Homework 8

Due on April 8th Thursday before 1pm on gradescope.

1. (10 pts) Let V = C([-1,1]). Let W_e and W_o denote subspaces of V consisting of the even and odd functions (see HW#1 Problem 7 for definition), respectively. Prove that $W_e^{\perp} = W_o$, where the inner product is defined as

$$\langle f,g\rangle = \int_{-1}^{1} f(t)g(t)dt.$$

- 2. (10 pts) Let V be an inner product space (not necessarily finite dimensional) and let $S = \{v_1, \dots, v_k\}$ be an orthonormal set in V.
 - (a) Prove Bessel's Inequality:

$$\forall x \in V, \quad \|x\|^2 \ge \sum_{i=1}^k |\langle x, v_i \rangle|^2$$

(b) Prove that Bessel's inequality above is an equality if and only if $x \in Span(S)$.

Hint: use Theorem 6.6.

- 3. (20 pts)
 - (a) Consider $V = P(\mathbb{R})$ with inner product

$$\langle f,g \rangle = \int_0^1 f(t)g(t)dt.$$

Find the projection of $4 + 3x - 2x^2$ onto the subspace $W = P_1(\mathbb{R})$.

- (b) Consider $V = \mathbb{R}^3$ with standard inner product, find projection of $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$ onto $W = \left\{ \begin{pmatrix} x\\y\\z \end{pmatrix} : x + 3y 2z = 0 \right\}.$
- 4. (10 pts) Let V be a finite-dimensional product space. Let $T: V \longrightarrow V$ be a linear operator. Prove that if T is invertible, then T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$. **Hint**: use Theorem 6.10 and the fact that $(A^*)^{-1} = (A^{-1})^*$ for a square matrix (because $(A^T)^{-1} = (A^{-1})^T$ and $(\bar{A})^{-1} = \bar{A}^{-1}$.)

- 5. (10 pts) Let V be a product space (maybe not be finite-dimensional). Prove that $||T(x)|| = ||x||, \forall x \in V$ if and only if $\langle T(x), T(y) \rangle = \langle x, y \rangle, \forall x, y \in V$. Hint: use polar identity in HW#7.
- 6. (10 pts) Consider $V = P_1(\mathbb{R})$ with $\langle f(x), g(x) \rangle = \int_{-1}^1 f(t)g(t)dt$ and the linear operator $T: V \longrightarrow V$ defined by T[f(x)] = f'(x) + 3f(x). Evaluate $T^*[g(x)]$ where g(x) = 4 - 2x. **Hint**: To find T^* , one way is to use its matrix representation. Be ware that β must be an orthonormal basis in Theorem 6.10.
- 7. (10 pts) Use the least square approximation to find the best fits with (i) a linear function and (ii) a quadratic function, for the following data on x-y plane

$$\{(-3,9), (-2,6), (0,2), (1,1)\}$$

- 8. (20 pts) Let V be a finite-dimensional product space. Let $T: V \longrightarrow V$ be a linear operator. Prove that
 - (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
 - (b) $rank(T) = rank(T^*)$. Deduce that $rank(TT^*) = rank(T)$.