Homework 9

Due on April 15th Thursday before 1pm on gradescope.
Recall that we only consider $F=\mathbb{R}$ or \mathbb{C} whenever inner product is involved.

1. (20 pts) True or False. No need to give reasoning.
(a) Unitary operators are also normal.
(b) T and its adjoint have the same eigenvectors.
(c) For $T: V \longrightarrow V$ with a finite dimensional inner product space V, then T is normal if and only if $[T]_{\beta}$ is normal, where β is any ordered basis of V.
(d) Normal matrices/operators are diagonalizable.
(e) Self-adjoint matrices/operators are diagonalizable.
(f) Orthogonal matrices/operators are diagonalizable.
(g) If a matrix $A \in F^{n \times n}$ is normal, then so is L_{A}.
(h) For a matrix $A \in F^{n \times n},\left(L_{A}\right)^{*}=L_{A^{*}}$.
(i) For any two linear operators and scalars a, b,:

$$
(a T+b U)^{*}=a T^{*}+b U^{*}
$$

(j) For a finite dimensional inner product space V, every linear T : $V \longrightarrow V$ has an adjoint operator.
2. (20 pts) Consider a real skew-symmetric matrix $A \in \mathbb{R}^{n \times n}$, i.e., $A^{T}=$ $-A$. The matrix A has n complex eigenvalues by Fundamental Theorem of Algebra. Prove that A has n purely imaginary eigenvalues (i.e., real parts of eigenvalues are zero).
Hint: By Lemma on Page 370 (or Lecture Notes on April 8th), a real self-adjoint operator over n-dimensional vector space V has n real eigenvalues including repeated ones. This implies that a real symmetric $n \times n$ matrix B has n real eigenvalues (simply apply the Lemma to the operator L_{B}). Consider $T=L_{A}$ and mimic the proof of the Lemma.
3. (10 pts) Prove the IF direction in Theorem 6.17: for a finite-dimensional V over $F=\mathbb{R}$, if there exists an orthonormal basis β for V consisting of eigenvectors of $T: V \longrightarrow V$, then T is self-adjoint.
4. (10 pts) For a normal linear operator $T: V \longrightarrow V$ where V could be an infinite dimensional inner product space, prove that $T-c I$ is also normal with any $c \in F$.
5. (10 pts) For $T: V \longrightarrow V$ with a finite dimensional inner product space V, if γ is an orthonormal basis of V, then we have $\left[T^{*}\right]_{\gamma}=[T]_{\gamma}^{*}$. Derive the relation between two matrices $\left[T^{*}\right]_{\beta}$ and $[T]_{\beta}$ for any ordered basis β.
Hint: use the change of coordinate matrix $Q=[I]_{\beta}^{\gamma}$.
6. (20 pts) Let $T: V \longrightarrow V$ be a normal operator on a finite dimensional inner product space V. Prove that
(a) $N(T)=N\left(T^{*}\right)$. Hint: use HW\#8.
(b) $R\left(T^{*}\right)^{\perp}=N(T)$. Deduce $R(T)=R\left(T^{*}\right)$.
7. (10 pts) Let $T: V \longrightarrow V$ be a self-adjoint operator on a finite dimensional inner product space $V . F=\mathbb{C}$. Prove that $\forall x \in V$:

$$
\|T(x) \pm i x\|^{2}=\|T(x)\|^{2}+\|x\|^{2} .
$$

