Homework 9

Due on Nov 29 before 9am on gradescope.

To receive full credit, show necessary reasoning unless it's straightforward computation.

1. (20 pts) True or false (you can simply answer T or F, no need to give justification; but try to think about why).
(a) If a real square matrix of size $n \times n$ has n real orthonormal eigenvectors, then these eigenvectors are also its singular vectors.
(b) If a real square matrix $A=V D V^{T}$, where V is a real matrix with orthonormal columns and the diagonal matrix D has diagonal entries $d_{i} \in \mathbb{R}$, then the singular values of A are $\sigma_{i}(A)=\left|d_{i}\right|$.
(c) For a real symmetric $A \in \mathbb{R}^{n \times n}, \vec{x}^{T} A \vec{x}<0$ for any nonzero vector $\vec{x} \in \mathbb{R}$ if and only if all eigenvalues of A are negative.
(d) For a real symmetric matrix A, if its singular values are also its eigenvalues, then it is positive semi-definite.
(e) A real square matrix A is invertible if and only if all its singular values are positive.
(f) If $A \in \mathbb{R}^{n \times n}$ is normal, then its eigenvalues must be equal to its singular values.
(g) The rank of $A \in \mathbb{R}^{n \times n}$ is equal to the number of its nonzero singular values.

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2} .
$$

(h) If $A \in \mathbb{R}^{n \times n}$ has orthonormal columns, then it is diagonalizable.
(i) For the linear transformation $L_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $L_{A}(\vec{v})=$
$A \vec{v}$ for a real symmetric matrix A, there exists one orthonormal basis $\beta=\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ such that its matrix representation $\left[L_{A}\right]_{\beta}^{\beta}$ is diagonal.
(j) For the linear transformation $L_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $L_{A}(\vec{v})=$ $A \vec{v}$ for any real square matrix A, there exist two orthonormal bases $\beta=\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ and $\gamma=\left\{\vec{u}_{1}, \cdots, \vec{u}_{n}\right\}$ such that its matrix representation $\left[L_{A}\right]_{\beta}^{\gamma}$ is diagonal.
2. (30 pts) Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
0 & 2 & 0 \\
0 & 1 & 2
\end{array}\right] .
$$

(a) (10 pts) Find all eigenvalues, their algebraic multiplicity and geometrical multiplicity, and basis vectors for all eigenspaces.
(b) (10 pts) For this particular matrix, there is one eigenvalue λ_{2} for which geometrical multiplicity is less than algebraic multiplicity. This ensures existence of one generalized eigenvector defined as follows: let v be its eigenvector, then find the generalized eigenvector u defined as solution to the nonhomogeneous linear system

$$
\left(A-\lambda_{2} I\right) u=v .
$$

(c) (10 pts) For this particular matrix, there are two distinct eigenvalues λ_{1} and λ_{2}. Let v_{1} be eigenvector for λ_{1}. Form a matrix $V=\left[\begin{array}{lll}v_{1} & v & u\end{array}\right]$. Then by the definition of eigenvectors and generalized eigenvectors, we have

$$
A V=\left[\begin{array}{lll}
A v_{1} & A v & A u
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} v_{1} & \lambda_{2} v & \lambda_{2} u+v
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & v & u
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 1 \\
0 & 0 & \lambda_{2}
\end{array}\right] .
$$

Here $J=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 1 \\ 0 & 0 & \lambda_{2}\end{array}\right]$ is called Jordan Form of A. Find the explicit
expression of J, V, V^{-1} and verify that $A=V J V^{-1}$ (and this is what eigenvalue decomposition looks like for a nondiagonalizable matrix).
3. (30 pts) Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

Find its SVD $A=U \Sigma V^{T}$ by computing σ_{i}^{2} as eigenvalues of $A A^{T}$ (or $A^{T} A$), computing columns u_{i} of U as orthonormal eigenvectors of $A A^{T}$ and columns v_{i} of V as orthonormal eigenvectors of $A^{T} A$. And order them so that $A v_{i}=\sigma_{i} u_{i}$. Finally verify that $A=U \Sigma V^{T}$.
4. (10 pts) Let $V=P_{2}(\mathbb{R})$ (all quadratic polynomials with real coefficients) and consider a linear transformation $T: V \longrightarrow V$ defined as

$$
T[f(x)]=f(0) x+f^{\prime}(x)-\frac{1}{2} f^{\prime \prime}(x) .
$$

For the ordered basis $\beta=\left\{1, x, x^{2}\right\}$, find the matrix representation $[T]_{\beta}^{\beta}$ of T under basis β.
5. (10 pts) Let V be the set consisting all continuous real-valued singlevariable functions. Then V is a vector space. Consider a subspace $W=\operatorname{span}\{1, \sin x, \cos x, \sin (2 x), \cos (2 x)\}$ with two ordered bases of W :

$$
\begin{aligned}
\beta & =\left\{1,-\cos x, \sin x, \sin (2 x), \sin ^{2} x\right\} \\
\gamma & =\left\{1, \sin x, \cos x, \sin (2 x), \cos ^{2} x\right\} .
\end{aligned}
$$

Find the change of coordinate matrix from β to γ, i.e., the matrix Q s.t. $[f]_{\gamma}=Q[f]_{\beta}, \forall f \in W$. Recall that Q is the matrix reprensetation $[I]_{\beta}^{\gamma}$ for the identity map under bases β and γ.

