Homework 5

Due on Oct 6th before 10am on gradescope.

- 1. (20 pts) Let $a_n \ge 0$ be decreasing and assume $\sum_{n=1}^{\infty} a_n$ converges. Prove $na_n \to 0$. (See Problem 7-1 on Page 111).
- 2. (20 pts) Page 111, Problem 7-2. Prove that if $|a_{n+1}/a_n| \leq |b_{n+1}/b_n|$ for $n \gg 1$, and $\sum b_n$ is absolutely convergent, then $\sum a_n$ is absolutely convergent.
- 3. (20 pts) Page 112, Problem 7-4. Prove that

$$\lim |a_{n+1}/a_n| = L \Rightarrow \lim |a_n|^{\frac{1}{n}} = L.$$

4. (40 pts) Page 110, Exercise 7.4-7.5: 1 (a)(c)(e)(g) Hint: you can use the inequality $\sin x \ge x/2$ if x > 0 is small enough.