Homework 7

Due on Mar 23rd Tuesday before 1pm on gradescope.

1. (10 pts) In $V=C([0,1])$, let $f(t)=t$ and $g(t)=e^{t}$. Compute

$$
\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t
$$

$\|f\|,\|g\|$ and $\|f+g\|$. Then verify (you can use calculator if needed) both the Cauchy-Schwart inequality and the triangle inequality for f, g.
2. (20 pts) The Cauchy-Schartz inequality $|\langle x, y\rangle| \leq\|x\|\|y\|$ and the triangle inequality $\|x+y\| \leq\|x\|+\|y\|$ have many different explicit forms, depending on what the abstract vectors x, y are and how the inner product is defined. For example, consider the following two inequalities that we are familiar with:

$$
\begin{gathered}
\left|\sum_{i=1}^{n} a_{i} \bar{b}_{i}\right| \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{\frac{1}{2}}\left[\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right]^{\frac{1}{2}}, \quad \forall a_{i}, b_{i} \in \mathbb{C}, \\
{\left[\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{2}\right]^{\frac{1}{2}} \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{\frac{1}{2}}+\left[\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right]^{\frac{1}{2}}, \quad \forall a_{i}, b_{i} \in \mathbb{C} .}
\end{gathered}
$$

These two inequalities above are exactly the Cauchy-Schartz inequality and the triangle inequality in the vector space $V=\mathbb{C}^{n}$ with Standard inner product. Now prove the following inequalities by showing that they are (or implied by) the Cauchy-Schartz inequality and the triangle inequality for some vector space with some inner product (specify what the vector space and the inner product are):
(a)

$$
\begin{gathered}
\left|\int_{0}^{1} f(x) \bar{g}(x) d x\right| \leq\left[\int_{0}^{1}|f(x)|^{2} d x\right]^{\frac{1}{2}}\left[\int_{0}^{1}|g(x)|^{2} d x\right]^{\frac{1}{2}}, \\
{\left[\int_{0}^{1}|f(x)+g(x)|^{2} d x\right]^{\frac{1}{2}} \leq\left[\int_{0}^{1}|f(x)|^{2} d x\right]^{\frac{1}{2}}+\left[\int_{0}^{1}|g(x)|^{2} d x\right]^{\frac{1}{2}},}
\end{gathered}
$$

where $f(x), g(x)$ are two continuous complex-valued functions defined on the interval $x \in[0,1]$.
(b)

$$
\begin{gathered}
\operatorname{tr}(A B) \leq \sqrt{\operatorname{tr}\left(A^{2}\right)} \sqrt{\operatorname{tr}\left(B^{2}\right)} \\
\sqrt{\operatorname{tr}\left((A+B)^{2}\right)} \leq \sqrt{\operatorname{tr}\left(A^{2}\right)}+\sqrt{\operatorname{tr}\left(B^{2}\right)}
\end{gathered}
$$

where A and B are two real symmetric $n \times n$ matrices.
3. $(20 \mathrm{pts})$ Let V be an inner product space over F. Prove the following:
(a) Parallelogram law: if $F=\mathbb{C}$,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}, \forall x, y \in V
$$

(b) Polar identity: if $F=\mathbb{R},\langle x, y\rangle=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2}, \forall x, y \in V$.
(c) Polar identity: if $F=\mathbb{C},\langle x, y\rangle=\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|x+i^{k} y\right\|^{2}, \forall x, y \in V$. Here $i=\sqrt{-1}$.
(d) $|\|x\|-\|y\|| \leq\|x-y\|, \forall x, y \in V$.
4. (20 pts) For $V=F^{n}$ with standard inner product and $A \in F^{n \times n}$ (where $F=\mathbb{C}$ or \mathbb{R}):
(a) Prove that $\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle, \forall x, y \in V$.
(b) Assume $\langle x, A y\rangle=\langle B x, y\rangle, \forall x, y \in V$ for some $B \in F^{n \times n}$. Prove that $B=A^{*}$.
(c) For any orthonormal basis β for V , let Q be the matrix whose columns are vectors in β. Prove that $Q^{*}=Q^{-1}$.
(d) Define two linear operators $T: V \longrightarrow V$ and $U: V \longrightarrow V$ by $T(x)=A x$ and $U(x)=A^{*} x$. Prove that $[U]_{\beta}=[T]_{\beta}^{*}$ for any orthonormal basis β for V.
5. (20 pts) Apply Gram-Schmidt process to the given set S of the inner product space V to obtain an orthogonal basis for $\operatorname{span}(S)$. Then normalize the vectors in this basis to obtain an orthonormal basis β for $\operatorname{span}(S)$.
(a) $V=\mathbb{R}^{4}$, standard inner product, $S=\left\{\left(\begin{array}{c}1 \\ -2 \\ -1 \\ 3\end{array}\right),\left(\begin{array}{c}3 \\ 6 \\ 3 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 4 \\ 2 \\ 8\end{array}\right)\right\}$.
(b) $V=C([0, \pi])$ over $F=\mathbb{R}$, with $\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) d t$. $S=\{\sin t, \cos t, 1, t\}$. Feel free to use computer or online tools for computing integrals.
6. (10 pts) For $A \in \mathbb{F}^{m \times n}(F=\mathbb{C}$ or $\mathbb{R})$, prove that $\left(R\left(L_{A^{*}}\right)\right)^{\perp}=N\left(L_{A}\right)$.

