Homework 6

Due on Mar 11th before 1pm on gradescope.

- 1. (20 pts) True of false and no need to explain why:
 - (a) A linear operator $T: V \longrightarrow V$ for *n*-dimensional vector space V has n eigenvalues.
 - (b) If a real matrix has one eigenvector, then it has infinitely many eigenvectors.
 - (c) There exists a square matrix with no eigenvalues.
 - (d) The sum of two eigenvectors is still an eigenvector.
 - (e) A linear operator $T: V \longrightarrow V$ for infinite dimensional vector space V has no eigenvalues.
 - (f) Similar matrices have the same eigenvectors.
 - (g) If a linear operator $T: V \longrightarrow V$ for *n*-dimensional vector space V has fewer than *n* distinct eigenvalues, then it is not diagonalizable.
 - (h) Two distinct eigenvectors for the same eigenvalue are linearly dependent.
 - (i) Let E_{λ} denote the eigenspace for eigenvalue λ . If λ_1, λ_2 are two distinct eigenvalues of a linear operator T, then $E_{\lambda_1} \cap E_{\lambda_2} = {\vec{0}}$.
 - (j) A linear operator $T: V \longrightarrow V$ for *n*-dimensional vector space V is diagonalizable if and only if the algebraic multiplicity of each eigenvalue λ equals the dimension of E_{λ} .
- 2. (20 pts) Let $T : V \longrightarrow W$ be a linear transformation from a finite dimensional vector space V to a finite dimensional vector space W. Let β, β' be ordered bases for V and $Q = [I_V]^{\beta}_{\beta'}$ be the change of coordinate matrix, where $I_V : V \longrightarrow V$ is the identity map. Let γ, γ' be ordered bases for W and $P = [I_W]^{\gamma}_{\gamma'}$ be the change of coordinate matrix, where $I_W : W \longrightarrow W$ is the identity map. Prove that $[T]^{\gamma'}_{\beta'} = P^{-1}[T]^{\gamma}_{\beta}Q$.
- 3. (10 pts) Let $A \in F^{n \times n}$ and let $\gamma = \{v_1, v_2, \cdots, v_n\}$ be an ordered basis for F^n . Let Q be the matrix with v_i being i-th column. Prove that $[L_A]_{\gamma} = Q^{-1}AQ$.
- 4. (20 pts) Determine whether there exists a real matrix Q such that $Q^{-1}AQ$ is diagonal. If yes, find Q and $Q^{-1}AQ$. If no, further determine

whether there exists a complex matrix Q such that $Q^{-1}AQ$ is diagonal, and find both Q and $Q^{-1}AQ$.

(a)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
.
(b) $A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$.

5. (10 pts) For $A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$, use diagonalization to find an expression of A^n for an arbitrary positive integer n.

6. (10 pts) For a diagonalizable matrix A, let $\lambda_1, \dots, \lambda_k$ be its all eigenvalues with algebraic multiplicities m_1, m_2, \dots, m_k . Prove that

$$tr(A) = \sum_{i=1}^{k} m_i \lambda_i$$

Hint: Problem 3 in HW#4 might help.

7. (10 pts) Consider $T: P_2(\mathbb{R}) \longrightarrow P_2(\mathbb{R})$ defined by

$$T(p(x)) = p(0) + p(1)(x + x^2).$$

Determine whether T is diagonalizable by some basis β . If yes, find β and $[T]_{\beta}$.