Homework 1

Due on Jan 28 before 1pm on gradescope.

To receive full credit, use only definition, Theorems/Corollaries and rigorous reasoning.

- 1. (10 pts) True of false and no need to explain why:
 - (a) Every vector space has a zero vector.
 - (b) A vector space may have more than one zero vector.
 - (c) In a vector space V over a field F, for scalars $a, b \in F$ and a nonzero vector $x \in V$, $ax = bx \Longrightarrow a = b$.
 - (d) In a vector space V over a field F, for a nonzero scalar $a \in F$ and vectors $x, y \in V$, $ax = ay \Longrightarrow x = y$.
 - (e) S is a nonempty subset of a vector space V, then span(S) equals the intersection of all subspaces of V containing S.
 - (f) If vectors x_1, x_2, \dots, x_n are linearly independent, then $a_1x_1 + a_2x_2 + \dots + a_nx_n = \vec{0}$ implies that all scalars $a_i = 0$.
 - (g) Subsets of a linearly independent set must be linearly independent.
- 2. (10 pts) Let $S = \{(a, b), a, b \in \mathbb{R}\}$ and defined two operations as follows:

$$(a_1, b_1) \oplus (a_2, b_2) = (a_1 + a_2, b_1 b_2)$$

 $c \odot (a, b) = (ca, cb), \forall c \in \mathbb{R}.$

Discuss whether S is a vector space over \mathbb{R} with the addition and scalar multiplication above. If yes, prove it. If not, explain the reason.

3. (10 pts) Let $S = \{(a, b), a, b \in \mathbb{R}\}$ and defined two operations as follows: $(a_1, b_1) \oplus (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$

$$c \odot (a, b) = (ca, 0), \forall c \in \mathbb{R}.$$

Discuss whether S is a vector space over \mathbb{R} with the addition and scalar multiplication above. If yes, prove it. If not, explain the reason.

4. (10 pts) For an $n \times n$ matrix A, its trace is defined as sum of all diagonal entries

 $tr(A) = a_{11} + a_{22} + \dots + a_{nn}.$

Prove that all real $n \times n$ matrices having trace equal to zero form a subspace of $\mathbb{R}^{n \times n}$ (the vector space of all real $n \times n$ matrices).

5. (30 pts) Let $\mathbb{R}^+ := \{x \in \mathbb{R} | x > 0\}$ be the set of positive numbers. Define vector addition \oplus and scalar multiplication \odot as the following:

 $x \oplus y = xy, \quad \forall a \in \mathbb{R}, \ a \odot x = x^a.$

Show that \mathbb{R}^+ is a vector space over \mathbb{R} .

6. (10 pts) Determine whether the following sets are subspaces of \mathbb{R}^3 under addition and scalar operations defined in \mathbb{R}^3 .

(a)
$$W_1 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : a = c + 2 \right\}.$$

(b)
$$W_2 = \{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : a - 4b - c = 0 \}.$$

7. (10 pts) Consider the vector space

 $V = \{ all real-valued single variable continuous functions \}$

over \mathbb{R} . A function $f(x) \in V$ is called even if $f(-x) = f(x), \forall x \in \mathbb{R}$. A function $f(x) \in V$ is called odd if $f(-x) = -f(x), \forall x \in \mathbb{R}$. Prove that the set of all odd functions form a subspace of V.

- 8. (10 pts)
 - (a) In $V = \mathbb{R}^{1 \times 3}$, determine whether (2, -1, 1) is in the span of the set $S = \{(1, 0, 2), (-1, 1, 1)\}.$
 - (b) Consider the vector space consisting of all polynomials with real coefficients, determine whether $x^3 3x + 5$ can be expressed as a linear combination of $x^3 + 2x^2 x + 1$ and $x^3 + 3x^2 1$.