Homework 9

Due on Nov 29 before 9am on gradescope.

To receive full credit, show necessary reasoning unless it's straightforward computation.

- 1. (20 pts) True or false (you can simply answer T or F, no need to give justification; but try to think about why).
 - (a) If a real square matrix of size $n \times n$ has n real orthonormal eigenvectors, then these eigenvectors are also its singular vectors.
 - (b) If a real square matrix $A = VDV^T$, where V is a real matrix with orthonormal columns and the diagonal matrix D has diagonal entries $d_i \in \mathbb{R}$, then the singular values of A are $\sigma_i(A) = |d_i|$.
 - (c) For a real symmetric $A \in \mathbb{R}^{n \times n}$, $\vec{x}^T A \vec{x} < 0$ for any nonzero vector $\vec{x} \in \mathbb{R}$ if and only if all eigenvalues of A are negative.
 - (d) For a real symmetric matrix A, if its singular values are also its eigenvalues, then it is positive semi-definite.
 - (e) A real square matrix A is invertible if and only if all its singular values are positive.
 - (f) If $A \in \mathbb{R}^{n \times n}$ is normal, then its eigenvalues must be equal to its singular values.
 - (g) The rank of $A \in \mathbb{R}^{n \times n}$ is equal to the number of its nonzero singular values.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} = \sum_{i=1}^{n} \sigma_{i}^{2}.$$

- (h) If $A \in \mathbb{R}^{n \times n}$ has orthonormal columns, then it is diagonalizable.
- (i) For the linear transformation $L_A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by $L_A(\vec{v}) =$

 $A\vec{v}$ for a real symmetric matrix A, there exists one orthonormal basis $\beta = {\vec{v}_1, \dots, \vec{v}_n}$ such that its matrix representation $[L_A]^{\beta}_{\beta}$ is diagonal.

- (j) For the linear transformation $L_A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by $L_A(\vec{v}) = A\vec{v}$ for any real square matrix A, there exist two orthonormal bases $\beta = \{\vec{v}_1, \cdots, \vec{v}_n\}$ and $\gamma = \{\vec{u}_1, \cdots, \vec{u}_n\}$ such that its matrix representation $[L_A]^{\gamma}_{\beta}$ is diagonal.
- 2. (30 pts) Consider the matrix

$$A = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}.$$

- (a) (10 pts) Find all eigenvalues, their algebraic multiplicity and geometrical multiplicity, and basis vectors for all eigenspaces.
- (b) (10 pts) For this particular matrix, there is one eigenvalue λ_2 for which geometrical multiplicity is less than algebraic multiplicity. This ensures existence of one *generalized eigenvector* defined as follows: let v be its eigenvector, then find the generalized eigenvector u defined as solution to the nonhomogeneous linear system

$$(A - \lambda_2 I)u = v.$$

(c) (10 pts) For this particular matrix, there are two distinct eigenvalues λ_1 and λ_2 . Let v_1 be eigenvector for λ_1 . Form a matrix $V = [v_1 \ v \ u]$. Then by the definition of eigenvectors and generalized eigenvectors, we have

$$AV = [Av_1 \ Av \ Au] = [\lambda_1 v_1 \ \lambda_2 v \ \lambda_2 u + v] = [v_1 \ v \ u] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_2 \end{bmatrix}.$$

Here $J = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_2 \end{bmatrix}$ is called Jordan Form of A. Find the explicit

expression of J, V, V^{-1} and verify that $A = VJV^{-1}$ (and this is what eigenvalue decomposition looks like for a nondiagonalizable matrix).

3. (30 pts) Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Find its SVD $A = U\Sigma V^T$ by computing σ_i^2 as eigenvalues of AA^T (or $A^T A$), computing columns u_i of U as orthonormal eigenvectors of AA^T and columns v_i of V as orthonormal eigenvectors of $A^T A$. And order them so that $Av_i = \sigma_i u_i$. Finally verify that $A = U\Sigma V^T$.

4. (10 pts) Let $V = P_2(\mathbb{R})$ (all quadratic polynomials with real coefficients) and consider a linear transformation $T: V \longrightarrow V$ defined as

$$T[f(x)] = f(0)x + f'(x) - \frac{1}{2}f''(x).$$

For the ordered basis $\beta = \{1, x, x^2\}$, find the matrix representation $[T]^{\beta}_{\beta}$ of T under basis β .

5. (10 pts) Let V be the set consisting all continuous real-valued singlevariable functions. Then V is a vector space. Consider a subspace $W = span\{1, \sin x, \cos x, \sin(2x), \cos(2x)\}$ with two ordered bases of W:

$$\beta = \{1, -\cos x, \sin x, \sin(2x), \sin^2 x\}$$
$$\gamma = \{1, \sin x, \cos x, \sin(2x), \cos^2 x\}.$$

Find the change of coordinate matrix from β to γ , i.e., the matrix Q s.t. $[f]_{\gamma} = Q[f]_{\beta}, \forall f \in W$. Recall that Q is the matrix representation $[I]_{\beta}^{\gamma}$ for the identity map under bases β and γ .