Homework 8

Due on Nov 1 before 9am on gradescope.
To receive full credit, show necessary reasoning unless it's straightforward computation.

1. (20 pts) True or false (you can simply answer T or F , no need to give justification; but try to think about why).
(a) A square matrix of size $n \times n$ is diagonalizable if and only if it has n linearly independent eigenvectors.
(b) The matrix $A=\left(\begin{array}{cccc}1 & 0 & -2 & 1 \\ 0 & 2 & 1 & -2 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4\end{array}\right)$ has an eigenvalue $\lambda=4$, and this eigenvalue $\lambda=4$ has only one eigenvector.
(c) All eigenvectors of a square matrix form a vector space.
(d) Any $A \in \mathbb{R}^{n \times n}$ always has n complex eigenvalues including repeated ones.
(e) If $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is an eigenspace for a matrix $A \in \mathbb{R}^{3 \times 3}$ with eigenvalue $\lambda=3$. Then

$$
A\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)
$$

(f) For $A \in \mathbb{R}^{n \times n}$, if $A V=V D$ for some invertible $V \in \mathbb{R}^{n \times n}$ and a diagonal $D \in \mathbb{R}^{n \times n}$, then A has n eigenvalues including repeated ones.
(g) For $A \in \mathbb{R}^{n \times n}$, if $A V=V D$ for some invertible $V \in \mathbb{R}^{n \times n}$ and a diagonal $D \in \mathbb{R}^{n \times n}$, then the geometrical multiplicity is equal to the
algebraic multiplicity for any eigenvalue of A.
(h) Any noninvertible $A \in \mathbb{R}^{n \times n}$ has at least one real eigenvalue.
(i) If $A \in \mathbb{R}^{n \times n}$ is singular (not invertible), then $n-\operatorname{rank}(A)$ is equal the dimension of one of its eigenspaces.
(j) The dimensions of all eigenspaces of a matrix $A \in \mathbb{R}^{n \times n}$ must sum to n.
2. (20 pts) Determine whether the matrix is diagonalizable or not. If yes, find the diagonalizable in the form $A=V D V^{-1}$. Use complex matrices if needed.

$$
A=\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right)
$$

3. (20 pts) Determine whether the matrix is diagonalizable or not. If yes, find the diagonalizable in the form $A=V D V^{-1}$. Use complex matrices if needed.

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right)
$$

4. (20 pts) Find e^{A} for $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Multiply all matrices to find e^{A} as a single matrix. Use Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$ to simplify your answer if you feel like to.
5. (20 pts) We can find solutions to an ordinary differential equation

$$
y^{\prime \prime \prime}(t)+y^{\prime \prime}(t)-y^{\prime}(t)-y(t)=0
$$

following these steps:
(a) Write it as a first order system $\frac{d}{d t} \vec{u}(t)=A \vec{u}(t)$ with

$$
\vec{u}(t)=\left(\begin{array}{c}
y(t) \\
y^{\prime}(t) \\
y^{\prime \prime}(t)
\end{array}\right)
$$

Find what A is.
(b) Find basis vectors for each eigenspace of A.
(c) Let \vec{v} be an eigenvector with eigenvalue λ, then $\vec{u}(t)=e^{\lambda t} \vec{v}$ is a solution. Use all the basis vectors you can find to write the solutions for \vec{u}, and plug it into both sides of $\frac{d}{d t} \vec{u}(t)=A \vec{u}(t)$ to verify that they are solutions.
(d) Obtain $y(t)$ from $\vec{u}(t)$, and plug $y(t)$ back into the orginal third order differential equation to verify that it is a solution.

