MA 353 Section 001/015 Spring 2021

Homework 3

Due on Feb 11th before 1pm on gradescope.

To receive full credit, use only definition, Theorems/Corollaries and rigorous reasoning.

- 1. (10 pts) True of false and no need to explain why:
 - (a) Given any $x_1, x_2 \in V$ and any $y_1, y_2 \in W$, there exists a linear transformation $T: V \longrightarrow W$ s.t. $T(x_1) = y_1$ and $T(x_2) = y_2$.
 - (b) If two linear transformations T and $U: V \longrightarrow W$ agree on a basis of V, then T and U are the same.
 - (c) For two linear transformations U, T from a finite dimensional vector space V (over F with ordered basis β) to a finite dimensional vector space W (over F with ordered basis γ), $[T]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta} \Longrightarrow T = U$.
 - (d) For an invertible linear transformation T from a finite dimensional vector space V (over F with ordered basis β) to a finite dimensional vector space W (over F with ordered basis γ), $([T]^{\gamma}_{\beta})^{-1} = [T^{-1}]^{\gamma}_{\beta}$.
 - (e) $F^{m \times n}$ is isomorphic to F^{m+n} .
 - (f) Let V, W, Z be vector spaces with finite ordered bases α, β, γ and let $T: V \longrightarrow W$ and $U: W \longrightarrow Z$ be linear. Then $[UT]^{\gamma}_{\alpha} = [T]^{\beta}_{\alpha}[U]^{\gamma}_{\beta}$.
 - (g) Let V, W, Z be vector spaces with finite ordered bases α, β, γ and let $T: V \longrightarrow W$ be linear. Then $[T^2]^{\beta}_{\alpha} = ([T]^{\beta}_{\alpha})^2$.
 - (h) For a n-dimensional vector space V over F, $\mathcal{L}(V)$ is a vector space over F with dimension n^2 .
 - (i) $T: V \longrightarrow W$ is linear, then T is invertible if and only if T is one-on-one and onto.

- (j) Let V, W be vector spaces, then $\mathcal{L}(V, W) = \mathcal{L}(W, V)$.
- (k) Let V, W, Z be vector spaces of the same finite dimension, then $\mathcal{L}(V, W)$ is isomorphic to $\mathcal{L}(W, Z)$.
- 2. (10 pts) Let $T : \mathbb{R}^{1 \times 2} \longrightarrow \mathbb{R}^{1 \times 2}$ be linear satisfying T(1,0) = (1,4) and T(1,1) = (2,5). Find what T(2,3) is. Is T one-to-one?
- 3. (10 pts) Prove Theorem 2.2. for the case that β is infinite: β is a basis of V, prove that R(T) = Span(T(β)) = Span{T(v) : v ∈ β} for a linear transformation T : V → W.
 Hint: only finite sums are used in the definition of these notations: linear combination, span, generate. For example, the vector space of all polynomials with real coefficients P(ℝ) has an infinite basis β = {1, x, x², ···}. Then ∀p(x) ∈ P(ℝ), we have p(x) ∈ Span(β), which means (by definition) the following: there exists finite vectors in β s.t. p(x) is a linear combination of them (of course a polynomial p(x) has a finite degree).
- 4. (10 pts)

Definition 1. For two subsets S_1, S_2 of a vector space $V, S_1 + S_2$ is defined to be the set $\{x + y : x \in S_1, y \in S_2\}$.

Definition 2. If W_1, W_2 are two subspaces of V s.t. $W_1 \cap W_2 = \{\vec{0}\}$ and $V = W_1 + W_2$, then we denote $V = W_1 \oplus W_2$ (V is called direct sum of W_1 and W_2).

Now consider a linear transformation $T: V \longrightarrow V$. Assume V is finite dimensional and $R(T) \cap N(T) = \{\vec{0}\}$, prove that $V = R(T) \oplus N(T)$.

5. (10 pts) Define $T : \mathbb{R}^{2 \times 2} \longrightarrow P_2(\mathbb{R})$ by

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + (2d)x + bx^2.$$

Let $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ and $\gamma = \{1, x, x^2\}$. Find $[T]^{\gamma}_{\beta}$.

6. (10 pts) Let V be a vector space on an abstract field F with ordered basis $\beta = \{v_1, \dots, v_n\}$. Let $v_0 = \vec{0}$. By Theorem 2.6 on page 73, there exists a linear transformation $T: V \longrightarrow V$ s.t. $T(v_j) = v_j + v_{j-1}$ for $j = 1, 2, \cdots, n$. Compute $[T]_{\beta}$.

- 7. (10 pts) Let V be a vector space on an abstract field F and $T: V \longrightarrow V$ is linear. Let T_0 denote zero transformation, i.e., sends all vector of V to $\vec{0}$. Prove that $T^2 = T_0$ if and only if $R(T) \subseteq N(T)$.
- 8. (20 pts) Let V be a finite dimensional vector space and $T: V \longrightarrow V$ be linear. If $rank(T) = rank(T^2)$, prove that $R(T) \cap N(T) = \{\vec{0}\}$ (thus by Problem 4, $V = R(T) \oplus N(T)$). **Hint**: Restrict T to R(T) (a subspace of V) then it is also a linear transformation. Call it \bar{T} , then it might help to consider $\bar{T}: R(T) \longrightarrow R(T^2)$.
- 9. (10 pts) Let V, W be finite dimensional vector spaces and $T: V \longrightarrow W$ be isomorphism. Let V_0 be a subspace of V. Prove that $T(V_0)$ is a subspace in W and $dim(V_0) = dim(T(V_0))$.