Homework 3

Due on Feb 5 in class.

1. A function f(x, y) is called *continuously differentiable* at a point (x_0, y_0) if both of its partial derivatives exist and are continuous at (x_0, y_0) . We also call them C^1 functions, i.e., f being a C^1 function means f(x, y) is continuously differentiable. Decide whether the following functions are C^1 at all points $(x, y) \in \mathbb{R}^2$:

$$f(x,y) = \begin{cases} 0, & \text{if } (x,y) = (0,0), \\ \frac{2xy}{(x^2 + y^2)^2}, & \text{if } (x,y) \neq (0,0). \end{cases}$$

(b)

(a)

$$f(x,y) = \begin{cases} 0, & \text{if } (x,y) = (0,0), \\ \frac{xy}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq (0,0). \end{cases}$$

Hint: first find the partial derivatives functions $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ which are also piece-wisely defined. Then check whether they are continuous at all points in \mathbb{R}^2 .

2. Let f(x, y, z) be a scalar-valued differentiable function. Making the substitution

 $x = \rho \cos \theta \sin \phi, \ y = \rho \sin \theta \sin \phi, \ z = \rho \cos \phi$ into f(x, y, z), compute $\frac{\partial f}{\partial \rho}, \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi}$ in terms of $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$.

3. Compute the directional derivatives of the following functions $f(\mathbf{x})$ along the unit vector parallel to a given vector \mathbf{v} at the point \mathbf{x}_0 :

$$f(x,y) = x^y, \ \mathbf{x}_0 = (e,e), \ \mathbf{v} = (5,12).$$

(b)

$$f(x, y, z) = e^x + yz, \mathbf{x}_0 = (1, 1, 1), \ \mathbf{v} = (1, -1, 1).$$

- 4. Find the equation for the plane tangent to the surface $x^2+2y^2+3xz = 10$ at $(1, 2, \frac{1}{3})$.
- 5. Find the gradient of the function $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$.