Homework 8

Due on Oct 27th before 10am on gradescope.

1. (30 pts) Consider the Maclaurin seris for $\sin x$:

$$\sin x = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

- (a) (10 pts) Prove that the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ converges for any $x \in [0,1]$. Thus $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ also converges for any $x \in [-1,0]$ since the only difference is a sign.
- (b) (15 pts) Prove that $|\sin x x| \le \frac{|x|^3}{3!}$ for any $x \in [-1, 1]$. Hint: follow the proof of Alternating Series Test Theorem.
- (c) (5 pts) Use the estimate above to show $|x| < 0.1 \Rightarrow |\sin x x| < 0.001$.
- 2. (10 pts) Prove that $\sum_{n=1}^{N} a_n \cos(nx)$ is bounded on $(-\infty, +\infty)$.
- 3. (10 pts) Show that $\int_0^1 \frac{x^4}{1+x^6} dx \leq \frac{1}{5}$ by estimating the integrand.
- 4. (10 pts) For what values of k > 0 are the function f(x) bounded for $x \approx 0+$?

(a)
$$f(x) = \int_x^1 (1/t^k) dt$$
.

(b)
$$f(x) = \int_x^1 (e^t/t^k) dt$$
.

- 5. (10 pts) Show that a function which is locally increasing on an interval I is increasing on I. Hint: try an indirect argument (or proof by contradiction) and use bisection to construct nested intervals.
- 6. (10 pts) If f(x) is continuous at x_0 , show f(x) is locally bounded at x_0 .

1

7. (20 pts) P167, Exercise 11.3/1.