Homework 11

Due on April 29th Thursday before 1pm on gradescope.

Recall that we only consider $F=\mathbb{R}$ or \mathbb{C} whenever inner product is involved.

1. (10 pts) For a finite dimensional inner product space V over $F=\mathbb{C}$, let β and γ be two orthonormal bases, consider the matrix $Q=[I]_{\beta}^{\gamma}$. Prove that L_{Q} is unitary. (thus we can further prove Q is unitary if we want.) Hint: Let $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ be an orthonormal basis. $\forall x \in V$, assume $x=\sum_{i=1}^{n} a_{i} v_{i}$, recall that we have proven $\|x\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}$.
2. (20 pts) Let A be a real $n \times n$ matrix. Prove that A is symmetric if and only if A is orthogonally equivalent to a real diagonal matrix.
Hint: this is the real analog of Theorem 6.19, you can prove it by following the proof of Theorem 6.19.
3. (30 pts) Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
0 & 2 & 0 \\
0 & 1 & 2
\end{array}\right] .
$$

(a) (10 pts) Find all eigenvalues, their algebraic multiplicity and geometrical multiplicity, and basis vectors for all eigenspaces.
(b) (10 pts) For this particular matrix, there is one eigenvalue λ_{2} for which geometrical multiplicity is less than algebraic multiplicity. This ensures existence of one generalized eigenvector: let v be its eigenvector, then find the generalized eigenvector u defined as solution to the nonhomogeneous linear system $\left(A-\lambda_{2} I\right) u=v$.
(c) (10 pts) For this particular matrix, there are two distinct eigenvalues λ_{1} and λ_{2}. Let v_{1} be eigenvector for λ_{1}. Form a matrix $Q=\left[\begin{array}{lll}v_{1} & v & u\end{array}\right]$. Then by the definition of eigenvectors and generalized eigenvectors, we have

$$
A Q=\left[\begin{array}{lll}
A v_{1} & A v & A u
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} v_{1} & \lambda_{2} & \lambda_{2} u+v
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & v & u
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 1 \\
0 & 0 & \lambda_{2}
\end{array}\right] .
$$

Here $J=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 1 \\ 0 & 0 & \lambda_{2}\end{array}\right]$ is called Jordan Form of A. Find the explicit expression of J, Q, Q^{-1} and verify that $A=Q J Q^{-1}$ (and this is what eigenvalue decomposition looks like for a nondiagonalizable matrix).
4. (10 pts) Background: Any real matrix $A \in \mathbb{R}^{n \times n}$ has a Singular Value Decomposition (SVD) in the form that $A=U \Sigma V^{T}$ where U, V are orthogonal matrices (their columns are called singular vectors) and Σ is a diagonal matrix with real non-negative diagonal entries σ_{i} (singular values). Now let us assume $A \in R^{n \times n}$ is given as $A=U \Sigma V^{T}$ where $U, V \in R^{n \times n}$ are orthogonal matrices and $\Sigma \in R^{n \times n}$ is a diagonal matrix with diagonal entries $\sigma_{i} \geq 0(i=1, \cdots, n)$. Prove that
(a) σ_{i}^{2} are eigenvalues of $A A^{T}$ with eigenvectors u_{i}, columns of U.
(b) σ_{i}^{2} are eigenvalues of $A^{T} A$ with eigenvectors v_{i}, columns of V.
5. (20 pts) Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

Find its SVD $A=U \Sigma V^{T}$ by computing σ_{i}^{2} as eigenvalues of $A A^{T}$ (or $A^{T} A$), computing columns u_{i} of U as orthonormal eigenvectors of $A A^{T}$ and columns v_{i} of V as orthonormal eigenvectors of $A^{T} A$. And order them so that $A v_{i}=\sigma_{i} u_{i}$. Finally verify that $A=U \Sigma V^{T}$.
6. (10 pts) Background: Any complex matrix $A \in \mathbb{C}^{n \times n}$ has a Singular Value Decomposition (SVD) in the form that $A=U \Sigma V^{*}$ where U, V are unitary matrices (their columns are called singular vectors) and Σ is a diagonal matrix with real non-negative diagonal entries σ_{i} (singular values). σ_{i} are square root of eigenvalues of $A A^{*}$ (or $A^{*} A$). Columns of U are orthonormal eigenvectors of $A A^{*}$. Columns of V are orthonormal eigenvectors of $A^{*} A$.
Let $A \in \mathbb{C}^{n \times n}$. Let σ_{i} be its singular values and λ_{i} be its eigenvalues. Prove that we have $\sigma_{i}=\left|\lambda_{i}\right|$ for a normal matrix A.
Hint: Plug in the eigenvalue decomposition $A=Q D Q^{*}$ into $A A^{*}$ and $A^{*} A$.

