Homework 7

Due on Oct 25 before 9am on gradescope.

To receive full credit, show necessary reasoning unless it's straightforward computation.

1. (10 pts) Use the cofactor matrix and determinant to find the (2,3)-entry of A^{-1} , where

$$A = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -1 & 0 & 1 & -2 \\ -1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 2 \end{pmatrix}.$$

2. (20 pts) The spherical coordinates are given as

$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases}$$

.

The Jacobian matrix of the change of coordinates of using spherical coordinates is the 3×3 matrix of first order derivatives

$$J = \begin{pmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{pmatrix}$$

Find the determinant of the Jacobian matrix.

3. (10 pts) The cylindrical coordinates are (r, θ, z) given as

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta\\ z = z \end{cases}$$

.

The Jacobian matrix of the change of coordinates of using cylindrical coordinates is the 3×3 matrix of first order derivatives

$$J = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{pmatrix}.$$

Find the determinant of the Jacobian matrix.

4. (20 pts) Use Cramer's Rule to find z satisfying

$$\begin{pmatrix} 1 & 0 & -2 & 1 \\ -1 & 0 & 1 & -2 \\ -1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

5. (20 pts) For the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 2 & 2 \\ 0 & 0 & -1 \end{pmatrix}$,

- Find all its eigenvalues.
- For each eigenvalue, find one eigenvector.
- For each eigenvalue, find its eigenspace.
- 6. (20 pts) For the matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$, find all its eigenvalues. For each eigenvalue, find the eigenspace.