Homework 4

Due on Sep 20 before 9 am on gradescope.

To receive full credit, show necessary reasoning unless it's straightforward computation.

1. (20 pts) True or false (you can simply answer T or F, no need to give justification; but try to think about why).
(a) For $A \in \mathbb{R}^{m \times n}$, its column rank (dimension of its column space) cannot be larger than m.
(b) For $A \in \mathbb{R}^{m \times n}$, its nullity (dimension of its null space) cannot be larger than m.
(c) For $A \in \mathbb{R}^{m \times n}$, its nullity is equal to n minus number of pivots in its RREF.
(d) For $A \in \mathbb{R}^{m \times n}$, its row space can be spanned by rows in its RREF.
(e) For $A \in \mathbb{R}^{m \times n}$, its column space can be spanned by columns with pivots in its RREF.
(f) For $A \in \mathbb{R}^{m \times n}$, the column space of A^{T} has the same dimension as the row space of A.
(g) For $A \in \mathbb{R}^{m \times n}$, the rank of A^{T} is equal to the rank of A.
(h) For a square matrix A, the nullity of A^{T} is equal to the nullity of A.
(i) For a square matrix A, if its rows are linearly independent, then so are its columns.
(j) If V and W are subspaces of \mathbb{R}^{3}, and $\operatorname{dim}(V)+\operatorname{dim}(W)=4$, then there must be some nonzero vector in both V and W.
2. (20 pts) Find the rank and the nullity of the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 2 & -1 & 2 \\
-2 & 3 & 1 & -1 & 2 \\
-1 & 0 & -1 & 1 & 0 \\
-1 & 3 & 3 & -2 & 4
\end{array}\right)
$$

3. (20 pts) Consider the vector space $V=P_{3}(\mathbb{R})$ which consist of polynomials of degree at most 3 . Then the following polynomials are abstract vectors in V :

$$
p_{1}(x)=1+x, p_{2}(x)=1+x^{3}, p_{3}(x)=1+x+x^{2} .
$$

Determine the linear independence of these vectors.
4. (20 pts) Find a basis for the column space of the matrix

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 2 & 3 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

by the following procedure: 1) solve $A \vec{x}=\overrightarrow{0}$, if there are free parameters in the solution, then columns are linearly dependent; 2) remove columns corresponding to free parameters, verify that the remaining columns are linearly independent; 3) verify that the remaining columns can span all other columns in A.
5. (20 pts) Find the dimension and a basis for the hyperplane described by

$$
\left\{\begin{array}{l}
2 y+4 z+s+2 t=0 \\
-2 x+3 y+z-s+2 t=0
\end{array}\right.
$$

