Laplace Transform Table

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1.	1	$\frac{1}{s}$
2.	$e^{a t}$	$\frac{1}{s-a}$
3.	t^{n}	$\frac{n!}{s^{n+1}}$
4.	$t^{p}(p>-1)$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	$\sin a t$	$\frac{a}{s^{2}+a^{2}}$
6.	$\cos a t$	$\frac{s}{s^{2}+a^{2}}$
7.	$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$
8.	$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$
9.	$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$
10.	$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
11.	$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
12.	$u_{c}(t)$	$\frac{e^{-c s}}{s}$
13.	$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
14.	$e^{c t} f(t)$	$F(s-c)$
15.	$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right) c>0$
16.	$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$
17.	$\delta(t-c)$	$e^{-c s}$
18.	$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)$
19.	$(-t)^{n} f(t)$	$F^{(n)}(s)$

Formula sheet

Fourier series: For a $2 L$-periodic function $f(x)$, the Fourier series for f is

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}
$$

where for $n=1,2, \cdots$,

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x .
$$

Heat equation 1: The solution of the heat equation $\alpha^{2} u_{x x}=u_{t}, 0<x<L, t>0$, satisfying the (fixed temperature) homogeneous boundary conditions $u(0, t)=u(L, t)=0$ for $t>0$ with initial temperature $u(x, 0)=f(x)$ has the general form

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \sin \frac{n \pi x}{L}, \quad \text { where } \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Heat equation 2: The solution of the heat equation $\alpha^{2} u_{x x}=u_{t}, 0<x<L, t>0$, satisfying the insulated boundary conditions $u_{x}(0, t)=u_{x}(L, t)=0$ for $t>0$ with initial temperature $u(x, 0)=f(x)$ has the general form

$$
u(x, t)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \cos \frac{n \pi x}{L}, \quad \text { where } \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

Wave equation: The solution of the wave equation $\alpha^{2} u_{x x}=u_{t t}, 0<x<L, t>0$, satisfying the homogeneous boundary conditions $u(0, t)=u(L, t)=0$ for $t>0$ and initial conditions $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$ for $0 \leq x \leq L$ has the general form

$$
u(x, t)=\sum_{n=1}^{\infty} \sin \frac{n \pi x}{L}\left(c_{n} \cos \frac{n \pi \alpha t}{L}+k_{n} \sin \frac{n \pi \alpha t}{L}\right)
$$

where

$$
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \quad \text { and } \quad k_{n}=\frac{2}{n \pi \alpha} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x .
$$

Laplace equation: The solution of the Laplace equation $u_{x x}+u_{y y}=0,0<x<a, 0 \leq y \leq$ b, satisfying the boundary conditions $u(x, 0)=u(x, b)=0$ for $0<x<a$ and $u(0, y)=0$ and $u(a, y)=f(y)$ for $0 \leq y \leq b$ has the general form

$$
u(x, y)=\sum_{n=1}^{\infty} c_{n} \sinh \frac{n \pi x}{b} \sin \frac{n \pi y}{b} \quad \text { where } \quad c_{n}=\frac{2}{b \sinh \left(\frac{n \pi a}{b}\right)} \int_{0}^{b} f(y) \sin \frac{n \pi y}{b} d y
$$

