Homework 10

Due on April 22nd Thursday before 1pm on gradescope.
Recall that we only consider $F=\mathbb{R}$ or \mathbb{C} whenever inner product is involved.

1. (20 pts) True or False. No need to give reasoning.
(a) For $A \in \mathbb{C}^{n \times n}, A A^{*}=A^{*} A$ if and only if there exist n orthonormal eigenvectors of A.
(b) Unitary matrices have n orthonormal eigenvectors.
(c) Orthogonal matrices are diagonalizable.
(d) Unitary matrices must have real eigenvalues.
(e) For a self-adjoint operator $T: V \longrightarrow V$, its matrix representation $[T]_{\beta}$ under any ordered basis β is complex Hermitian.
(f) For an orthogonal operator $T: V \longrightarrow V$, its matrix representation $[T]_{\beta}$ under any ordered basis β is an orthogonal matrix.
(g) Similar matrices have the same eigenvalues.
(h) Unitarily equivalent matrices have the same eigenvalues.
(i) If a matrix A is unitarily equivalent to an unitary matrix, then A is also unitary.
(j) Orthogonal operators/matrices are also normal.
2. (10 pts) Assume $Q \in \mathbb{C}^{n \times n}$ has orthonormal columns. Prove that Q also has orthonormal rows.
3. (20 pts) For a linear $T: V \longrightarrow V$ over a finite dimensional inner product space V with $F=\mathbb{C}$ and $\operatorname{dim}(V)=n$, prove that T has n orthonormal eigenvectors with all eigenvalues $\left|\lambda_{i}\right|=1$ if and only if T is unitary.
4. (10 pts) For a normal operator $T: V \longrightarrow V$, prove that its matrix representation $[T]_{\beta}$ under an orthonormal basis β is normal.
5. (10 pts) For

$$
A=\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right)
$$

find an orthogonal or unitary matrix P such that $P^{*} A P$ is diagonal.
6. (20 pts) Let A and B be two unitarily equivalent $n \times n$ complex matrices.
(a) Prove that $\operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(B^{*} B\right)$.
(b) Use (a) to prove

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left|A_{i j}\right|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|B_{i j}\right|^{2} .
$$

7. (10 pts) Let $A \in \mathbb{F}^{n \times n}$ be a real symmetric matrix or a complex normal matrix, then it has n eigenvalues in the corresponding field including repeated ones: $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Prove that

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}, \quad \operatorname{tr}\left(A^{*} A\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} .
$$

