Homework 6

Due on Oct 18 before 9am on gradescope.
To receive full credit, show necessary reasoning unless it's straightforward computation.

1. (10 pts) Recall that $\vec{i}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \vec{j}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\vec{k}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. Find all vectors perpendicular to both $\vec{i}+\vec{j}$ and $\vec{i}-\vec{j}+\vec{k}$.
2. (10 pts) Find all vectors in \mathbb{R}^{4} orthogonal to both $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)$.
3. (20 pts) Given three points A with coordinate ($1,1,1$), B with coordinate $(1,2,3)$ and C with coordinate $(2,2,2)$. Find the area of the triangle $A B C$.
4. (20 pts) Given four points with coordinates $A(1,1,1), B(1,2,3), C(2,2,2)$ and $D(1,1,2)$. Find the volume of the pyramid $A B C D$ (tetrahedron) by the following method: 1) Find the volume of parallelepiped by taking the absolute value of triple product of three vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D} .2)$ The volume of the pyramid (tetrahedron) is $1 / 6$ of the volume of the parallelepiped (because the volume formula for tetrahedron is $1 / 3$ multiplying area of base multiplying the height).

5. (20 pts) Compute

$$
\left|\begin{array}{cccc}
1 & 0 & -2 & 3 \\
-3 & 1 & 1 & 2 \\
0 & 4 & -1 & 1 \\
2 & 3 & 0 & 1
\end{array}\right| .
$$

6. (20 pts) Find projection of the vector $\left(\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right)$ onto the row space of the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & -2 & 3 \\
-1 & 0 & 1 & -2 \\
-1 & 0 & 0 & -1 \\
0 & -1 & 0 & 2
\end{array}\right) .
$$

