Homework 4

Due on Feb 18th before 3am (Be Aware of the TIME) on gradescope.
To receive full credit, use only definition, Theorems/Corollaries and rigorous reasoning.

1. (10 pts) Find the rank of the matrix

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & 1 & 1 \\
1 & 4 & 0 & 1 & 2 \\
0 & 2 & -3 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

2. (10 pts) For the ordered bases β and β^{\prime} for $P_{2}(\mathbb{R})$, find the change of coordinate matrix that changes β^{\prime}-coordinate to β-coordinate, i.e., find matrix Q such that $[v]_{\beta}=Q[v]_{\beta^{\prime}}$ for any $v \in P_{2}(\mathbb{R})$.

$$
\beta=\left\{x^{2}-x+1, x+1, x^{2}+1\right\}, \quad \beta^{\prime}=\left\{x^{2}+x+4,4 x^{2}-3 x+2,2 x^{2}+3\right\} .
$$

3. (20 pts)

Definition 1. For $A, B \in F^{n \times n}$, we say A is similar to B if there is an invertible matrix Q such that $B=Q^{-1} A Q$.
Recall that trace of a $n \times n$ matrix $A=\left(a_{i j}\right)_{n \times n}$ is defined as $\operatorname{tr}(A)=$ $\sum_{i=1}^{n} a_{i i}$. For two $n \times n$ matrices A, B, prove the following:
(a) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(b) $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$.
(c) If A is similar to B, then $\operatorname{tr}(A)=\operatorname{tr}(B)$.
4. (10 pts) For the following linear system with coefficient matrix A, first find A^{-1} then use A^{-1} to find its solution. (No credit if not using A^{-1}).

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}-x_{3}=5 \\
x_{1}+x_{2}+x_{3}=1 \\
2 x_{1}-2 x_{2}+x_{3}=4
\end{array}\right.
$$

5. (10 pts) Let W be a subspace in \mathbf{R}^{4} consisting of all vectors having entries that sum to zero. Find a basis of W.
6. (10 pts) Let A be an $m \times n$ matrix with rank m. Prove that there exists an $n \times m$ matrix B such that $A B=I_{m}$.
7. (10 pts) Let $A \in \mathbb{R}^{m \times n}$ have rank m and $B \in \mathbb{R}^{n \times p}$ have rank n. Determine the rank of $A B$ and justify your answer.
Hint: use L_{A} and L_{B}.
8. (20 pts) Express the invertible matrix A as a product of elementary matrices:

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

