Homework 5

Due on Mar 4th before 1 pm on gradescope.

1. (20 pts) Compute the determinant of the following matrices
(a)

$$
\left(\begin{array}{cccc}
1 & -2 & 3 & -12 \\
-5 & 12 & -14 & 19 \\
-9 & 22 & -20 & 31 \\
-4 & 9 & -14 & 15
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{ccc}
i & 2 & -1 \\
3 & 1+i & 2 \\
-2 i & 1 & 4-i
\end{array}\right)
$$

where $i=\sqrt{-1}$.
2. (40 pts) Use det to prove the following for $A \in F^{n \times n}$
(a) If A^{k} is zero matrix for some positive integer k (such matrices are called nilpotent), then A is not invertible.
(b) If $A^{T}=-A$ (such matrices are called skew-symmetric) and n is odd, then A is not invertible.
(c) If $A^{T} A=I$ (such matrices are called orthogonal), then $\operatorname{det}(A)= \pm 1$.
(d) If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
3. (10 pts) Let $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ be an ordered basis of a vector space V over the filed F. Let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ and let A be the matrix consisting of $\left[u_{i}\right]_{\beta}$ as columns. Prove that S is linearly independent if and only if $\operatorname{det}(A) \neq 0$.
4. (10 pts) Compute $\operatorname{det}(A+t I)$ (here t is a scalar variable) for $A \in F^{n \times n}$ and the identity matrix I of size $n \times n$:

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & a_{0} \\
-1 & 0 & 0 & \cdots & 0 & a_{1} \\
0 & -1 & 0 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & a_{n-1}
\end{array}\right)
$$

5. (10 pts) Find all eigenvalues and eigenvectors for the matrix

$$
\left(\begin{array}{ccc}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{array}\right)
$$

6. (10 pts) Let $A, B, I \in F^{n \times n}$ where I is the identity matrix. Consider a $2 n \times 2 n$ matrix M :

$$
M=\left(\begin{array}{cc}
A & B \\
O & I
\end{array}\right),
$$

where O denotes zero matrix of size $n \times n$. Prove that $\operatorname{det}(M)=\operatorname{det}(A)$. Hint: discuss it for two cases: 1) $\operatorname{rank}(A)<n ; 2) \operatorname{rank}(A)=n$. For the second case, it is useful to multiply the matrix $P=\left(\begin{array}{cc}A^{-1} & O \\ O & I\end{array}\right)$ to M.

