Homework 5

Due on Feb 26 in class.

1. Find the perimeter of an ellipse $\frac{1}{4} x^{2}+\frac{1}{9} y^{2}=1$ by computing the arc length of the following parametric curve $\mathbf{c}(t)$. Only write down the integral and simplify it as much as possible. Do not evaluate the integral by trying to find its antiderivative.

$$
x(t)=2 \cos t, \quad y=3 \sin t, \quad 0 \leq t \leq 2 \pi
$$

2. Let $\mathbf{F}=\left(x^{2}, x^{2} y, z+z x\right)$. Find $\operatorname{curl} \mathbf{F}$. Verify that $\nabla \cdot(\nabla \times \mathbf{F})=0$.
3. Evaluate the integral $\int_{C} \omega$ with differential form $\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$ and the following two curves C :
(a) $x=\cos t, y=\sin t, t \in[0,2 \pi]$.
(b) $x=\cos (-t), y=\sin (-t),-2 \pi \leq t \leq 0$.
4. Determine which of the following 1 -forms on \mathbb{R}^{2} are exact. Express the exact 1-forms in the form $d f$. In other words, find $f(x, y)$ for exact forms.
(a) $3 y d x+x d y$
(b) $y d x+x d y$
(c) $e^{x} y d x+e^{x} d y$
(d) $-y d x+x d y$
5. Calculate $\int_{C_{1}} z d x+x d z$ and $\int_{C_{2}} z d x+x d z$ where the two curves are given as:
(a) C_{1} is the helix $x=\cos t, y=\sin t, z=t, 0 \leq t \leq 2 \pi$.
(b) C_{2} is the line segment connecting $(0,0,0)$ and $(0,0,2 \pi)$. (Hint: find the line equation first then use it as the parametric curve for C_{2}).
