Homework 2

Due on Jan 29th in class.

1. Let $f(x, y)=3 x^{2}+y^{2}$. Sketch the graph of f, as well as some of its level sets and sections.
2. For each of the following functions, find the limit as $(x, y) \rightarrow(0,0)$ using $\varepsilon-\delta$ language, or show that the limit does not exist.
(a)

$$
\frac{5 x y}{2 x^{2}+3 y^{2}}
$$

(b)

$$
\begin{aligned}
& \frac{x^{2} y^{4} e^{y} \cos x}{x^{4}+y^{8}} \\
& \frac{x^{4} y^{4} e^{x-y}}{2 x^{4}+y^{4}}
\end{aligned}
$$

(c)

Hint: If you believe the limit exists, then the inqualities $a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right)$ and $a b \leq \frac{1}{4}(a+b)^{2}$ might help you to get an estimate of these functions. You can also use trivial inequalities like $x^{2}+3 y^{2} \geq x^{2}+y^{2}$. Then follow what we did in class for dealing with the limit of $\frac{5 x^{2} y^{2} \log \left(x^{2}+y^{2}+2\right)}{2 x^{2}+3 y^{2}}$.
3. Evaluate the partial derivatives of

$$
f(x, y)= \begin{cases}0, & \text { if }(x, y)=(0,0) \\ \frac{x^{2} y^{3}}{x^{4}+y^{6}}, & \text { if }(x, y) \neq(0,0)\end{cases}
$$

with respect to x and y at $(0,0)$. Is f differentiable at $(0,0)$? Explain your answer.
4. Find the equation for the tangent plane at $(1,2)$ to the graph of $f(x, y)=$ $x^{2}+2 y^{2}+1$. Where does this plane intersect the z axis?
5. Find the matrix of partial derivatives of the function $f(x, y)=\left(x y e^{x y}, x \sin y, 5 x y^{2}\right)$.

