Homework 2

Due before 10am on September 8th on gradescope.

1. (20 pts) Page $47,3.4 / 3$. Show by definition that if $a>1, a^{n} / n \longrightarrow+\infty$. Hint: use Binomial Theorem.
2. (20 pts) Page $47,3.6 / 1$. Show that

$$
\int_{1}^{2} \ln ^{n} x d x \longrightarrow 0
$$

and

$$
\int_{2}^{3} \ln ^{n} x d x \longrightarrow+\infty
$$

Hint: $\ln 2=0.69 \ldots$ and $e=2.71 \ldots$
3. (20 pts) Page 47, 3.4/5. Prove that $a^{\frac{1}{n}} \longrightarrow 1$ if $a>0$.

Hint: Following the hint in the book: for the case $a>1$, we know $a^{\frac{1}{n}}>1$ thus $a^{\frac{1}{n}}=1+h_{n}$ for some $h_{n}>0$; then by Binomial Theorem

$$
a=\left(1+h_{n}\right)^{n}=1+n h_{n}+\frac{1}{2} n(n-1) h_{n}^{2}+\cdots+h_{n}^{n} .
$$

Try to derive an inequality from the equation above so that you can show $h_{n} \rightarrow 0$ by definition.
4. (20 pts) Page 59, Problem 4-1. Prove that $n^{\frac{1}{n}} \rightarrow 1$.

Hint: Let $e_{n}=n^{\frac{1}{n}}-1$, then by $n^{\frac{1}{n}}=e_{n}+1$ and Binomial Theorem, we get

$$
n=\left(1+e_{n}\right)^{n}=1+n e_{n}+\frac{1}{2} n(n-1) e_{n}^{2}+\cdots+e_{n}^{n}
$$

We know $e_{n}>0$. Try to derive an inequality from the equation above so that you can show $e_{n} \rightarrow 0$ by definition.
5. (20 pts) Page 48, Problem 3-1.

For a given sequence $\left\{a_{n}\right\}$, another sequence $\left\{b_{n}\right\}$ is defined as its average:

$$
b_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} .
$$

(a) Prove that if $a_{n} \rightarrow 0$, then $b_{n} \rightarrow 0$.
(b) Deduce from part (a) in a few lines that if $a_{n} \rightarrow L$, then $b_{n} \longrightarrow L$. Hint: $a_{n} \rightarrow 0$ means that for any fixed $\epsilon>0$, there is an N s.t. $\left|a_{n}\right|<\epsilon$ for any $n \geq N$. Thus $\left|\frac{a_{N+1}+a_{N+2}+\cdots+a_{n}}{n}\right|$ is smaller than ϵ. Show that if n is large enough (find that index) then the other part of b_{n} is also smaller than ϵ (this is possible because N is fixed for fixed ϵ).

