## Homework 2

Due on Sep 6 before 9am on gradescope.
To receive full credit, show necessary reasoning unless it's straightforward computation.

1. (10 pts) Find all solutions to the equation $x+y-z-w=0$.
2. (10 pts) Find the point-direction form of the line equation for the intersection line of two planes described by $-2 x+3 y+z=0$ and $x+z=3$
3. (20 pts) Find the intersection of two hyperplanes (3-dimensional plane in a 4D space) described by $-2 x+3 y+z-w=2$ and $-2 x+4 y+3 z+w=3$. It suffices to simply write out all solutions to the linear system.
4. (20 pts) To find the intersection of the three planes described by equations $2 y+4 z=2,-2 x+3 y+z=2$, and $-4 x+4 y+2 z=3$, we can set it up as a linear system $A \vec{x}=\vec{b}$. Find the matrix $A$ and its inverse $A^{-1}$ by Gaussian Elimination. Verify your computation by computing both $A A^{-1}$ and $A^{-1} A$. Finally use $A^{-1}$ to find the solution to the linear system $A \vec{x}=\vec{b}$.
5. (20 pts) Determine whether the following matrix is invertible. If yes, find its inverse and verify your computation by computing $A A^{-1}$.

$$
A=\left(\begin{array}{cccc}
0 & 2 & 4 & 1 \\
-1 & 1 & 1 & -1 \\
-1 & 4 & 3 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

6. (20 pts)

Definition 1. Upper triangular matrices. A square matrix $A \in \mathbb{R}^{n \times n}$ is called upper triangular if all entries below the diagonal ( $A_{i i}$ entries) are all zeros. For example, $A=\left(\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right)$ is an upper triangular matrix, where $a, b, c, d, e, f$ can be any numbers (whether they are zeros or not).

Fact: if an upper triangular matrix $A$ is invertible, then $A^{-1}$ is also upper triangular. Convince yourself this fact by computing the inverse of the following matrix:

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 2 & -1 & 0 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

