Homework 4

Due on Sep 22 before 10am on Gradescope.

1. (20 pts) Prove that every convergent sequence is a Cauchy sequence.
2. (20 pts) Page 91, Problem 6-1.

The sequence x_{n} is defined by $x_{0}=a, x_{1}=b$ and recursive relation

$$
x_{n}=\frac{x_{n-1}+x_{n-2}}{2}, \quad n \geq 2 .
$$

(a) Prove that $\left\{x_{n}\right\}$ is Cauchy.
(b) Find $\lim x_{n}$ in terms of a and b.
3. (10 pts) Page 90, Exercise 6.5: 1(b)(d).

For the following two sets, determine the sup, inf, max, min if they exist:
(a) $\{[\cos (n \pi)] / n: n \in \mathbb{N}\}$.
(b) $\left\{n 2^{-n}: n \in \mathbb{N}\right\}$.
4. (10 pts) Page 90, Exercise 6.5: 3(a)(g).
5. (20 pts) Page 91, Problem 6-3.
$f(x)$ is continuous and decreasing on $[0, \infty]$ and $f(n) \rightarrow 0$. For

$$
a_{n}=f(0)+f(1)+\cdots+f(n-1)-\int_{0}^{n} f(x) d x
$$

(a) Prove a_{n} is Cauchy.
(b) For $f(x)=e^{-x}$, find the limit of a_{n}.
6. (20 pts) Page 90, Exercise 6.4: 2.

Suppose a_{n} has this property: there is C and K with $0<K<1$ s.t.

$$
\left|a_{n}-a_{n+1}\right|<C K^{n}, \quad n \gg 1 .
$$

Prove that a_{n} is Cauchy.

