## Homework 6

Due on Oct 13 before 10 am on gradescope.

1. ( 30 pts ) Determine the convergence of the series and explain why:
(a) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}}$
(c) $\sum_{n=1}^{\infty}\left(\frac{n}{n+2}\right)^{n^{2}}$

Hint:
(a) you can find the antiderative of $\frac{1}{x \ln x}$ by change of variables;
(b) In section 1.5, we have learned $(1+1 / n)^{n} \rightarrow e=2.7182 \ldots$, you can use this fact (can you prove this fact using only theorems in first six chapters?):

$$
(1+1 / n)^{n} \rightarrow e \Rightarrow(1-1 / n)^{n} \rightarrow 1 / e .
$$

(c) You can use this fact:

$$
(1+r / n)^{n} \rightarrow e^{r},
$$

where $r$ is a real number.
2. (20 pts) Prove that a conditionally convergent series has infinitely many positive terms and infinitely many negative terms.
3. (20 pts) Page 111, Exercise 7.7/1. Given a series $\sum a_{n}$, define a new series $\sum b_{k}$ where

$$
b_{0}=a_{0}+\cdots+a_{n_{0}}, b_{1}=a_{n_{0}+1}+\cdots+a_{n_{1}}, b_{2}=a_{n_{1}+1}+\cdots+a_{n_{2}}, \cdots
$$

Prove that if $\sum a_{n}$ converges, so does $\sum b_{k}$, and to the same sum.
4. (30 pts) Page 123, Excercise 8.1/1 (a)(b)(c)

