Homework 3

Due on Feb 5 in class.

1. A function $f(x, y)$ is called continuously differentiable at a point $\left(x_{0}, y_{0}\right)$ if both of its partial derivatives exist and are continuous at $\left(x_{0}, y_{0}\right)$. We also call them C^{1} functions, i.e., f being a C^{1} function means $f(x, y)$ is continuously differentiable. Decide whether the following functions are C^{1} at all points $(x, y) \in \mathbb{R}^{2}$:
(a)

$$
f(x, y)= \begin{cases}0, & \text { if }(x, y)=(0,0) \\ \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, & \text { if }(x, y) \neq(0,0) .\end{cases}
$$

(b)

$$
f(x, y)= \begin{cases}0, & \text { if }(x, y)=(0,0) \\ \frac{x y}{\sqrt{x^{2}+y^{2}}}, & \text { if }(x, y) \neq(0,0)\end{cases}
$$

Hint: first find the partial derivatives functions $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ which are also piece-wisely defined. Then check whether they are continuous at all points in \mathbb{R}^{2}.
2. Let $f(x, y, z)$ be a scalar-valued differentiable function. Making the substitution

$$
x=\rho \cos \theta \sin \phi, y=\rho \sin \theta \sin \phi, z=\rho \cos \phi
$$

into $f(x, y, z)$, compute $\frac{\partial f}{\partial \rho}, \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi}$ in terms of $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$.
3. Compute the directional derivatives of the following functions $f(\mathbf{x})$ along the unit vector parallel to a given vector \mathbf{v} at the point \mathbf{x}_{0} :
(a)

$$
f(x, y)=x^{y}, \mathbf{x}_{0}=(e, e), \mathbf{v}=(5,12)
$$

(b)

$$
f(x, y, z)=e^{x}+y z, \mathbf{x}_{0}=(1,1,1), \mathbf{v}=(1,-1,1)
$$

4. Find the equation for the plane tangent to the surface $x^{2}+2 y^{2}+3 x z=10$ at $\left(1,2, \frac{1}{3}\right)$.
5. Find the gradient of the function $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
