Homework 1

Due before 10am on September 1st on gradescope.

- 1. (20 pts) Proposition: If the sequences $\{a_n\}$ and $\{b_n\}$ are bounded above, then $\{a_nb_n\}$ is bounded above.
 - a) Prove this is false by giving a counterexample.
 - b) Strengthen the hypotheses and prove your amended proposition.

(Read top P. 405 in textbook for "stronger statement": here the "statements" are the hypotheses on the two sequences in the Proposition. In other words, besides requiring $\{a_n\}$ and $\{b_n\}$ being bounded above, find what additional assumptions can ensure $\{a_nb_n\}$ being bounded above)

2. (20 pts) Let c_1, c_2, \dots, c_N and a be real numbers. Prove the following:

$$\left|\sum_{n=1}^{N} c_n \sin(na)\right| \ge 1 \Rightarrow |c_n| > \frac{1}{2^n} \quad \text{for some} \quad n \le N.$$

Prove it by contraposition (read A.2 in textbook): not $B \Rightarrow \text{not } A$, but write the contrapositive statement avoiding all negative words like "not", "no" and symbols for them. The phrase for some n means for at least one value of n.

- 3. (20 pts) Page 46: 3.1/1(c). Do it directly from Definition 3.1 of limit; don't use any limit theorems you know from calculus (in Chapter 5 here).
- 4. (20 pts)
 - a) Prove $\{x_n\}$ defined by $x_{n+1} = \frac{n^2+10}{(n+1)(n+3)}x_n, x_0 > 0$ is monotone for $n \gg 1$. (Two ways to show a positive sequence a_n is increasing are to show the ratio $a_{n+1}/a_n \ge 1$ or show the difference $a_{n+1} a_n \ge 0$.) Analogously for decreasing: use $\le 1, \le 0$.

b) For what *n* will $\frac{3n}{n+2} \approx 3$ if (i) $\epsilon = 0.1$ (ii) $\epsilon = 0.01$?

- 5. (20 pts)
 - a) Prove that if $\{x_n\}$ converges, it is bounded for $n \gg 1$.

b) Then prove that it is bounded (i.e., for all n).