Homework 5

Due on Oct 11 before 9am on gradescope.

To receive full credit, show necessary reasoning unless it's straightforward computation.

1. (20 pts) True or false (you can simply answer T or F, no need to give justification; but try to think about why).
(a) For $A \in \mathbb{R}^{m \times n}$ with $m>n, A^{T} A$ is invertible if and only if columns of A are linearly independent.
(b) Orthonormal column vectors must be linearly independent.
(c) Orthogonal nonzero column vectors must be linearly independent.
(d) For $A \in \mathbb{R}^{m \times n}, \vec{x} \in \mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{m}$, if $\vec{y} \in \operatorname{Null}\left(A^{T}\right)$, then $\vec{y}^{T} A \vec{x}=0$.
(e) The projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ satisfies $P^{2}=P$ and $P^{T}=P$.
(f) If a square matrix A satisfies $A^{T}=A^{-1}$, then columns of A are orthonormal.
(g) If a square matrix A has orthonormal columns, then all its rows are also orthonormal vectors.
(h) If $A \vec{x}=\vec{b}$ is an overdetermined linear system with a least square solution \hat{x}, then $\vec{b}-A \hat{x}$ is in the left null space of A.
(i) Assume that $A \in \mathbb{R}^{m \times n}$ with $m>n$ has linearly independent columns and \vec{b} belongs to the column space of A, then the overdetermined linear system $A \vec{x}=\vec{b}$ has infinitely many solutions.
(j) For any $A \in \mathbb{R}^{m \times n}$, the intersection of its left null space and its
column space has dimension 0 .
2. (20 pts) Use the least square approximation to find the best fits with (i) a linear function and (ii) a quadratic function, for the following data on $x-y$ plane

$$
\{(-3,9),(-2,6),(0,2),(1,1)\} .
$$

3. (20 pts $)$ Find the projection of $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ onto the hyperplane in the $x-y-z-t$ space described by $x+y+z=0, x+y+t=0$.
4. (20 pts) The Gram-Schmidt process has another version: first find orthogonal vectors then normalize them to unit vectors. The formula of this version is given as follows: given three vectors w_{1}, w_{2}, w_{3}, first compute

$$
\begin{gathered}
v_{1}=w_{1} \\
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1} \\
v_{3}=w_{3}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}
\end{gathered}
$$

The vectors v_{1}, v_{2}, v_{3} are orthogonal. The orthonormal vectors are obtained by normalizing v_{1}, v_{2}, v_{3} :

$$
\begin{aligned}
u_{1} & =\frac{v_{1}}{\left\|v_{1}\right\|} \\
u_{2} & =\frac{v_{2}}{\left\|v_{2}\right\|} \\
u_{3} & =\frac{v_{3}}{\left\|v_{3}\right\|} .
\end{aligned}
$$

Apply this formula to the given set S to obtain an orthonormal basis for $\operatorname{Span}(S)$ where $S=\left\{\left(\begin{array}{c}1 \\ -2 \\ -1 \\ 3\end{array}\right),\left(\begin{array}{c}3 \\ 6 \\ 3 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 4 \\ 2 \\ 8\end{array}\right)\right\}$.
5. (20 pts) Find an orthonormal basis for the column space of $A=\left(\begin{array}{cc}1 & -2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3\end{array}\right)$.

Then compute the projection of $b=\left(\begin{array}{c}-4 \\ -3 \\ 3 \\ 0\end{array}\right)$ onto the column space.

