Homework 1

Due before 10am on September 1st on gradescope.

1. (20 pts) Proposition: If the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded above, then $\left\{a_{n} b_{n}\right\}$ is bounded above.
a) Prove this is false by giving a counterexample.
b) Strengthen the hypotheses and prove your amended proposition.
(Read top P. 405 in textbook for "stronger statement": here the "statements" are the hypotheses on the two sequences in the Proposition. In other words, besides requiring $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ being bounded above, find what additional assumptions can ensure $\left\{a_{n} b_{n}\right\}$ being bounded above)
2. (20 pts) Let $c_{1}, c_{2}, \cdots, c_{N}$ and a be real numbers. Prove the following:

$$
\left|\sum_{n=1}^{N} c_{n} \sin (n a)\right| \geq 1 \Rightarrow\left|c_{n}\right|>\frac{1}{2^{n}} \quad \text { for some } \quad n \leq N .
$$

Prove it by contraposition (read A. 2 in textbook): not $B \Rightarrow$ not A, but write the contrapositive statement avoiding all negative words like "not","no" and symbols for them. The phrase for some n means for at least one value of n.
3. (20 pts) Page 46: 3.1/1(c). Do it directly from Definition 3.1 of limit; don't use any limit theorems you know from calculus (in Chapter 5 here).
4. (20 pts)
a) Prove $\left\{x_{n}\right\}$ defined by $x_{n+1}=\frac{n^{2}+10}{(n+1)(n+3)} x_{n}, x_{0}>0$ is monotone for $n \gg 1$. (Two ways to show a positive sequence a_{n} is increasing are to show the ratio $a_{n+1} / a_{n} \geq 1$ or show the difference $a_{n+1}-a_{n} \geq 0$.) Analogously for decreasing: use $\leq 1, \leq 0$.
b) For what n will $\frac{3 n}{n+2} \approx 3$ if (i) $\epsilon=0.1$ (ii) $\epsilon=0.01$?
5. (20 pts)
a) Prove that if $\left\{x_{n}\right\}$ converges, it is bounded for $n \gg 1$.
b) Then prove that it is bounded (i.e., for all n).

