Homework 2

Due on Feb 4th before 1pm on gradescope.
To receive full credit, use only definition, Theorems/Corollaries and rigorous reasoning.

1. (10 pts) True of false and no need to explain why:
(a) $\{\overrightarrow{0}\}$ is a linearly independent set.
(b) Every vector space that is generated by a finite set has a basis.
(c) Every vector space has a unique basis.
(d) Every subspace of a finite dimensional vector space is finite dimensional.
(e) $\{\overrightarrow{0}\}$ can be a vector space over any field F.
(f) V is a n-dimensional vector space. $S \subset V$ has n vectors. Then S is linearly independent if and only if S spans V.
(g) For a mapping T from a finite dimensional vector space V (over $F)$ to a finite dimensional vector space W (over F), if $T(x+y)=$ $T(x)+T(y)$, then T is a linear transformation.
(h) For a mapping T from a finite dimensional vector space V (over $F)$ to a finite dimensional vector space W (over F), if T is a linear transformation, then $T\left(\overrightarrow{0}_{V}\right)=\overrightarrow{0}_{W}$, where $\overrightarrow{0}_{V}$ denotes the zero vector in V.
(i) For a mapping T from a finite dimensional vector space V (over F) to a finite dimensional vector space W (over F), if T is not surjective, then T cannot be a linear transformation.
(j) For two linear transformations T_{1}, T_{2} from a finite dimensional vector
space V (over F) to a finite dimensional vector space W (over F), if T_{1} and T_{2} are the same on a basis of V, then T_{1} and T_{2} are the same on V.
2. (20 pts)

Definition 1. Consider $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ where \mathbb{Q} is the set of all rational numbers. Then $\mathbb{Q}(\sqrt{2})$ is a field under conventional addition and multiplication for numbers. Under conventional addition and multiplication for numbers, $V=\mathbb{Q}(\sqrt{2})$ is also a vector space over the field $F=\mathbb{Q}(\sqrt{2})$, and the dimension is one because $\{1\}$ is a basis.
Now consider the following mapping from a vector space $V=\mathbb{Q}(\sqrt{2})$ to another vector space $W=\mathbb{Q}(\sqrt{2})$ over the same field $F=\mathbb{Q}(\sqrt{2})$ defined as:

$$
T(a+b \sqrt{2})=a
$$

Determine whether T is a linear transformation.
3. (20 pts)

Definition 2. In a field F, if $1+1+\cdots+1=0$ (summation of n ones is equal to zero), the number n is called the characteristics of the field. For example, in the field $\mathbb{Z} / 3 \mathbb{Z}=\{0,1,2\}, 1+1+1=\bmod (3,3)=0$, thus the characteristics of this field is 3 .
Now consider a vector space V over a field F, and assume the characteristic of F is not 2 (in other words, $1+1 \neq 0$ in F). Let u and v be two distinct vectors in V. Prove that $\{u, v\}$ is linearly independent if and only if $\{u+v, u-v\}$ is linearly independent.
Hint: In a general field, we only have 0 and 1 defined, and anything else does not have a specific name, e.g., we cannot say $1+1=2$ because 2 is not defined. In $F, 1+1 \neq 0$ implies $\frac{1}{1+1}$ exists $\left(\frac{1}{1+1}\right.$ means the inverse to $1+1$ for multiplication). Thus in $F, c+c=0 \Rightarrow c(1+1)=0$, then multiplying both sides by $\frac{1}{1+1}$, we get $c=0$.
4. (10 pts) Let V be a vector space over a field F with $\operatorname{dim} V=n$. Let $S=\left\{w_{1}, \ldots, w_{m}\right\} \subset V$ be a set of linearly independent vectors. Using Replacement Theorem (Theorem 1.10) to show that $m \leq n$. Furthermore, $m=n$ if and only if S is a basis of V.
5. (10 pts) Determine whether the set $\left\{1+2 x+x^{2},-2+3 x-x^{2}, 1-x+6 x^{2}\right\}$ is a basis for $P_{2}(\mathbb{R})$.
6. (10 pts) Let u, v, w be distinct vectors in V over a general field F. Assume $\{u, v, w\}$ is a basis of V. Prove that $\{u+v+w, v+w, w\}$ is also a basis.
7. (10 pts) Find a basis for the following subspace for \mathbb{R}^{5} :

$$
W=\left\{\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right) \in \mathbb{R}^{5}: b=c=d \quad \text { and } \quad a+e=0\right.
$$

8. (10 pts) The rotation operation of rotating a vector in $x-y$ plane by an angle θ counter clockwise can be denoted as a mapping $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$:

$$
T(x, y)=(\cos \theta x-\sin \theta y, \sin \theta x+\cos \theta y) .
$$

Verify that this is a linear transformation.

