Homework 3

Due on Sep 15th before 10am on gradescope.

1. (10 pts) Prove that
(a) the limit of $\left(\frac{n+1}{n}\right)^{\frac{3}{2}}$ is 1 ,
(b) the limit of $n^{-\frac{3}{2}}$ is 0 .

Use only the Squeeze Theorem and Theorem 5.1 (Page 61). You cannot use any other theorems which have not been proven in class. For instance, we can easily verify $1 / n \rightarrow 0$ by definition. Then by Linear and Product Theorems, we have

$$
1 / n \rightarrow 0 \Longrightarrow 1+1 / n \rightarrow 1 \Longrightarrow(1+1 / n)^{2} \rightarrow 1
$$

2. (20 pts) Page $74,5.2 / 3$. Let $a_{n}=\sqrt{1}+\sqrt{2}+\cdots+\sqrt{n}$. Prove that $a_{n} \sim \frac{2}{3} n^{\frac{3}{2}}$, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{\frac{2}{3} n^{\frac{3}{2}}}=1 .
$$

Hint: \sqrt{k} is the area of rectangle with width 1 and height \sqrt{k}. And the point (k, \sqrt{k}) lies on the curve $y=\sqrt{x}$. There are two ways to generate such a rectangle: use the interval $[k-1, k]$ as the shorter side or use the interval $[k, k+1]$ as the shorter side. If using $[k-1, k]$, then the rectangle's area is larger than area below the increasing curve $y=\sqrt{x}$ on the same interval $[k-1, k]$. If using $[k, k+1]$, then the rectangle's area is smaller than area below the curve on the same interval $[k, k+1]$. We obtain a lower and an upper estimate of a_{n} by using these two different ways. You can use the limits proven in Problem 1 directly.
3. (20 pts) Page $74,5.3 / 6$. Prove that $a_{n+1} / a_{n} \longrightarrow 0 \Rightarrow a_{n} \longrightarrow 0$.

Hint: First show $\left|a_{n+1}\right|<\frac{1}{2}\left|a_{n}\right|, n \gg 1$. Then show $a_{n} \rightarrow 0$ by using $\left|a_{n+1}\right|<\frac{1}{2}\left|a_{n}\right|, n \gg 1$.
4. (10 pts) Page 75, Problem 5-1.

Hint: The given "proof" is problematic because the proof for convergence of $\sqrt{a_{n}}$ is not provided. There are many ways to establish a valid proof. For instance, if we want to try proof by contradiction, then by definition of the limit, negation of $\sqrt{a_{n}} \rightarrow \sqrt{L}$ means that there exists a
particular number $\epsilon>0$ s.t. for any integer N, there exists $n \geq N$ s.t. $\left|\sqrt{a_{n}}-\sqrt{L}\right| \geq \epsilon$.
To avoid any confusion with conflict of sympbols, we can replace ϵ by a different sympbol c and replace n by m. So if we assume $\sqrt{a_{n}} \rightarrow \sqrt{L}$ is not true, then there exists a particular number $c>0$ s.t. for any integer N, there exists $m \geq N$ s.t. $\left|\sqrt{a_{m}}-\sqrt{L}\right| \geq c$.
5. (20 pts) Page 75, Problem 5-2.

Assume $a_{n+1} / a_{n} \longrightarrow L<1$ and $a_{n}>0$. Prove that (a) $\left\{a_{n}\right\}$ is decreasing for n large; $(b) a_{n} \longrightarrow 0$.
For (b), just show one proof (either one you prefer). This problem is similar to Problem 3 (replace $1 / 2$ by a positive constant $c<1$, the same proof should still work).
6. (20 pts) Page 75, Problem 5-7.

Define a sequence a_{n}, which satisfies $a_{n+1}=\sqrt{2 a_{n}}, a_{0}>0$. Prove that (a) a_{n} is monotone and bounded.
(b) Determine the limit of a_{n}, and show it is independent of the choice of $a_{0}>0$.

Hint:

- To show it's monotone: notice that $a_{n+1} \geq a_{n} \Leftrightarrow \sqrt{2 a_{n}} \geq a_{n} \Leftrightarrow$ $a_{n} \leq 2$. So we can show $a_{0} \geq 2 \Rightarrow 2 \leq a_{n+1} \leq a_{n}$ by Mathematical Induction (read A.4): first if assuming $a_{0} \geq 2$, we have $a_{1} \geq a_{0}$ and $a_{1}=\sqrt{2 a_{0}} \geq \sqrt{4}=2$; second, assume $2 \leq a_{n} \leq a_{n-1}$, we have $a_{n+1} \leq a_{n}$ and $a_{n+1}=\sqrt{2 a_{n}} \geq \sqrt{4}=2$. Similarly, discuss the case
$a_{0} \leq 2$.
- The limit should be 2 (but why?).
- To prove the limit, introduce error term $e_{n}=a_{n}-2$. For the case $a_{0} \geq 2$, we have $e_{n} \geq 0$ and

$$
\left(e_{n+1}+2\right)=\sqrt{2\left(e_{n}+2\right)} \Rightarrow\left(e_{n+1}+2\right)^{2}=2\left(e_{n}+2\right)
$$

Try to derive a useful recursive inequality for e_{n+1} and e_{n} so that you can establish lower ($e_{n} \geq 0$) and upper bounds for e_{n} to show $e_{n} \rightarrow 0$ by Squeeze Theorem.

