Homework 8

Due on April 8th Thursday before 1pm on gradescope.

1. (10 pts) Let $V=C([-1,1])$. Let W_{e} and W_{o} denote subspaces of V consisting of the even and odd functions (see HW\#1 Problem 7 for definition), respectively. Prove that $W_{e}^{\perp}=W_{o}$, where the inner product is defined as

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

2. (10 pts) Let V be an inner product space (not necessarily finite dimensional) and let $S=\left\{v_{1}, \cdots, v_{k}\right\}$ be an orthonormal set in V.
(a) Prove Bessel's Inequality:

$$
\forall x \in V, \quad\|x\|^{2} \geq \sum_{i=1}^{k}\left|\left\langle x, v_{i}\right\rangle\right|^{2}
$$

(b) Prove that Bessel's inequality above is an equality if and only if $x \in \operatorname{Span}(S)$.
Hint: use Theorem 6.6.
3. (20 pts)
(a) Consider $V=P(\mathbb{R})$ with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

Find the projection of $4+3 x-2 x^{2}$ onto the subspace $W=P_{1}(\mathbb{R})$.
(b) Consider $V=\mathbb{R}^{3}$ with standard inner product, find projection of $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ onto

$$
W=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): x+3 y-2 z=0\right\} .
$$

4. (10 pts) Let V be a finite-dimensional product space. Let $T: V \longrightarrow V$ be a linear operator. Prove that if T is invertible, then T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$. Hint: use Theorem 6.10 and the fact that $\left(A^{*}\right)^{-1}=$ $\left(A^{-1}\right)^{*}$ for a square matrix (because $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ and $(\bar{A})^{-1}=\overline{A^{-1}}$.)
5. (10 pts) Let V be a product space (maybe not be finite-dimensional). Prove that $\|T(x)\|=\|x\|, \forall x \in V$ if and only if $\langle T(x), T(y)\rangle=\langle x, y\rangle, \forall x, y \in$ V.

Hint: use polar identity in HW\#7.
6. (10 pts) Consider $V=P_{1}(\mathbb{R})$ with $\langle f(x), g(x)\rangle=\int_{-1}^{1} f(t) g(t) d t$ and the linear operator $T: V \longrightarrow V$ defined by $T[f(x)]=f^{\prime}(x)+3 f(x)$. Evaluate $T^{*}[g(x)]$ where $g(x)=4-2 x$.
Hint: To find T^{*}, one way is to use its matrix representation. Be ware that β must be an orthonormal basis in Theorem 6.10.
7. (10 pts) Use the least square approximation to find the best fits with (i) a linear function and (ii) a quadratic function, for the following data on $x-y$ plane

$$
\{(-3,9),(-2,6),(0,2),(1,1)\}
$$

8. (20 pts) Let V be a finite-dimensional product space. Let $T: V \longrightarrow V$ be a linear operator. Prove that
(a) $N\left(T^{*} T\right)=N(T)$. Deduce that $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}(T)$.
(b) $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$. Deduce that $\operatorname{rank}\left(T T^{*}\right)=\operatorname{rank}(T)$.
