Homework 3

Due on Sep 15th before 10am on gradescope.

1. (10 pts) Prove that

- (a) the limit of $\left(\frac{n+1}{n}\right)^{\frac{3}{2}}$ is 1,
- (b) the limit of $n^{-\frac{3}{2}}$ is 0.

Use only the Squeeze Theorem and Theorem 5.1 (Page 61). You cannot use any other theorems which have not been proven in class. For instance, we can easily verify $1/n \to 0$ by definition. Then by Linear and Product Theorems, we have

$$1/n \to 0 \Longrightarrow 1 + 1/n \to 1 \Longrightarrow (1 + 1/n)^2 \to 1$$

2. (20 pts) Page 74, 5.2/3. Let $a_n = \sqrt{1} + \sqrt{2} + \dots + \sqrt{n}$. Prove that $a_n \sim \frac{2}{3}n^{\frac{3}{2}}$, i.e.,

$$\lim_{n \to \infty} \frac{a_n}{\frac{2}{3}n^{\frac{3}{2}}} = 1.$$

Hint: \sqrt{k} is the area of rectangle with width 1 and height \sqrt{k} . And the point (k, \sqrt{k}) lies on the curve $y = \sqrt{x}$. There are two ways to generate such a rectangle: use the interval [k - 1, k] as the shorter side or use the interval [k, k + 1] as the shorter side. If using [k - 1, k], then the rectangle's area is larger than area below the increasing curve $y = \sqrt{x}$ on the same interval [k - 1, k]. If using [k, k + 1], then the rectangle's area is smaller than area below the curve on the same interval [k, k + 1]. We obtain a lower and an upper estimate of a_n by using these two different ways. You can use the limits proven in Problem 1 directly.

- 3. (20 pts) Page 74, 5.3/6. Prove that $a_{n+1}/a_n \longrightarrow 0 \Rightarrow a_n \longrightarrow 0$. **Hint**: First show $|a_{n+1}| < \frac{1}{2}|a_n|, n \gg 1$. Then show $a_n \to 0$ by using $|a_{n+1}| < \frac{1}{2}|a_n|, n \gg 1$.
- 4. (10 pts) Page 75, Problem 5-1.

Hint: The given "proof" is problematic because the proof for convergence of $\sqrt{a_n}$ is not provided. There are many ways to establish a valid proof. For instance, if we want to try proof by contradiction, then by definition of the limit, negation of $\sqrt{a_n} \to \sqrt{L}$ means that there exists a particular number $\epsilon > 0$ s.t. for any integer N, there exists $n \ge N$ s.t. $|\sqrt{a_n} - \sqrt{L}| \ge \epsilon$. To avoid any confusion with conflict of symphols, we can replace ϵ by a different symphol c and replace n by m. So if we assume $\sqrt{a_n} \to \sqrt{L}$ is not true, then there exists a particular number c > 0 s.t. for any integer N, there exists $m \ge N$ s.t. $|\sqrt{a_m} - \sqrt{L}| \ge c$.

- 5. (20 pts) Page 75, Problem 5-2. Assume $a_{n+1}/a_n \longrightarrow L < 1$ and $a_n > 0$. Prove that (a) $\{a_n\}$ is decreasing for n large; (b) $a_n \longrightarrow 0$. For (b), just show one proof (either one you prefer). This problem is similar to Problem 3 (replace 1/2 by a positive constant c < 1, the same proof should still work).
- 6. (20 pts) Page 75, Problem 5-7.
 Define a sequence a_n, which satisfies a_{n+1} = √2a_n, a₀ > 0. Prove that
 (a) a_n is monotone and bounded.
 - (b) Determine the limit of a_n , and show it is independent of the choice of $a_0 > 0$.

Hint:

- To show it's monotone: notice that $a_{n+1} \ge a_n \Leftrightarrow \sqrt{2a_n} \ge a_n \Leftrightarrow a_n \le 2$. So we can show $a_0 \ge 2 \Rightarrow 2 \le a_{n+1} \le a_n$ by Mathematical Induction (read A.4): first if assuming $a_0 \ge 2$, we have $a_1 \ge a_0$ and $a_1 = \sqrt{2a_0} \ge \sqrt{4} = 2$; second, assume $2 \le a_n \le a_{n-1}$, we have $a_{n+1} \le a_n$ and $a_{n+1} = \sqrt{2a_n} \ge \sqrt{4} = 2$. Similarly, discuss the case $a_0 \le 2$.
- The limit should be 2 (but why?).
- To prove the limit, introduce error term $e_n = a_n 2$. For the case $a_0 \ge 2$, we have $e_n \ge 0$ and

$$(e_{n+1}+2) = \sqrt{2(e_n+2)} \Rightarrow (e_{n+1}+2)^2 = 2(e_n+2).$$

Try to derive a useful recursive inequality for e_{n+1} and e_n so that you can establish lower $(e_n \ge 0)$ and upper bounds for e_n to show $e_n \to 0$ by Squeeze Theorem.