Question: Any example/operation that is correct for finite sum but not necessarily true for infinite series?

We cannot multiply or rearrange terms in conditional convergent series.
Review
Def (local behavior)

(1) $f(x)$ is locally increasing at x_{0} if $f(x)$ is increasing for $x \approx x_{0}$.
(2) $f(x)$ is locally bounded at x_{0} if $f(x)$ is bounded for $x \approx x$ 。
(3) $f(x)$ is locally positive at x_{0} if $f(x)$ is positive for $x \approx x_{0}$ 。

Deft $f(x)$ is locally bounded on an interval I if $\forall x_{0} \in I, f(x)$ is bounded for $x \approx x_{\text {. }}$

Example : (1) $f(x)=\frac{1}{x}$ is not bounded on $(0,+\infty)$
(2) $f(x)=\frac{1}{x}$ is locally bounded on $(0,+\infty)$

Deft $f(x)$ is locally increasing on an interval I if
$\forall x_{0} \in I, \quad f(x)$ is increasing for $x \approx x_{0}$.
Example: (1) $f(x)=\frac{1}{x}$ is not decreasing
(2) $f(x)=\frac{1}{x}$ is locally decreasing on $(0,+\infty)$
$f(x)=\frac{1}{x}$ is locally decreasing on $(-\infty, 0)$
Det $f(x)$ is continuous at x_{0} if $f(x)$ is defined for $x \approx x_{0}$ and $\forall \varepsilon>0, f(x) \approx f\left(x_{0}\right)$, for $x \approx x_{0}$

$$
\forall \varepsilon>0, \exists \delta>0 \text {, s.t. } \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right),\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon .
$$

Det for $x \approx a^{+}$means " $\exists \delta, x \in[a, a+\delta)^{\prime}$

$$
\text { for } x \approx a^{-} \text {means " } \exists \delta, x \in(a-\delta, a]^{\prime \prime}
$$

Deft Assume $f(x)$ is defined for relevant x-values.
(1) $f(x)$ is right continuous at $x_{0}: \forall \varepsilon>0, f(x) \approx f\left(x_{0}\right)$, for $x \approx x_{0}^{+}$
(2) $f(x)$ is left continuous at $x_{0}: \forall \varepsilon>0, f(x) \approx f\left(x_{0}\right)$, for $x \approx x_{0}^{-}$
(3) $f(x)$ is continuous on $[a, b]$

$$
\text { if } f(x) \text { is }\left\{\begin{array}{l}
\text { continuous on }(a, b) a \\
\text { right continuous at } a \\
\text { left continuous at } b
\end{array}\right.
$$

Discontinuity

Deft We say x_{0} is a point of discontinuity of $f(x)$ if $\left\{\right.$ (1) $f(x)$ is not continuous at x_{0}
(2) x_{0} is isolated: $f(x)$ is continuous at all points near x_{0}
(1) $f(x)$ is cont, at $x_{0}: \forall \varepsilon>0, \exists \delta>0, \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right)$

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
$$

$f(x)$ is discont. at $x_{0}: \exists \varepsilon>0, \forall \delta>0, \exists x \in\left(x_{0}-\delta, x_{0}+\delta\right)$

$$
\text { sit. }\left|f(x)-f\left(x_{0}\right)\right| \geqslant \varepsilon
$$

(2) $\exists \delta>0, f(x)$ is continuous at any point in $\left(x_{0}-\delta, x_{0}\right)$ and $\left(x_{0}, x_{0}+\delta\right)$
Two kinds of points of discontinuity
I. Removable discontinuity means that $f(x)$ will be continuous if we change $f\left(x_{0}\right)$
Example: $f(x)=\frac{1}{x} \sin x$ is not clefined at $x_{0}=0$
Redefine $f(0)=0$, then it is discontinuous at $x_{0}=0$.
Redefine $f(0)=1$, then $f(x)$ is continuous at $x_{0}=0$.
II. Essential discontinuity
$f(x)$ is discontinuous at x_{0} for any value of $f\left(x_{0}\right)$
Example: (1) $f(x)=\sin \frac{1}{x}$ at $x_{0}=0 \quad \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right) D N E$
(2) $f(x)=\frac{1}{|x|}$ at $x_{0}=0$

Deft (Limit of a function) $X \underset{\neq}{\approx} x_{0}: \exists \delta>0, \forall x \in\left(X_{0}-\delta, x_{0}\right)$ $U\left(x_{0}, x_{0}+\delta\right)$
Let $f(x)$ be defined for $x \approx x_{0}$ but not necessarily for $x=x_{0}$ (we denote it by $x \underset{\neq}{\approx} x_{0}$),
we say $f(x) \rightarrow L$ as $x \rightarrow x_{0}$ if

$$
\begin{gathered}
\forall \varepsilon>0, f(x) \approx L \text { for } x \underset{\approx}{\approx} x_{0} \\
\forall \varepsilon>0, \exists \delta>0, \text { set. } \forall x \in\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right), \\
|f(x)-L|<\varepsilon
\end{gathered}
$$

we also write $\lim _{x \rightarrow x_{0}} f(x)=L$
Ex: (T or E) $\lim _{x \rightarrow x_{0}} f(x)$ has nothing to do with $f\left(x_{0}\right)$
Deft (One sided limits)

$$
\begin{array}{cc}
\lim _{x \rightarrow x_{0}^{+}} f(x)=L: \forall \varepsilon>0, & \exists \delta>0, \\
\lim _{x \rightarrow 0+} \log x & |f(x)-L|<\varepsilon \\
\lim _{x \rightarrow x_{0}^{-}} f(x)=L: \forall \varepsilon>0, & \exists \delta>0, \quad \forall x \in\left(x_{0}-x_{0}+\delta\right) \\
& |f(x)-L|<\varepsilon
\end{array}
$$

Dot (Limits at ∞) $\forall \varepsilon>0, \exists M$ sit. $\forall x \geqslant M,|f(x)-L|<\varepsilon$

$$
\lim _{x \rightarrow+\infty} f(x)=L: \forall \varepsilon>0, f(x) \approx L \text { for } x \gg 1 \text {. }
$$

Det (Infinite Limits)

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} f(x)=+\infty: \forall b>0, f(x)>b \text { for } x \approx x_{0} . \\
& \quad \lim _{x \rightarrow 0} \frac{1}{|x|}=+\infty
\end{aligned}
$$

Theorem If $f(x) \rightarrow L, g(x) \rightarrow M$ as $x \rightarrow x_{0}$, then
(1) $a f(x)+b g(x) \rightarrow a L+b M$, as $x \rightarrow x_{0}$
(2) $f(x) g(x) \rightarrow L M$ as $x \rightarrow x_{0}$
(3) $g(x) / f(x) \rightarrow M / L$ as $x \rightarrow x_{0}$ if $\left\{\begin{array}{c}f(x) \neq 0 \\ L \neq 0\end{array}\right.$

Theorem As $x \rightarrow x_{0}$
(1) $f(x) \rightarrow+\infty$

$$
g(x) \rightarrow+\infty
$$

$$
\xi \Rightarrow f(x)+g(x) \rightarrow+\infty
$$

or $g(x)$ is bounded below $\}$
(2) $f(x) \rightarrow+\infty$

$$
g(x) \rightarrow L>0
$$

or $g(x)>k>0$ for some $k\} \mid \Rightarrow$
(3) $f(x) \rightarrow+\infty \Rightarrow \frac{1}{f(x)} \rightarrow 0$
(4) $f(x)>0, f(x) \rightarrow 0 \Rightarrow \frac{1}{f(x)} \rightarrow+\infty$

Squeere Theoven

$$
\begin{aligned}
& \text { (1) } f(x) \leqslant g(x) \leqslant h(x) \text { for } x \underset{\neq x_{0}}{\approx} \\
& f(x) \rightarrow L \text { as } x \rightarrow x_{0} \Rightarrow g(x) \rightarrow L \\
& h(x) \rightarrow L
\end{aligned}
$$

(2) $f(x) \geqslant g(x)$ for $x \approx x_{0}$

$$
\lim _{x \rightarrow x_{0}} g(x)=+\infty \Rightarrow \lim _{x \rightarrow x_{0}} f(x)=+\infty
$$

Limit Location Theorem
Assume limits exist.
(1) $f(x) \leqslant M$ for $x \approx x_{0} \Rightarrow \lim _{x \rightarrow x_{0}} f(x) \leqslant M$
(2) $f(x) \leqslant g(x)$ for $x \underset{\not \approx}{\approx} \Rightarrow \lim _{x \rightarrow x_{0}} f(x) \leqslant \lim _{x \rightarrow x_{0}} g(x)$

Function location Theorem

$$
\lim _{x \rightarrow x_{0}} f(x)<M \Rightarrow f(x)<M \text { for } x \approx x_{0} \text {. }
$$

Ex: Desarible $\lim _{x \rightarrow 0} f(x)$ DNE
(1) " $\lim _{x \rightarrow 0} f(x)$ exists" means:

1) $\exists L \in \mathbb{R}$ sot. $\lim _{x \rightarrow 0} f(x)=L$
2) $\exists L \in(R$ sit. $\forall \varepsilon>0, \exists \delta>0$ set.

$$
\forall x \in(-\delta, 0) \cup(0, \delta),|f(x)-L|<\varepsilon
$$

(2) Negation of " $\lim _{x \rightarrow 0} f(x)$ exists" means:

$$
\begin{aligned}
\forall L \in \mathbb{R}, & \exists \varepsilon>0 \text { sit. } \forall \delta>0 \\
& \exists x(-(-\delta, 0) \cup(0, \delta), \quad|f(x)-L| \geqslant \varepsilon .
\end{aligned}
$$

Homework 8

Due on Oct 27th before 10am on gradescope.

1. (30 pts) Consider the Maclaurin eris for $\sin x$:

$$
\underbrace{\sin x=} \sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\underbrace{\frac{x^{3}}{3!}}_{\sim}+\frac{x^{5}}{5!}-\cdots
$$

(a) (10 pts) Prove that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ converges for any $x \in[0,1]$. Thus $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ also converges for any $x \in[-1,0]$ since the only difference is a sign.
(b) (15 pts) Prove that $|\sin x-x| \leq \frac{|x|^{3}}{3!}$ for any $x \in[-1,1]$. Hint: follow the proof of Alternating Series Test Theorem.
(c) (5 pts) Use the estimate above to show $|x|<0.1 \Rightarrow|\sin x-x|<$ 0.001 .
2. (10 pts) Prove that $\sum_{n=1}^{N} a_{n} \cos (n x)$ is bounded on $(-\infty,+\infty)$.
3. (10 pts) Show that $\int_{0}^{1} \frac{x^{4}}{1+x^{6}} d x \leq \frac{1}{5}$ by estimating the integrand.
4. (10 pts) For what values of $k>0$ are the function $f(x)$ bounded for $x \approx 0+$?
(a) $f(x)=\int_{x}^{1}\left(1 / t^{k}\right) d t$.
(b) $f(x)=\int_{x}^{1}\left(e^{t} / t^{k}\right) d t$.

$$
\frac{e^{t}}{t^{k}}=\frac{1+t+\frac{t^{2}}{2!}+\cdots+\frac{t^{k}}{k!}+\cdots}{t^{k}}
$$

5. (10 pts) Show that a function which is locally increasing on an interval I is increasing on I. Hint: try an indirect argument (or proof by contradiction) and use bisection to construct nested intervals.
6. (10 pts) If $f(x)$ is continuous at x_{0}, show $f(x)$ is locally bounded at x_{0}.
7. (20 pts) P167, Exercise 11.3/1(a) $\lim _{x \rightarrow 0+} \frac{\sin x}{x}=1$
$\cos x \leqslant \frac{\sin x}{x} \leqslant \frac{1}{\cos x}$

If we can show $\lim _{x \rightarrow 0+} \cos x=1$, then we can use squeeze Thu.
How to show $\cos x \rightarrow 1$ as $x \rightarrow 0$?

P5: Indirect Proof Hint
Assume $f(x)$ is not increasing.
Then $\exists a, b \in I$ sot.

$$
a<b \quad f(a)>f(b)
$$

$f(a)$

Construct nested intervals sit.
left end function value is higher than right end.
Let $c=\frac{a t b}{2}$, then three scenarios:
(1) $f(c) \geqslant f(a)$
(2) $f(b)<f(c)<f(a)$
(3) $f(c) \leqslant f(b)$

