Homework 6

Due on Mar 11th before 1pm on gradescope.

1. (20 pts) True of false and no need to explain why:
(a) A linear operator $T: V \longrightarrow V$ for n-dimensional vector space V has n eigenvalues.
(b) If a real matrix has one eigenvector, then it has infinitely many eigenvectors.
(c) There exists a square matrix with no eigenvalues.
(d) The sum of two eigenvectors is still an eigenvector.
(e) A linear operator $T: V \longrightarrow V$ for infinite dimensional vector space V has no eigenvalues.
(f) Similar matrices have the same eigenvectors.
(g) If a linear operator $T: V \longrightarrow V$ for n-dimensional vector space V has fewer than n distinct eigenvalues, then it is not diagonalizable.
(h) Two distinct eigenvectors for the same eigenvalue are linearly dependent.
(i) Let E_{λ} denote the eigenspace for eigenvalue λ. If λ_{1}, λ_{2} are two distinct eigenvalues of a linear operator T, then $E_{\lambda_{1}} \cap E_{\lambda_{2}}=\{\overrightarrow{0}\}$.
(j) A linear operator $T: V \longrightarrow V$ for n-dimensional vector space V is diagonalizable if and only if the algebraic multiplicity of each eigenvalue λ equals the dimension of E_{λ}.
2. (20 pts) Let $T: V \longrightarrow W$ be a linear transformation from a finite dimensional vector space V to a finite dimensional vector space W. Let β, β^{\prime} be ordered bases for V and $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$ be the change of coordinate matrix, where $I_{V}: V \longrightarrow V$ is the identity map. Let γ, γ^{\prime} be ordered bases for W and $P=\left[I_{W}\right]_{\gamma^{\prime}}^{\gamma}$, be the change of coordinate matrix, where $I_{W}: W \longrightarrow W$ is the identity map. Prove that $[T]_{\beta^{\prime}}^{\gamma^{\prime}}=P^{-1}[T]_{\beta}^{\gamma} Q$.
3. (10 pts) Let $A \in F^{n \times n}$ and let $\gamma=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be an ordered basis for F^{n}. Let Q be the matrix with v_{i} being i-th column. Prove that $\left[L_{A}\right]_{\gamma}=Q^{-1} A Q$.
4. (20 pts) Determine whether there exists a real matrix Q such that $Q^{-1} A Q$ is diagonal. If yes, find Q and $Q^{-1} A Q$. If no, further determine
whether there exists a complex matrix Q such that $Q^{-1} A Q$ is diagonal, and find both Q and $Q^{-1} A Q$.
(a) $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right)$.
(b) $A=\left(\begin{array}{ccc}3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1\end{array}\right)$.
5. (10 pts) For $A=\left(\begin{array}{ccc}3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1\end{array}\right)$, use diagonalization to find an expression of A^{n} for an arbitrary positive integer n.
6. (10 pts) For a diagonalizable matrix A, let $\lambda_{1}, \cdots, \lambda_{k}$ be its all eigenvalues with algebraic multiplicities $m_{1}, m_{2}, \cdots, m_{k}$. Prove that

$$
\operatorname{tr}(A)=\sum_{i=1}^{k} m_{i} \lambda_{i}
$$

Hint: Problem 3 in HW\#4 might help.
7. (10 pts) Consider $T: P_{2}(\mathbb{R}) \longrightarrow P_{2}(\mathbb{R})$ defined by

$$
T(p(x))=p(0)+p(1)\left(x+x^{2}\right)
$$

Determine whether T is diagonalizable by some basis β. If yes, find β and $[T]_{\beta}$.

