Homework 1

Due on Jan 28 before 1pm on gradescope.
To receive full credit, use only definition, Theorems/Corollaries and rigorous reasoning.

1. (10 pts) True of false and no need to explain why:
(a) Every vector space has a zero vector.
(b) A vector space may have more than one zero vector.
(c) In a vector space V over a field F, for scalars $a, b \in F$ and a nonzero vector $x \in V, a x=b x \Longrightarrow a=b$.
(d) In a vector space V over a field F, for a nonzero scalar $a \in F$ and vectors $x, y \in V, a x=a y \Longrightarrow x=y$.
(e) S is a nonempty subset of a vector space V, then $\operatorname{span}(S)$ equals the intersection of all subspaces of V containing S.
(f) If vectors $x_{1}, x_{2}, \cdots, x_{n}$ are linearly independent, then $a_{1} x_{1}+a_{2} x_{2}+$ $\cdots+a_{n} x_{n}=\overrightarrow{0}$ implies that all scalars $a_{i}=0$.
(g) Subsets of a linearly independent set must be linearly independent.
2. (10 pts) Let $S=\{(a, b), a, b \in \mathbb{R}\}$ and defined two operations as follows:

$$
\begin{gathered}
\left(a_{1}, b_{1}\right) \oplus\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1} b_{2}\right) \\
c \odot(a, b)=(c a, c b), \forall c \in \mathbb{R} .
\end{gathered}
$$

Discuss whether S is a vector space over \mathbb{R} with the addition and scalar multiplication above. If yes, prove it. If not, explain the reason.
3. (10 pts) Let $S=\{(a, b), a, b \in \mathbb{R}\}$ and defined two operations as follows:

$$
\left(a_{1}, b_{1}\right) \oplus\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)
$$

$$
c \odot(a, b)=(c a, 0), \forall c \in \mathbb{R}
$$

Discuss whether S is a vector space over \mathbb{R} with the addition and scalar multiplication above. If yes, prove it. If not, explain the reason.
4. (10 pts) For an $n \times n$ matrix A, its trace is defined as sum of all diagonal entries

$$
\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}
$$

Prove that all real $n \times n$ matrices having trace equal to zero form a subspace of $\mathbb{R}^{n \times n}$ (the vector space of all real $n \times n$ matrices).
5. (30 pts) Let $\mathbb{R}^{+}:=\{x \in \mathbb{R} \mid x>0\}$ be the set of positive numbers. Define vector addition \oplus and scalar multiplication \odot as the following:

$$
x \oplus y=x y, \quad \forall a \in \mathbb{R}, a \odot x=x^{a} .
$$

Show that \mathbb{R}^{+}is a vector space over \mathbb{R}.
6. (10 pts) Determine whether the following sets are subspaces of \mathbb{R}^{3} under addition and scalar operations defined in \mathbb{R}^{3}.
(a) $W_{1}=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}: a=c+2\right\}$.
(b) $W_{2}=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}: a-4 b-c=0\right\}$.
7. (10 pts) Consider the vector space

$$
V=\{\text { all real-valued single variable continuous functions }\}
$$

over \mathbb{R}. A function $f(x) \in V$ is called even if $f(-x)=f(x), \forall x \in \mathbb{R}$. A function $f(x) \in V$ is called odd if $f(-x)=-f(x), \forall x \in \mathbb{R}$. Prove that the set of all odd functions form a subspace of V.
8. (10 pts)
(a) In $V=\mathbb{R}^{1 \times 3}$, determine whether $(2,-1,1)$ is in the span of the set $S=\{(1,0,2),(-1,1,1)\}$.
(b) Consider the vector space consisting of all polynomials with real coefficients, determine whether $x^{3}-3 x+5$ can be expressed as a linear combination of $x^{3}+2 x^{2}-x+1$ and $x^{3}+3 x^{2}-1$.

