Homework 7

Due on Mar 23rd Tuesday before 1pm on gradescope.

1. (10 pts) In V = C([0, 1]), let f(t) = t and $g(t) = e^t$. Compute

$$\langle f,g\rangle := \int_0^1 f(t)g(t)dt,$$

||f||, ||g|| and ||f + g||. Then verify (you can use calculator if needed) both the Cauchy-Schwart inequality and the triangle inequality for f, g.

2. (20 pts) The Cauchy-Schartz inequality $|\langle x, y \rangle| \leq ||x|| ||y||$ and the triangle inequality $||x + y|| \leq ||x|| + ||y||$ have many different explicit forms, depending on what the abstract vectors x, y are and how the inner product is defined. For example, consider the following two inequalities that we are familiar with:

$$\left|\sum_{i=1}^{n} a_{i}\bar{b}_{i}\right| \leq \left[\sum_{i=1}^{n} |a_{i}|^{2}\right]^{\frac{1}{2}} \left[\sum_{i=1}^{n} |b_{i}|^{2}\right]^{\frac{1}{2}}, \quad \forall a_{i}, b_{i} \in \mathbb{C},$$
$$\left[\sum_{i=1}^{n} |a_{i} + b_{i}|^{2}\right]^{\frac{1}{2}} \leq \left[\sum_{i=1}^{n} |a_{i}|^{2}\right]^{\frac{1}{2}} + \left[\sum_{i=1}^{n} |b_{i}|^{2}\right]^{\frac{1}{2}}, \quad \forall a_{i}, b_{i} \in \mathbb{C}.$$

These two inequalities above are exactly the Cauchy-Schartz inequality and the triangle inequality in the vector space $V = \mathbb{C}^n$ with Standard inner product. Now prove the following inequalities by showing that they are (or implied by) the Cauchy-Schartz inequality and the triangle inequality for some vector space with some inner product (specify what the vector space and the inner product are):

(a)

$$\left| \int_{0}^{1} f(x)\bar{g}(x)dx \right| \leq \left[\int_{0}^{1} |f(x)|^{2}dx \right]^{\frac{1}{2}} \left[\int_{0}^{1} |g(x)|^{2}dx \right]^{\frac{1}{2}},$$
$$\left[\int_{0}^{1} |f(x) + g(x)|^{2}dx \right]^{\frac{1}{2}} \leq \left[\int_{0}^{1} |f(x)|^{2}dx \right]^{\frac{1}{2}} + \left[\int_{0}^{1} |g(x)|^{2}dx \right]^{\frac{1}{2}},$$

where f(x), g(x) are two continuous complex-valued functions defined on the interval $x \in [0, 1]$.

(b)

$$tr(AB) \le \sqrt{tr(A^2)}\sqrt{tr(B^2)},$$
$$\sqrt{tr((A+B)^2)} \le \sqrt{tr(A^2)} + \sqrt{tr(B^2)}$$

where A and B are two real symmetric $n \times n$ matrices.

- 3. (20 pts) Let V be an inner product space over F. Prove the following: (a) P_{F} and P_{F} and F_{F} and F_{F}
 - (a) Parallelogram law: if $F = \mathbb{C}$,

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}, \forall x, y \in V.$$

- (b) Polar identity: if $F = \mathbb{R}$, $\langle x, y \rangle = \frac{1}{4} ||x + y||^2 \frac{1}{4} ||x y||^2$, $\forall x, y \in V$.
- (c) Polar identity: if $F = \mathbb{C}$, $\langle x, y \rangle = \frac{1}{4} \sum_{k=1}^{4} i^k ||x + i^k y||^2, \forall x, y \in V$. Here $i = \sqrt{-1}$.
- (d) $|||x|| ||y||| \le ||x y||, \forall x, y \in V.$
- 4. (20 pts) For $V = F^n$ with standard inner product and $A \in F^{n \times n}$ (where $F = \mathbb{C}$ or \mathbb{R}):
 - (a) Prove that $\langle x, Ay \rangle = \langle A^*x, y \rangle, \forall x, y \in V.$
 - (b) Assume $\langle x, Ay \rangle = \langle Bx, y \rangle, \forall x, y \in V$ for some $B \in F^{n \times n}$. Prove that $B = A^*$.
 - (c) For any orthonormal basis β for V, let Q be the matrix whose columns are vectors in β . Prove that $Q^* = Q^{-1}$.
 - (d) Define two linear operators $T : V \longrightarrow V$ and $U : V \longrightarrow V$ by T(x) = Ax and $U(x) = A^*x$. Prove that $[U]_{\beta} = [T]_{\beta}^*$ for any orthonormal basis β for V.
- 5. (20 pts) Apply Gram-Schmidt process to the given set S of the inner product space V to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S).

(a)
$$V = \mathbb{R}^4$$
, standard inner product, $S = \left\{ \begin{pmatrix} 1 \\ -2 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 3 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 2 \\ 8 \end{pmatrix} \right\}.$

- (b) $V = C([0, \pi])$ over $F = \mathbb{R}$, with $\langle f, g \rangle = \int_0^{\pi} f(t)g(t)dt$. $S = \{\sin t, \cos t, 1, t\}$. Feel free to use computer or online tools for computing integrals.
- 6. (10 pts) For $A \in \mathbb{F}^{m \times n}$ ($F = \mathbb{C}$ or \mathbb{R}), prove that $(R(L_{A^*}))^{\perp} = N(L_A)$.