we have proven the superconvergence of

984 function values in the simplest finite difference implementation of C°-QF finite element
985 method for elliptic equations. In particular, for the case k = 2 the scheme (6.3) can
986 be easily implemented as a fourth order accurate finite difference scheme as shown in
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Section 7. It provides only only an convenient approach for constructing fourth order
accurate finite difference schemes but also the most efficient implementation of C%-Q*
finite element method without losing superconvergence of function values. In a follow
up paper [12], we will show that discrete maximum principle can be proven for the
scheme (6.3) in the case k = 2 when solving a variable coefficient Poisson equation.

1 M

[2] C.
3] C.

[4] C.
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