Homework 3

Due on Feb 11th before 1pm on gradescope.

To receive full credit, use only definition, Theorems/Corollaries and rigorous reasoning.

1. (10 pts) True of false and no need to explain why:
(a) Given any $x_{1}, x_{2} \in V$ and any $y_{1}, y_{2} \in W$, there exists a linear transformation $T: V \longrightarrow W$ s.t. $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$.
(b) If two linear transformations T and $U: V \longrightarrow W$ agree on a basis of V, then T and U are the same.
(c) For two linear transformations U, T from a finite dimensional vector space V (over F with ordered basis β) to a finite dimensional vector space W (over F with ordered basis γ), $[T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma} \Longrightarrow T=U$.
(d) For an invertible linear transformation T from a finite dimensional vector space V (over F with ordered basis β) to a finite dimensional vector space W (over F with ordered basis γ), $\left([T]_{\beta}^{\gamma}\right)^{-1}=\left[T^{-1}\right]_{\beta}^{\gamma}$.
(e) $F^{m \times n}$ is isomorphic to F^{m+n}.
(f) Let V, W, Z be vector spaces with finite ordered bases α, β, γ and let $T: V \longrightarrow W$ and $U: W \longrightarrow Z$ be linear. Then $[U T]_{\alpha}^{\gamma}=[T]_{\alpha}^{\beta}[U]_{\beta}^{\gamma}$.
(g) Let V, W, Z be vector spaces with finite ordered bases α, β, γ and let $T: V \longrightarrow W$ be linear. Then $\left[T^{2}\right]_{\alpha}^{\beta}=\left([T]_{\alpha}^{\beta}\right)^{2}$.
(h) For a n-dimensional vector space V over $\mathrm{F}, \mathcal{L}(V)$ is a vector space over F with dimension n^{2}.
(i) $T: V \longrightarrow W$ is linear, then T is invertible if and only if T is one-on-one and onto.
(j) Let V, W be vector spaces, then $\mathcal{L}(V, W)=\mathcal{L}(W, V)$.
(k) Let V, W, Z be vector spaces of the same finite dimension, then $\mathcal{L}(V, W)$ is isomorphic to $\mathcal{L}(W, Z)$.
2. (10 pts) Let $T: \mathbb{R}^{1 \times 2} \longrightarrow \mathbb{R}^{1 \times 2}$ be linear satisfying $T(1,0)=(1,4)$ and $T(1,1)=(2,5)$. Find what $T(2,3)$ is. Is T one-to-one?
3. (10 pts) Prove Theorem 2.2. for the case that β is infinite: β is a basis of V, prove that $R(T)=\operatorname{Span}(T(\beta))=\operatorname{Span}\{T(v): v \in \beta\}$ for a linear transformation $T: V \longrightarrow W$.
Hint: only finite sums are used in the definition of these notations: linear combination, span, generate. For example, the vector space of all polynomials with real coefficients $P(\mathbb{R})$ has an infinite basis $\beta=$ $\left\{1, x, x^{2}, \cdots\right\}$. Then $\forall p(x) \in P(\mathbb{R})$, we have $p(x) \in \operatorname{Span}(\beta)$, which means (by definition) the following: there exists finite vectors in β s.t. $p(x)$ is a linear combination of them (of course a polynomial $p(x)$ has a finite degree).
4. (10 pts)

Definition 1. For two subsets S_{1}, S_{2} of a vector space $V, S_{1}+S_{2}$ is defined to be the set $\left\{x+y: x \in S_{1}, y \in S_{2}\right\}$.
Definition 2. If W_{1}, W_{2} are two subspaces of V s.t. $W_{1} \cap W_{2}=\{\overrightarrow{0}\}$ and $V=W_{1}+W_{2}$, then we denote $V=W_{1} \oplus W_{2}$ (V is called direct sum of W_{1} and W_{2}).
Now consider a linear transformation $T: V \longrightarrow V$. Assume V is finite dimensional and $R(T) \cap N(T)=\{\overrightarrow{0}\}$, prove that $V=R(T) \oplus N(T)$.
5. (10 pts) Define $T: \mathbb{R}^{2 \times 2} \longrightarrow P_{2}(\mathbb{R})$ by

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=(a+b)+(2 d) x+b x^{2}
$$

Let $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ and $\gamma=\left\{1, x, x^{2}\right\}$. Find $[T]_{\beta}^{\gamma}$.
6. (10 pts) Let V be a vector space on an abstract field F with ordered basis $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$. Let $v_{0}=\overrightarrow{0}$. By Theorem 2.6 on page 73 , there exists a linear transformation $T: V \longrightarrow V$ s.t. $T\left(v_{j}\right)=v_{j}+v_{j-1}$ for
$j=1,2, \cdots, n$. Compute $[T]_{\beta}$.
7. (10 pts) Let V be a vector space on an abstract field F and $T: V \longrightarrow V$ is linear. Let T_{0} denote zero transformation, i.e., sends all vector of V to $\overrightarrow{0}$. Prove that $T^{2}=T_{0}$ if and only if $R(T) \subseteq N(T)$.
8. (20 pts) Let V be a finite dimensional vector space and $T: V \longrightarrow V$ be linear. If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, prove that $R(T) \cap N(T)=\{\overrightarrow{0}\}$ (thus by Problem $4, V=R(T) \oplus N(T))$.
Hint: Restrict T to $R(T)$ (a subspace of V) then it is also a linear transformation. Call it \bar{T}, then it might help to consider $\bar{T}: R(T) \longrightarrow$ $R\left(T^{2}\right)$.
9. (10 pts) Let V, W be finite dimensional vector spaces and $T: V \longrightarrow W$ be isomorphism. Let V_{0} be a subspace of V. Prove that $T\left(V_{0}\right)$ is a subspace in W and $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$.

