Div and Curl

Xiangxiong Zhang

Math Dept, Purdue Univeristy
MA362, Spring 2020

Meaning of derivatives

Scalar-valued functions:

1. $f^{\prime}\left(x_{0}\right)$ is the slope of the tangent line to the curve $y=f(x)$ at $\left(x_{0}, f\left(x_{0}\right)\right)$.
2. $z=f(x, y)$ is a surface and $<f_{x}, f_{y},-1>$ is the normal vector to the tangent plane.
3. $F(x, y, z)=C$ is a level surface and $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$ is the normal vector to the tangent plane.
4. $f(x, y)=C$ is a level curve and $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$ is a vector orthogonal to the tangent vector.

If a vector field $\mathbf{F}(x, y, z)=\langle f(x, y, z), g(x, y, z), h(x, y, z)\rangle$ denotes the velocity of some fluid (water/oil/air):
$\downarrow \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\left\langle\partial_{x}, \partial_{y}, \partial_{z}\right\rangle \cdot\langle f, g, h\rangle=f_{x}+g_{y}+h_{z}$.

1. Divergence quantifies the compression $(\operatorname{div} \mathbf{F}<0)$ or expansion ($\operatorname{div} \mathbf{F}>0$).
2. $\operatorname{div} \mathbf{F}=0$: incompressible flow such as water/oil at normal temperature.

- curlF $=\nabla \times \mathbf{F}=\left\langle\partial_{x}, \partial_{y}, \partial_{z}\right\rangle \times\langle f, g, h\rangle=\left\langle h_{y}-g_{z}, f_{z}-h_{x}, g_{x}-f_{y}\right\rangle$ quantifies the rotation of the flow.

Why: Green's/Divergence (Gauss)/Stokes Theorems.

2D Vector fields

Let $\mathbf{U}(x, y)=\langle u(x, y), v(x, y)\rangle$ be a 2D vector field denoting velocity of some 2D flow.

- $\operatorname{div} \mathbf{U}=u_{x}+v_{y}$
- curl $\mathbf{U}=\left\langle\partial_{x}, \partial_{y}, \partial_{z}\right\rangle \times\langle u, v, 0\rangle=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ u & v & 0\end{array}\right|=\left\langle 0,0, v_{x}-u_{y}\right\rangle$. So we can also perceive curl U as a scalar even though it is supposed to be a vector parallel to z-axis.
- From now on, let us pretend/define curl $\mathbf{U}=v_{x}-u_{y}$ as a scalar for a 2D vector field.
- curl $\mathbf{U}=v_{x}-u_{y}>0$ means rotation counterclockwise.
- curl $\mathbf{U}=v_{x}-u_{y}<0$ means rotation clockwise.
- curl $\mathbf{U}=v_{x}-u_{y}=0$ means no rotation.

Example 1: $\mathbf{U}(x, y)=\langle x, y\rangle, \quad \operatorname{div} \mathbf{U}=2$

Derivative is a local operator. Notice that $\operatorname{div} \mathbf{U}$ is a function as well. So at some point $\left(x_{0}, y_{0}\right)$, imagine a circle centered at this point with a very small radius (you can let the radius go to zero if that does not confuse you), then $\operatorname{div} \mathbf{U}\left(x_{0}, y_{0}\right)>0$ simply means that more water molecules are flowing out of this circle than those flowing in. We need Divergence/Gauss Theorem to understand why it is true.

Since $\operatorname{div} \mathbf{U}=2$ holds everywhere, the flow is expanding at the same rate everywhere (not just at the origin).

Example 2: $\mathbf{U}(x, y)=\langle-x,-y\rangle$,
 $\operatorname{div} \mathbf{U}=-2$

At some point (x_{0}, y_{0}), imagine a circle centered at this point with a very small radius, then $\operatorname{div} \mathbf{U}\left(x_{0}, y_{0}\right)<0$ simply means that less water molecules are flowing out of this circle than those flowing in.

Since $\operatorname{div} \mathbf{U}=-2$ holds everywhere, the flow is compressing at the same rate everywhere (not just at the origin).

Example 3: $\mathbf{U}(x, y)=\langle-y, x\rangle, \quad \operatorname{div} \mathbf{U}=0 \quad$ curl $\mathbf{U}=2$

The flow is incompressible because of zero divergence. The flow is rotating counterclockwise around the origin but that's NOT what curl $\mathbf{U}=2$ really means.

Example 4: $\mathbf{U}(x, y)=\langle y, x\rangle, \quad \operatorname{div} \mathbf{U}=0 \quad$ curl $\mathbf{U}=0$

The flow is incompressible and there is no "rotation".

Example 5: $\mathbf{U}(x, y)=\langle y, 0\rangle, \quad \operatorname{div} \mathbf{U}=0 \quad$ curl $\mathbf{U}=-1$

The flow is incompressible. The flow is moving horizontally but we expect local clockwise rotation in this flow.

Example 5: $\mathbf{U}(x, y)=\langle y, 0\rangle, \quad \operatorname{div} \mathbf{U}=0 \quad$ curl $\mathbf{U}=-1$

Meaning of local rotation: take the point $\left(x_{0}, y_{0}\right)=(0,0)$ as an example, imagine a small boat (size goes to zero if it's OK with you) located at that point. In the figure, the red ellipse represents an exaggerated small boat at $(0,0)$. What would happen to this boat and why?

Physical Meaning of Curl

Image a small ball with rough surface in a 2D/3D river. The ball will rotate/spin and the rotation axis is the curl vector. The angular speed is $\frac{1}{2}$ of the magnitude of the curl vector.

$$
\mathbf{U}(x, y)=\langle y, 0\rangle, \quad \operatorname{curl} \mathbf{U}=\langle 0,0,-1\rangle
$$

Stream function and stream lines

Example 3: $\mathbf{U}(x, y)=\langle-y, x\rangle, \quad \operatorname{div} \mathbf{U}=0 \quad$ curl $\mathbf{U}=2$
Stream lines of a 2D vector field $\langle u, v\rangle$ are the curves with tangent vectors $\langle u, v\rangle$. Or you can think of it as the trajectory of any water molecule.
Image the small ball/boat as a roller coaster ride, then the ride will go along the stream lines. If curl is zero, then it is just a normal train ride along the curve. If curl is positive, then the ride also spins counterclockwise.

Stream lines are level curves $f(x, y)=C$ where the stream function f satisfies $-f_{y}=u$ and $f_{x}=v$ (why is this?). For this example, $f(x, y)=x^{2}+y^{2}$.

Revisit Example 4: $\mathbf{U}(x, y)=\langle y, x\rangle, \quad \operatorname{div} \mathbf{U}=0 \quad$ curl $\mathbf{U}=0$

This is just a normal train ride along the stream lines.

Stream function is $f(x, y)=x^{2}-y^{2} .-f_{y}=u$ and $f_{x}=v$.

An incompressible flow simulation

An incompressible flow simulation

