Homework 5

Due on Oct 6th before 10am on gradescope.

1. (20 pts) Let $a_{n} \geq 0$ be decreasing and assume $\sum_{n=1}^{\infty} a_{n}$ converges. Prove $n a_{n} \rightarrow 0$. (See Problem 7-1 on Page 111).
2. (20 pts) Page 111, Problem 7-2. Prove that if $\left|a_{n+1} / a_{n}\right| \leq\left|b_{n+1} / b_{n}\right|$ for $n \gg 1$, and $\sum b_{n}$ is absolutely convergent, then $\sum a_{n}$ is absolutely convergent.
3. (20 pts) Page 112, Problem 7-4. Prove that

$$
\lim \left|a_{n+1} / a_{n}\right|=L \Rightarrow \lim \left|a_{n}\right|^{\frac{1}{n}}=L .
$$

4. (40 pts) Page 110, Exercise 7.4-7.5: 1 (a)(c)(e)(g)

Hint: you can use the inequality $\sin x \geq x / 2$ if $x>0$ is small enough.

